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1. INTRODUCTION

The series and parallel systems are the most frequent and maximum encountered sys-
tems in nature. These systems are statistically referred to as the minimum and the maximum
order statistic respectively. Let X1, X2, ..., Xn be n independent and non-identical random
variables from a particular population. Then arranging the random variables according to
their magnitude or strength we observe that X1:n ≤ X2:n ≤ ... ≤ Xn:n, where Xk:n is known
as the k-th order statistic. Xk:n represents the lifetime of a (n− k + 1)-out-of-n system. In
this paper, we focus only on the minimum and maximum order statistic. A great deal of
literature is available on the stochastic relationship among the order statistics for various
probability distributions.

In particular, our problem deals with the Proportional hazard rate (PHR) model and the
proportional reversed hazard rate (PRHR) model. We consider X1, X2, ..., Xn as independent
random variables, where the survival function of each random variable Xi follows the PHR
model for i = 1, ..., n. Then reliability or survival probability of Xi is:

P (Xi > x) = F i(x) = [F 0(x)]λi , λi > 0, i = 1, 2, ..., n,

where λi is the proportionality parameter. Here let X0 be the baseline random variable with
the baseline distribution F0(x) and the baseline survival function F 0(x) = 1− F0(x). Expo-
nential, Weibull, Pareto, Lomax, Kumaraswamy’s distributions are some examples of PHR
model distribution. [24] pioneered the study of stochastic ordering (details about stochastic
ordering are given in the next section) for k-out-of-n systems which included usual stochastic
ordering results for PHR model. [25] studied dispersive and star ordering for general distribu-
tions in detail. Later on, many researchers have continued the study and found many results
for PHR model. [5] discussed that the existing results for exponential distribution which
can be extended for PHR models, this was possible as the random variable corresponding
to the cumulative hazard rate function of a PHR family of distribution follows exponential
distribution with the proportionality constant as the parameter i.e., if X follows [F (x)]λ,
then the cumulative hazard rate function follows Exp(λ) distribution. [15] demonstrated dis-
persive ordering between the maximum order statistics of two PHR populations. [23] and
[28] observed dispersive ordering between the 2nd order statistics (also known as fail-safe sys-
tems) from two different populations and derived bounds on the corresponding parameters.
Considering the parallel systems having PHR distributed components, [16] studied the dis-
persive ordering between them. A comprehensive review of the various stochastic ordering
between the order statistics for random variables belonging from the PHR model has been
done by [5]. Recently [11] observed stochastic ordering for series and parallel systems with
Kumaraswamy’s and Frechet distributed components. Now we shall observe what is meant
by a multiple outlier model.

Let X1, X2, ..., Xn and Y1, Y2, ..., Yn be n-independent PHR samples having the same
baseline distribution but the parameter vectors are given by (α1, ..., α1︸ ︷︷ ︸

p

, α2, ..., α2︸ ︷︷ ︸
q

) and

(β1, ..., β1︸ ︷︷ ︸
p

, β2, ..., β2︸ ︷︷ ︸
q

) respectively, where p+ q = n. Such an arrangement is described as the

multiple-outlier model. [4] and [29] discussed the hazard rate and the likelihood ratio ordering
for parallel systems with multiple-outlier PHR model. For a similar model, [2] derived con-
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ditions on the distribution function for the dispersive ordering of k-th order statistic where
the parameter vectors follow majorization relation. [9] found the necessary and sufficient
conditions for the hazard rate ordering among the second order statistics. [30] examined the
stochastic comparison between series and parallel systems where the component lifetimes are
dependent, heterogeneous and resilience scaled. [13] and [14] found several conditions for
stochastic ordering of maximum and minimum order statistics from a location-scale family of
distributions. [3] observed stochastic ordering between the sample ranges where component
lifetimes (number of components are different) are independent and follows multiple-outlier
exponential distribution and PHR models.

In contrast to the PHR model, proportional reversed hazard rate (PRHR) model was
developed. Let Xi follows PRHR model then the distribution function of Xi is given by

P (Xi < x) = Fi(x) = [F0(x)]θi , θi > 0, i = 1, 2, ..., n,

where θi is the proportionality constant. Some known examples of PRHR model are ex-
ponentiated Weibull, exponentiated exponential, exponentiated Gamma, etc. [1] observed
dispersive ordering for the series systems with components following the PRHR model.

Here we consider two sets of independent PHR and PRHR models where the baseline
distribution of both the sets are different and the sample sizes are also different i.e., the first
set of random variables Xi ∼ F i(x) = (F 0(x))αi for i = 1, 2, ..., n1 and the second set Yi ∼
Gi(x) = (G0(x))βi for i = 1, 2, ..., n2. Considering the same baseline distribution F0 = G0, we
study dispersive and star ordering for series/parallel models. A similar kind of study being
conducted for series/parallel system made up of PRHR distributed components.

We have also considered a general model as, X1, ..., Xp1 that has survival function
[F (x)]αi and Xp1+1, ..., Xn1 has survival function [G(x)]αi . And Y1, ..., Yp2 has survival func-
tion as [F (x)]βi whereas the components Yp2+1, ..., Yn2 has survival function [G(x)]βi . We
have proved that the hazard rate ordering for sample minimum exists for such models, analo-
gously reversed hazard rate ordering for sample maximums exist for PRHR model. A reversed
hazard rate ordering for sample maximum (with equal sample sizes) for Pareto distributed
random variables has been observed when only the shape parameter varies.

Lastly, we study some results for series system having dependent components, where
the dependence among components has been considered as having Archimedean type of cop-
ula. These studies include the results when the location parameter is varied along with a
comparison between two generating functions (super-additive property) and usual stochastic
ordering among baseline distributions.
The paper has been constructed as follows: Section 2 includes all the definitions used in
the paper, Section 3 contains results and discussion where Subsection 3.1 contains dispersive
ordering results for PHR and PRHR model with unequal sample sizes, Subsection 3.2 con-
tains star ordering result for unequal sample sizes and Subsection 3.2 contains result for the
dependent model. The various well-known lemmas that have been used in proving the results
are discussed under Section 2.
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2. DEFINITIONS

Let X and Y be two absolutely continuous random variables with distribution func-
tions F (x) and G(x); reliability functions as F (x) and G(x); probability density functions

as f(x) and g(x); hazard rate functions as r(x) =
f(x)
F (x)

and s(x) =
g(x)
G(x)

; reversed hazard

rate functions as r̃(x) =
f(x)
F (x)

and s̃(x) =
g(x)
G(x)

, respectively. Let F−1 and G−1 be the right

continuous quantiles of X and Y respectively. A real valued function ψ is super-additive when
ψ(x1 + x2) ≥ ψ(x1) + ψ(x2) for all x1, x2 ∈ Domain(ψ). This concept is valid even when the
summation is over n-variables. For details on the above definitions we refer the reader to
[6]. One can note that a random variable has decreasing reversed hazard rate(DRHR) if and
only if the distribution function is log-concave. It is known that there exists no distribution
which is log convex or increasing reversed hazard rate(IRHR) over the entire domain [0,∞).
An IRHR distribution can be constructed if the domain is taken as (−∞, α) for some finite α
(see [8]), an example of that is Truncated Normal distribution with domain as (−∞, 0]. Next
we discuss some of the various stochastic orders available in literature. We refer the reader
to [26] for the detail of these orderings.

Definition 2.1. X is smaller than Y in:

a) Usual stochastic order (X ≤st Y ) if and only if

F (x) ≤ G(x), ∀x ∈ (−∞,∞).

b) Hazard rate order (X ≤hr Y ) if r(x) ≥ s(x), x ∈ R. Equivalently, if
G(x)
F (x)

is increas-

ing in x over the union of the supports of X and Y .

c) Reversed hazard rate order (X ≤rh Y ) if r̃(x) ≤ s̃(x), x ∈ R. Equivalently, if
G(x)
F (x)

is increasing in x over the union of the supports of X and Y .

d) Likelihood ratio order (X ≤lr Y ) if
g(x)
f(x)

is increasing in x over the union of the

supports of X and Y .

e) Dispersive order (X ≤disp Y ) if

F−1(α2)− F−1(α1) ≤ G−1(α2)−G−1(α1) whenever 0 < α1 ≤ α2 < 1.

Equivalently, (X ≤disp Y ) if and only if

G−1(α)− F−1(α) increases in α ∈ (0, 1).

f) Star order (X ≤∗ Y ) if
G−1(t)
F−1(t)

increases in t ∈ (0, 1).

Here,
X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.

Similarly,
X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y.
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The detailed description about the inter-relationship between each of the stochastic orders
can be seen from the book [26].

Definition 2.2. Majorization: Let a = (a1, ..., an) and b = (b1, ..., bn) be two real
valued vectors. Then:

• a is majorized by b ( a ≺ b ) if
∑n

i=1 ai:n =
∑n

i=1 bi:n and
∑k

i=1 ai:n ≥
∑k

i=1 bi:n ∀ k =
1, ..., n− 1;

• a is weakly submajorized by b ( a ≺w b ) if
∑k

i=1 an−i+1:n ≤
∑k

i=1 bn−i+1:n ∀ k =
1, ..., n;
a is weakly supermajorized by b ( a ≺w b ) if

∑k
i=1 ai:n ≥

∑k
i=1 bi:n ∀ k = 1, ..., n;

where a1:n ≤ ... ≤ an:n (b1:n ≤ ... ≤ bn:n) is the increasing arrangement of a1, ..., an

(b1, ..., bn).

For a and b, we have a ≺w b⇐ a ≺ b⇒ a ≺w b.

Definition 2.3. Schur-convexity (Schur-concavity): A real valued function ψ

defined on a subset of Rn is Schur-convex (Schur-concave) if

(2.1) a ≺ b⇒ ψ(a) ≤ (≥) ψ(b),

where a = (a1, ..., an) and b = (b1, ..., bn) are two real valued vectors.

Throughout the paper, the notation a
sgn
= b has been used to represent sign of a is same

as b. The results and lemmas that are used in obtaining the proofs are mentioned in the
following subsection.

2.1. Useful results

Lemma 2.1 (Theorem 3.A.4, see [19]). Let

∆ = (ai − aj)
(
∂ψ(a)
∂ai

− ∂ψ(a)
∂aj

)
,

for an open interval A ⊂ R, a continuously differentiable function ψ : An → R is Schur-convex

(Schur-concave) if and only if it is symmetric on An and for all i 6= j, ∆ ≥ (≤)0.

Lemma 2.2 (Proposition 3.C.1, see [19]). If A ⊂ R is an interval and h : A → R is

convex (concave), then ψ(a) =
n∑

i=1

h(ai) is Schur-convex (Schur-concave) on An, where a =

(a1, ..., an).

Lemma 2.3 (Theorem 3.A.8, see [19]). Let S ⊂ Rn, a function f : S → R satisfying

a ≺w b (a ≺w b) on S ⇒ f(a) ≤ f(b)

if and only if f is increasing (decreasing) and Schur-convex on S.



392 M. Datta and N. Gupta

Lemma 2.4 (see [25]). Let Fα, α ∈ R be a class of distribution functions such that the

support of Fα is given by some interval (x0, x1) ⊂ R+ and has a non-vanishing density fα(x)
on any subinterval of (x0, x1), where x0 and x1 are the left and right end points respectively.

Then

(2.2) Fα ≤disp Fα∗ , α, α∗ ∈ R, α ≤ α∗,

if and only if
F

′
α(x)
fα(x)

is decreasing in x, where F
′
α is the derivative of Fα with respect to α.

And

(2.3) Fα ≤∗ Fα∗ , α, α∗ ∈ R, α ≤ α∗,

if and only if
F

′
α(x)

xfα(x)
is decreasing in x, where F

′
α is the derivative of Fα with respect to α.

The first inequalities in (2.2) and (2.3) reverses as the quantity
F

′
α(x)
fα(x)

and
F

′
α(x)

xfα(x)
respectively

increases in x.

3. RESULTS AND DISCUSSION

3.1. Dispersive ordering results for unequal sample sizes

In this section we compare minimum and maximum order statistics arising from taking
random variables having general proportional hazard rate and proportional reversed hazard
rate distribution. As a corollary some results for multiple-outlier models has also been ob-
tained. The multiple-outlier model has been explained in [4, 29] as an independent set of ran-
dom variablesX1, X2, ..., Xn, where FXi = FX for i = 1, ..., p and FXi = FY for i = p+1, ..., n,
necessarily 1 ≤ p < n. When the value of p = n− 1, this becomes a single-outlier model. Ear-
lier many researchers have studied various results for the comparison of order statistics from
multiple-outlier models. [2] considered the following model

(X1, X2, ..., Xn) ∼ ((F (x))α1 , ..., (F (x))α1︸ ︷︷ ︸
p

, (F (x))α2 , ..., (F (x))α2︸ ︷︷ ︸
q

)

and
(Y1, Y2, ..., Yn) ∼ ((F (x))α∗

1 , ..., (F (x))α∗
1︸ ︷︷ ︸

p

, (F (x))α∗
2 , ..., (F (x))α∗

2︸ ︷︷ ︸
q

).

They observed star and dispersive ordering for the k-th order statistic by imposing ma-
jorization properties over the parameters. In the following paper they primarily discussed
hazard rate ordering for exponentially distributed components and derived similar hazard
rate ordering results for maximum order statistic with some additional conditions over the
parameters. Under the same conditions [9] observed hazard rate ordering for second order
statistic. Moreover they found hazard rate orderings when the number of components and
number of outliers were different. Whereas [21] studied maximum order statistic for PHR
model (survival function of Xi is FXi(x) = (F (x))αi for i = 1, ..., n) such that the distribution
function of maxi∈P Xi, P ⊂ {1, 2, ..., n} is

Fmax(x) = QP (F (x)),
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where QP is a distortion function (continuous and increasing in [0,1], also Q(0)=0, Q(1)=1)
and it depends on the underlying copula and the proportionality parameters. Few results
were observed for different subsets of {1, 2, ..., n}. Further they have also discussed some
results corresponding to multiple outlier model, PHR distributions using the aforementioned
distortion function and results for the independent cases. We have considered various models
in our study which includes model where the baseline distributions are same but the shape
parameter varies, the baseline distributions are different and the shape parameters are also
different. Several researchers have studied multiple-outlier models extensively as it helps in
dealing with outliers. Recently, [31] studied some results where the n-component lifetimes of
both the systems are dependent with multiple-outlier proportional hazard rates. [10] studied
stochastic ordering for two types of models: Modified proportional hazard rate scale model
and Modified proportional reversed hazard rate scale model. In our present study we first
observe results for series systems where the component lifetimes are independent and follows
different proportional hazard rates (the number of components in both the systems are not
necessarily same) and the results for multiple-outlier models can be derived subsequently.

The following theorem has been observed for series systems with components following
PHR family of distributions such that the baseline distribution for both the sets are different.

Theorem 3.1. Let X1, X2, ..., Xn1 be a set of n1-independent random variables each

belonging from a particular PHR family with parameters (α1, α2, ..., αn1). We assume that

Xi ∼ F i(x) = (F 0(x))αi for i = 1, 2, ..., n1. Also, let Y1, Y2, ..., Yn2 be another set of

n2-independent random variables each following PHR family of distributions with a different

distribution function and the parameter set is (β1, β2..., βn2). Let Yi ∼ Gi(x) = (G0(x))βi for

i = 1, 2, ..., n2. Under the assumption that

n2∑
i=1

βi ≥
n1∑
i=1

αi, the baseline distribution function

F0 is DFR, and G0 ≤hr F0 then Y1:n2 ≤disp X1:n1 .

Proof: The distribution function of X1:n1 and Y1:n2 are

(3.1) F 1:n1(x) =
(
F 0(x)

) n1∑
i=1

αi

,

and,

(3.2) G1:n2(x) =
(
G0(x)

) n2∑
i=1

βi

respectively. For simplicity we replace
n1∑
i=1

αi by α and
n2∑
i=1

βi by β. Let

ψ1(y) = F−1
1:n1

(y)−G−1
1:n2

(y)

= F
−1
0

(
(1− y)1/α

)
−G

−1
0

(
(1− y)1/β

)
We are required to prove Y1:n2 ≤disp X1:n1 , i.e., ψ1(y) is increasing in y ∈ (0, 1). Hence

Y1:n2 ≤disp X1:n1 if and only if φ1(t) = F
−1
0 (t)−G

−1
0

tαβ
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is decreasing in t ∈ (0, 1), where t = (1− y)1/α. Note that

φ
′
1(t) = − 1

f0(F
−1
0 (t))

+
α

β

t

α

β
−1

g0

G−1
0

tαβ
 .(3.3)

We need to show that φ
′
1(t) ≤ 0, i.e.,

(3.4)
t

f0(F
−1
0 (t))

≥ α

β

t

α

β

g0

G−1
0

tαβ
 .

Let F−1
0 (t) = z1 and G−1

0

tαβ
 = z2,

F 0(z1)
f0(z1)

≥ α

β

G0(z2)
g0(z2)

⇒ s0(z2)
β

α
≥ r0(z1),(3.5)

where r0(z1) =
f0(z1)
F 0(z1)

and s0(z2) =
g0(z2)
G0(z2)

. Under the hypothesis of the theorem

β ≥ α

⇒ t = F 0(z1) ≤ t

 
α

β

!
= G0(z2).

and G0 ≤hr F0 implies that z2 ≤ z1 (G0 ≤st F0 follows from G0 ≤hr F0 subsequently we can
derive that G0(z2) ≥ F 0(z1) ≥ G0(z1). Finally the implication is possible as G0 is a decreasing
function) and s0(z2) ≥ r0(z2) . Also F0 is DFR then, z2 ≤ z1 ⇒ r0(z2) ≥ r0(z1). Combining
all these we find that (3.5) holds true. Hence the result.

The above result provides a general outlook over the PHR distributions. Apart from the
fact that the component lifetimes are independent, the result can be compared with Theorem
3.11 from [31]. Here the baseline distributions are different, also the number of components
are not same. The theorem holds true when we encounter a multiple-outlier model. An
example has been provided here that satisfies the condition given in the above theorem.

Example 3.1. Let (X1, X2, X3) and (Y1, Y2, Y3) be independent Transformed Pareto
distributed random variables. The survival function of Xi is F ki

(t) and corresponding to Yi

is Gk∗
i
(t) for i = 1, 2, 3. Consider k1 = 1.7, k2 = 2, k3 = 0.9 and k∗1 = 1, k∗2 = 3, k∗3 = 2.3, here

3∑
i=1

ki = 4.6 and
3∑

i=1

k∗i = 6.3.

Let us consider F ki
(t) = (F 0(t))ki , where F 0(t) =

1
(1 + t)2

, t > 0; Gk∗
i
(t) = (G0(t))k∗

i , where
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G0(t) =
1

(1 + t)3
, t > 0.

Here, F0 is DFR and the ratio
F 0(t)
G0(t)

= 1 + t is increasing in t ∀t > 0. Thus, F0 ≥hr G0.

We observe that F−1
0 (u) =

(
1
u

)1
2 −1, 0 < u < 1 and G−1

0 (u) =
(

1
u

)1
3 −1, 0 < u < 1. Hence,

as mentioned in Theorem 3.1, the expression

ψ1(y) = F
−1
0 ((1− y)1/α)−G

−1
0 ((1− y)1/β)

=
1

(1− y)1/2α
− 1

(1− y)1/3β
, α =

3∑
i=1

ki and β =
3∑

i=1

k∗i .(3.6)

Plotting (3.6) with respect to y, for 0 < y < 1, we observe that ψ1(y) is increasing in y, i.e.
the theorem holds true in this case.

Figure 1: ψ1(y) is increasing for 0 < y < 1.

The conditions “DFR” and hr order necessary in Theorem 3.1. Let us consider

F 1:n1(x) =
(
F 0(x)

) n1∑
i=1

αi

and

G1:n2(x) =
(
G0(x)

) n2∑
i=1

βi

where F 0(x) = exp(−x2), x > 0 and G0(x) = exp(−x), x > 0;
n1∑
i=1

αi = 2 and
n2∑
i=1

βi = 2.5.

Here
F 0(x)
G0(x)

is non-monotone and ψ1(y) = F
−1
0

(1− y)
1/

n1∑
i=1

αi

−G−1
0

(1− y)
1/

n2∑
i=1

βi

 is
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also non-monotone. The condition for DFR and hr order are not satisfied here (see Figure 2
and Figure 3), also the dispersive order does not hold in this situation even though the
conditions for the parameters are satisfied. The plots are shown below:
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Figure 2:
F 0(x)
G0(x)

is non-monotone.
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Figure 3: ψ1(y) is non-monotone.
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Thus the conditions mentioned in Theorem 3.1 are necessary. Here we discuss the
following result for a parallel system with the PRHR distributed components.

Theorem 3.2. Let X1, X2, ..., Xn1 be a n1-independent set of random variables each

belonging from PRHR family of distributions with parameters (α1, α2..., αn1), such that Xi ∼
Fi(x) = (F0(x))αi for i = 1, 2, ..., n1. Also Y1, Y2, ..., Yn2 be another set of n2-independent ran-

dom variables each following PRHR family of distributions with a different distribution func-

tion and the parameter set is (β1, β2, ..., βn2). Let Yi ∼ Gi(x) = (G0(x))βi for i = 1, 2, ..., n2.

Then Yn2:n2 ≤disp Xn1:n1 if the baseline distribution F0 follows IRHR model,

n2∑
i=1

βi ≥
n1∑
i=1

αi

and F0 ≤rh G0.

Proof: The distribution function of Xn1:n1 and Yn2:n2 are

Fn1:n1(x) = [F0(x)]

n1∑
i=1

αi

, and,

Gn2:n2(x) = [G0(x)]

n2∑
i=1

βi

respectively. Similar to the previous theorem, we take
n1∑
i=1

αi = α and
n2∑
i=1

βi = β. Let

ψ2(y) = F−1
n1:n1

(y)−G−1
n2:n2

(y)

= F−1
0 (y1/α)−G−1

0 (y1/β).

We are required to prove that Yn2:n2 ≤disp Xn1:n1 , i.e., ψ2(y) is increasing in y ∈ (0, 1).

Hence Yn2:n2 ≤disp Xn1:n1 if and only if φ2(t) = F−1
0 (t)−G−1

0

tαβ
 is increasing in t ∈ (0, 1),

where t = y1/α. Note that

φ
′
2(t) =

1
f0(F−1

0 (t))
− α

β

t

α

β
−1

g0

G−1
0

tαβ
 .

We need to show that φ
′
2(t) ≥ 0, i.e.,

(3.7)
t

f0(F−1
0 (t))

≥ α

β

t

α

β

g0

G−1
0

tαβ
 .

Put F−1
0 (t) = z1 and G−1

0

tαβ
 = z2. From (3.7) it is sufficient to show

F0(z1)
f0(z1)

≥ α

β

G0(z2)
g0(z2)

⇔ s̃0(z2)
β

α
≥ r̃0(z1).(3.8)
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As

β

α
≥ 1

⇒ t = F0(z1) ≤ t

α

β = Go(z2).

Since F0 ≤rh G0 implies F0 ≤st G0, hence G0(z1) ≤ F0(z1) ≤ G0(z2) i.e., z1 ≤ z2. Again
F0 follows increasing reversed hazard rate (IRHR) model hence z1 ≤ z2 ⇒ r̃0(z1) ≤ r̃0(z2).
Lastly, F0 ≤rh G0 ⇒ r̃0(x) ≤ s̃0(x) for all x, thus r̃0(z2) ≤ s̃0(z2). Combining these inequali-
ties we obtain the required result.

Example 3.2. We have observed an example of IRHR distribution from Example 3.4
of [4]. Let X be a random variable following Truncated Normal(µ, σ2) distribution with
distribution function as

F (x) =
Φ
(
x− µ

σ

)
Φ
(
−µ
σ

) , x ∈ (−∞, 0]

Let us consider a set of 3 independent random variables X1, X2, X3 such that Xi ∼ Fi(x) =

[F0(x)]αi , i = 1, 2, 3 where F0 corresponds to Truncated Normal(0, 4) i.e., F0(x) =
Φ
(x

2

)
0.5

.

Let us consider another set of 2 independent random variables Y1, Y2 such that Yi ∼ Gi(x) =

[G0(x)]βi , i = 1, 2, 3 where G0 corresponds to Truncated Normal(0, 1) i.e., G0(x) =
Φ(x)
0.5

. We
can observe that the reversed hazard rate function of the baseline distributions F0 and G0

are

h̃F0(x) =
1
2
φ(x)
Φ(x)

,

h̃G0(x) =
φ(x)
Φ(x)

.

Thus, F0 ≤rh G0. The distribution function of X3:3 and Y2:2 are

F3:3(x) =

Φ
(x

2

)
0.5


3∑

i=1

αi

and G2:2(x) =
(

Φ(x)
0.5

) 2∑
i=1

βi

.

Taking
3∑

i=1

αi = α = 2 and
2∑

i=1

βi = β = 3. Here all the conditions of Theorem 3.2 are satisfied,

further we observe that

ψ2(y) = F−1
3:3 (y)−G−1

2:2(y)

= F−1
0 (y1/α)−G−1

0 (y1/β)

= 2Φ−1(0.5y1/2)− Φ−1(0.5y1/3)

is increasing in y ∈ (0, 1).
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Figure 4: ψ2(y) is increasing for 0 < y < 1.

As a corollary, we can obtain a result for multiple-outlier model from PRHR distribu-
tions. The condition IRHR is necessary here, we can understand this through an example.
Let (X1, X2, X3) and (Y1, Y2, Y3) be independent random variables such that the distribution
function of Xi is (F0(x))αi , where F0(x) = 1− e−3x, x > 0 and distribution function of Yi is

(G0(x))βi , where G0(x) =
1

(1 + x)2
, x > 0. F0(x) is DRHR.

Figure 5:
G0(x)
F0(x)

is increasing for x > 0.

Figure 5 represents that F0 ≤rh G0. Let α =
∑n

i=1 αi and β =
∑n

i=1 βi, then

ψ2(y) = F−1
0 (y1/α)−G−1

0 (y1/β)

= 1 +
1
3
ln(1− y1/4.6)− 1

(1− y1/6.3)1/2
, 0 < y < 1
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Thus from Figure 6, we observe that Y3:3 ≥disp X3:3, i.e. the inequality reverses.

Figure 6: ψ2(y) is decreasing for 0 < y < 1.

In the next theorem, we provide a result for series systems with unequal number of
components following PHR models with different baseline distributions. It can be noted that
there is some relationship between hazard rate ordering and dispersive ordering. If X and Y
are two non negative random variables then:

1. If X ≤hr Y and X or Y is DFR, then X ≤disp Y ;

2. If X ≤disp Y and X or Y is IFR, then X ≤hr Y ;

from theorem 3.B.20 of [26] and Corollary 4.3 of [7].

Theorem 3.3. Consider a system of n1 components, where the lifetime of each com-

ponent is represented by the random variable X1, X2, ..., Xn1 respectively such that each

of X1, ..., Xp1 has survival function [F (x)]αi , i = 1, 2, ..., p1 and Xp1+1, ..., Xn1 has survival

function [G(x)]αi , i = p1 + 1, p1 + 2, ..., n1. Similarly another system with n2 components is

considered where the components Y1, ..., Yp2 has survival function as [F (x)]βi , i = 1, 2, ..., p2

whereas the components Yp2+1, ..., Yn2 has survival function [G(x)]βi , i = p2 + 1, p2 + 2, ..., n2.

Then X1:n1 ≤hr Y1:n2 whenever

p1∑
i=1

αi >

p2∑
i=1

βi and

n1∑
i=p1+1

αi >

n2∑
i=p2+1

βi.

Proof: The survival function of X1:n1 is

F 1:n1(x) = [F (x)]

p1∑
i=1

αi

[G(x)]

n1∑
i=p1+1

αi

,

and the survival function of Y1:n2 is

G1:n2(x) = [F (x)]

p2∑
i=1

βi

[G(x)]

n2∑
i=p2+1

βi

.
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Consider the ratio

(3.9)
F 1:n1(x)
G1:n2(x)

= [F (x)]

0
B@

p1∑
i=1

αi −
p2∑
i=1

βi

1
CA

[G(x)]

0
B@

n1∑
i=p1+1

αi −
n2∑

i=p2+1

βi

1
CA

Differentiating (3.9) with respect to x,

d

dx

(
F 1:n1(x)
G1:n2(x)

)
= −F 1:n1(x)

G1:n2(x)

( p1∑
i=1

αi −
p2∑
i=1

βi

)
f(x)
F (x)

+

 n1∑
i=p1+1

αi −
n2∑

i=p2+1

βi

 g(x)
G(x)


< 0,

whenever
p1∑
i=1

αi >

p2∑
i=1

βi and
n1∑

i=p1+1

αi >

n2∑
i=p2+1

βi. Hence the result follows.

When the random variables X1:n1 or Y1:n2 is DFR then X1:n1 ≤disp Y1:n2 .

If we consider a similar problem wherein the random variables follows a PRHR distri-
bution, we arrive at the following theorem.

Theorem 3.4. Consider an independent set of n1 random variables X1, X2, ..., Xp1 ,

Xp1+1, ..., Xn1 such that the distribution function of Xi, FXi(x) = [F (x)]αi for i = 1, 2, ..., p1

and FXi(x) = [G(x)]αi for i = p1 + 1, ..., n1. Another set of n2 independent components

Y1, Y2, ..., Yp2 , Yp2+1, ..., Yn2 are such that the distribution function of Yi, FYi(x) = [F (x)]βi ,

i = 1, 2, ..., p2 and FYi(x) = [G(x)]βi for i = p2 + 1, ..., n2. Then Xn1:n1 ≥rh Yn2:n2 whenever
p1∑
i=1

αi >

p2∑
i=1

βi and

n1∑
i=p1+1

αi >

n2∑
i=p2+1

βi.

Proof: The distribution functions of Xn1:n1 and Yn2:n2 are

Fn1:n1(x) = [F (x)]

p1∑
i=1

αi

[G(x)]

n1∑
i=p1+1

αi

,

Gn2:n2(x) = [F (x)]

p2∑
i=1

βi

[G(x)]

n2∑
i=p2+1

βi

respectively. Differentiating the ratio
Fn1:n1(x)
Gn2:n2(x)

with respect to x, we observe,

d

dx

(
Fn1:n1(x)
Gn2:n2(x)

)
=
Fn1:n1(x)
Gn2:n2(x)

( p1∑
i=1

αi −
p2∑
i=1

βi

)
f(x)
F (x)

+

 n1∑
i=p1+1

αi −
n2∑

i=p2+1

βi

 g(x)
G(x)


> 0,

whenever
p1∑
i=1

αi >

p2∑
i=1

βi and
n1∑

i=p1+1

αi >

n2∑
i=p2+1

βi and the result follows.
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The above theorem deals with a different set of parameters and baseline distributions
as compared to that of theorem 3.7 from [31] where the component lifetimes are dependent
but the parameters are restricted and the baseline distributions are all same. If Xn1:n1 or
Yn2:n2 is IRFR then from the above theorem we can observe that Xn1:n1 ≤disp Yn2:n2 .
We can observe the inter-relationship between reversed hazard rate ordering and dispersive
ordering, as mentioned in Corollary 4.4 of [7]. For two random variables X and Y ,

1. If X ≤rh Y and X or Y is IRFR, then Y ≤disp X;

2. If X ≤disp Y and X or Y is DRFR, then Y ≤rh X.

It is interesting to note that in [21], Proposition 4.4 can be realized from Theorem 3.3
and 3.4. Such as, if p1 = n and p2 = n in theorem 3.3 then

X1:n ≤hr Y1:n whenever
n∑

i=1

αi >
n∑

i=1

βi,

and if p1 = n and p2 = n in theorem 3.4 then

Xn:n ≥rh Yn:n whenever
n∑

i=1

αi >

n∑
i=1

βi.

Next we consider a reversed hazard rate ordering result for the parallel system having Pareto
distributed components such that the sample sizes are equal. Pareto distribution is DRFR
hence we have obtained a reversed hazard rate ordering for Xn:n and Yn:n.

Theorem 3.5. LetX1, X2, ..., Xn and Y1, Y2, ..., Yn be two sets of n-independent Pareto

distributed random variables such that the survival function of Xi is F i(x) =
(
1 +

x

θ

)−αi

,

x > 0, θ > 0, αi > 0 and that of Yi is Gi(x) =
(
1 +

x

θ

)−α∗
i
, x > 0, θ > 0, α∗i > 0. Let

α = (α1, α2, ..., αn), α∗ = (α∗1, α
∗
2, ..., α

∗
n), then α ≺w α∗ ⇒ Xn:n ≤rh Yn:n.

Proof: The distribution function of Xn:n is

(3.10) FXn:n(x) =
n∏

i=1

[
1−

(
1 +

x

θ

)−αi
]
,

and the corresponding reversed hazard rate function is

(3.11) r̃Xn:n(x) =
1

x+ θ

n∑
i=1

g(αi),

where g(α) =
α(x

θ
+ 1
)α
− 1

. Let u =
(x
θ

+ 1
)α

and u > 1 such that g(α) =
α

uα − 1
. Now,

(3.12) g′(α) =
uα(1− α lnu)− 1

(uα − 1)2

and

(3.13) g′′(α) =
uα lnu((uα lnu+ lnu)α− 2uα + 2)

(uα − 1)3
.
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g′′(α)
sgn
= uα(lnu)φ(u), where φ(u) = (uα lnu+ lnu)α− 2uα + 2, φ(1) = 0. Also,

φ′(u) = α2uα−1 lnu+
α

u
− αuα−1

=
α

u
φ1(u),

such that φ1(u) = αuα lnu+ 1− uα and φ1(1) = 0. And

φ′1(u) = α2uα−1 lnu

> 0.

Hence it is observed that g′′(α) > 0 for x > 0 (u > 1), i.e., g(α) is convex in α. Hence,
using Lemma 2.2 we obtain, r̃Xn:n(x) is Schur convex w.r.t α. Moreover,

g′(α)
sgn
= uα(1− α lnu)− 1, u > 1

= h(u) say,

then h′(u) = −α2uα−1 lnu. Also h(1) = 0, then g′(α) < 0 for x > 0 (u > 1). Thus r̃Xn:n(x)
is decreasing in α and Schur convex w.r.t α. Using Lemma 2.3, we infer that α ≺w α∗

⇒ r̃Xn:n(x) ≤ r̃Yn:n(x). Hence the result follows.

3.2. Star ordering result for unequal sample sizes

In this section we present a comparison between two systems based on star ordering.
Consider a series system with components following PHR model and have unequal sample
sizes.

Theorem 3.6. Let X1, X2, ..., Xn1 be a n1-independent set of non-negative random

variables such thatXi ∼ [F (x)]αi for i = 1, 2, ..., n1 and Y1, Y2, ..., Yn2 be another n2-independ-

ent set of non-negative random variables such that Yi ∼ [F (x)]βi for i = 1, 2, ..., n2, where n1

and n2 may or may not be the same. Then

n1∑
i=1

αi ≤
n2∑
i=1

βi ⇒ X1:n1 ≥∗ Y1:n2 , whenever xr(x) is decreasing.

Proof: The survival function of X1:n1 is

(3.14) F 1:n1(x) = [F (x)]

n1∑
i=1

αi

.

Let
n1∑
i=1

αi = α, then F 1:n1(x) = [F (x)]α = Fα(x) (say).

The corresponding probability density function is

fX1:n1
(x) = αf(x)[F (x)]α−1

= fα(x).
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Note that the ratio

(3.15)
F ′

α(x)
fα(x)

= − 1
α

lnF (x)
r(x)

,

where Fα(x) = 1− [F (x)]α and F ′
α(x) = d

dαFα(x).

The theorem follows by differentiating the ratio
F ′

α(x)
xfα(x)

with respect to x.

Note that

d

dx

(
F ′

α(x)
xfα(x)

)
=

1
α

(
x(r(x))2 + (xr′(x) + r(x)) lnF (x)

(xr(x))2

)
> 0,

whenever xr(x) is decreasing in x. Now using Lemma 2.4, we obtain X1:n1 ≥∗ Y1:n2 whenever
n1∑
i=1

αi ≤
n2∑
i=1

βi.

We observe here that the hazard rate functions of X1:n1 and Y1:n2 are rX1:n1
(x) =

n1∑
i=1

αir(x) and rY1:n2
(x) =

n2∑
i=1

βir(x) respectively, where r(x) is the hazard rate function of

baseline distribution F (x). Then

rX1:n1
(x) ≤ rY1:n2

(x) whenever
n1∑
i=1

αi ≤
n2∑
i=1

βi.

The class of decreasing proportional hazard rate has been studied by [22] where several exam-
ples are also provided. The above result is applicable for multiple-outlier models. Moreover
this theorem can be considered as a more general form of theorem 3.9 from [31]. Here the
parameters are all different and only a simple inequality exists between them.

3.3. Dependent model

In this section we have considered a dependent set of random variables instead of in-
dependent random variables as discussed in the earlier sections. [12] studied scaled samples
with proportional hazard and proportional reversed hazard rate models whereas [30] stud-
ied stochastic ordering results of Resilience-scaled(RS) models (X ∼ RS(α, λ) if FX(x) =
Fα(λx), α > 0, λ > 0) for series and parallel systems with dependent set of components.
Moreover, [13] and [14] have discussed about the stochastic ordering between two systems
where the component lifetimes are independent and each belongs from a location-scale family,
necessarily with the same baseline distribution function. [18] discussed stochastic ordering
results for series system from dependent and independent random variables following location-
scale family of distributions. Thus it might be interesting to study the conditions under which
a series (parallel) system can be compared with another series (parallel) system, where all the
component lifetimes are dependent and each belonging from location family of distributions,
the baseline distribution functions for both the sets are also different.
Hence we shall observe few definitions required especially to study the dependent models.
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Definition 3.1. Survival copula: Let (X1, ..., Xn) be a n-dimensional random vector
defined on a probability space (Ω,F,P), the multivariate survival function is defined as

F (x1, ..., xn) = P [X1 > x1, ..., Xn > xn]

= C̃(F 1(x1), ..., Fn(xn)), x1, ..., xn ∈ R,

where C̃ is the n-dimensional survival copula of the random vector (X1, ..., Xn).
C̃ is a continuous function defined over the n-dimensional space as C̃ : [0, 1]n 7→ [0, 1], to
develop multivariate survival functions from the marginal survival functions.

Archimedean copula is a very widely used class of survival copula because of its ana-
lytical tractability.

Definition 3.2. Archimedean copula

A n-dimensional Archimedean copula C̃ : [0, 1]n 7→ [0, 1] is represented as

C̃(u1, ..., un) = ψ(ψ−1(u1) + ...+ ψ−1(un)), uk ∈ [0, 1] for k = 1, ..., n,

where the survival copula C̃ is generated by the generator function (also known as
Archimedean generator function) ψ : [0,∞) 7→ [0, 1], ψ is n -monotone (n ≥ 2) over an open
interval I ⊂ R (where the end points of the interval I belongs to the limit point of R) if ψ
has derivatives upto order n− 2 and

(−1)rψ(r)(x) ≥ 0 for r = 0, 1, 2, ..., n− 2

for any x ∈ I and also (−1)(n−2)ψ(n−2) is non-increasing and convex over I. φ = ψ−1 is the
corresponding inverse function. Clayton copula, Frank copula are few archimedean copulas
studied in the literature.

For a detailed discussion on Archimedean Copula one can refer to [20].
Recently, [27] have published results for systems with heterogeneous, dependent and distribu-
tion-free components. The following two propositions are mentioned here, the proofs of these
propositions can be easily derived from the proof of propositions 3.16 and 3.7 from [27].

Proposition 3.1. Let Y1, Y2, ..., Yn be n random variables such that Yi = X − µi,

(P [X > x] = F (x)) where µi for i = 1, 2, ..., n are the corresponding location parameters re-

spectively, then the survival function of the minimum of Y1, Y2, ..., Yn (P [min{Y1, Y2, ..., Yn} >
x]) is given by

J1(µ;F (x), ψ1) = ψ1(
n∑

k=1

φ1(F (x+ µk))),

ψ1 is log-convex (log-concave) and F is IFR (DFR) distribution. If there exists another set of

n random variables Z1, Z2, ..., Zn (Zi = W −µ∗i and P [W > x] = G(x)) such that the survival

function for the minimum of Z1, Z2, ..., Zn is

J1(µ∗;G(x), ψ2) = ψ2(
n∑

k=1

φ2(G(x+ µ∗k))),

then as (µ1, µ2, ..., µn) ≺w (≺w) (µ∗1, µ
∗
2, ..., µ

∗
n) we obtain Y1:n ≥st (≤st)Z1:n as ψ is log-convex

(log-concave), X ≥st W and F is IFR (DFR) distribution and φ1 ·ψ2(φ2 ·ψ1) is super-additive.
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Proposition 3.2. Let Y1, ..., Yn and Z1, ..., Zn be two n-dimensional random variables

such that Yi = X − µi and Zi = W − µi∗, i = 1, 2, ..., n. Then

µ ≺w µ∗ (µ ≺w µ∗) ⇒ Yn:n ≥st (≤st)Zn:n

whenever ψ1or ψ2 is log-convex (log-concave), F is IRFR(DRFR) distribution, X ≥st (≤st)W
and φ2 · ψ1(φ1 · ψ2) is super additive.

Here the condition“φ2 ·ψ1 is super-additive”is necessary. Let us consider 2 Archimedean
copula generators as

φ1(t) = (− ln t)2, t ∈ (0, 1] and φ2(t) = (1− t)3, t ∈ (0, 1].

The corresponding inverses are

ψ1(t) = exp(−t1/2) and ψ2(t) = 1− t1/3.

We can observe that ψ1 is log-convex. We are ineterested in finding the sign of the difference
term

φ2 · ψ1(t1 + t2)− φ2 · ψ1(t1)− φ2 · ψ1(t2).

Figure 7 shows that the generators are chosen such that φ2 · ψ1 is not super-additive.

Figure 7: φ2 ·ψ1 is not super additive.

As mentioned in the proposition, we shall consider Yi = X − µi and Zi = W − µ∗i for
i = 1, 2, 3. The location parameters are µ = (0.5, 1, 2) and µ∗ = (1, 2, 3), thus µ ≺w µ∗. The
cdf of X and W are respectively given by

F (x) =
Φ
(x

2

)
0.5

, x ∈ (−∞, 0] and G(x) =
Φ(x)
0.5

, x ∈ (−∞, 0].

The cdf of Y3:3 is

J2(µ;F (x), ψ1) = 1− ψ1


3∑

k=1

− ln
Φ
(
x+ µk

2

)
0.5


2
.
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The cdf of Z3:3 is

J2(µ∗;G(x), ψ2) = 1− ψ2

(
3∑

k=1

(
1−

Φ(x+ µ∗k)
0.5

)3
)
.

We shall observe the difference between the above 2 terms in Figure 8. Thus when φ2 · ψ1 is
not super additive, usual stochastic ordering does not exist between Y3:3 and Z3:3.

y1 = J2(µ;F (x), ψ1)− J2(µ∗;G(x), ψ2)

= 1−

(
3∑

k=1

(
1−

Φ(x+ µ∗k)
0.5

)3
)1/3

− exp

−


3∑
k=1

− ln
Φ
(
x+ µk

2

)
0.5


2


1/2
.

Figure 8: Usual stochastic ordering does not exist between Y3:3 and Z3:3.

When we take the generator function ψ(x) = exp(−x), φ(x) = − lnx. This generator in-
dicates the independence copula (when the random variables are independent). Subsequently
one can obtain the usual stochastic ordering between two sets of independent random vari-
ables.

Consider the Clayton copula generator function as

ψθ(x) = max((1 + θx)−1/θ, 0), θ > 0.

The above Archimedean generator is completely monotone (n-monotone for every n ∈ N) for
θ > 0, and hence generates an Archimedean Copula. Here ψθ is a log-convex function, and
hence the above theorems hold for this archimedean generator.

Examples: Let us consider φ(t) = (− ln t)θ, θ > 1, t ∈ (0, 1], the corresponding inverse
function is ψ(t) = e−t1/θ

, 0 ≤ t <∞. lnψ(t) and its corresponding derivatives with respect to t
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are

lnψ(t) = −t1/θ

d

dt
(lnψ(t)) = −1

θ
t−1+1/θ

d2

dt2
(lnψ(t)) =

θ − 1
θ2

t−2+1/θ.

We can observe that
d2

dt2
(lnψ(t)) is non-negative. Hence ψ(t) is log-convex.

Let us consider φ(t) = ln(1− θ ln t), θ > 0, t ∈ (0, 1], the corresponding inverse function

is ψ(t) = e

1− et

θ , 0 ≤ t <∞. lnψ(t) and its corresponding derivatives with respect to t are

lnψ(t) =
1− et

θ
d

dt
(lnψ(t)) = −e

t

θ
d2

dt2
(lnψ(t)) = −e

t

θ
.

We can observe that
d2

dt2
(lnψ(t)) is non-positive. Hence ψ(t) is log-concave.

4. CONCLUSION

Electronic devices, mechanical or electrical system consists of various units that are
linked with one another either in series, parallel or any other combination, all of them are
prone to failure at a certain point. We often refer to the warranty of the product to under-
stand which system to purchase. Obviously any system which does not fail early is worth
purchasing. If we are able to understand the dispersion of such a system compared to any
other then we can compare two products. In order to understand the lifetime of any series or
parallel system, we considered the random variables corresponding to the components. The
results discussed in this paper can be divided into 3 subpart as Proportional Hazard rate
(PHR) model, Proportional Reversed Hazard rate (PRHR) model, Dependent model. For
PHR model we considered different models, a generalized situation where we consider two
sets of independent PHR random variables and the baseline distribution for both the sets are
different (X1, X2, ..., Xn1 such that Xi ∼ F i(x) = (F 0(x))αi for i = 1, 2, ..., n1 and another
set Y1, Y2, ..., Yn2 , Yi ∼ Gi(x) = (G0(x))βi for i = 1, 2, ..., n2 ). We have obtained conditions
over the parameters and the baseline distributions so that a dispersive ordering exist between
the minimum order statistics. Whereas when both the baseline distributions are same, star
ordering occurs between these minimum order statistics provided xr(x) is decreasing. Since
Pareto distribution is also PHR model, a reversed hazard rate ordering occurs between the
sample maximums (also known as parallel systems) when the shape parameter varies. Pro-
ceeding similarly we have observed a result for PRHR model too. Here the two sets of random
variables follow different baseline distributions and the number of samples are also unequal
(Xi ∼ Fi(x) = (F0(x))αi for i = 1, 2, ..., n1 and Yi ∼ Gi(x) = (G0(x))βi for i = 1, 2, ..., n2). All
of these results are true for multiple-outlier models.
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Another form of generalized model has been studied where X1, ..., Xp1 has survival function
[F (x)]αi and Xp1+1, ..., Xn1 has survival function [G(x)]αi . Similarly another system with n2

components is considered where the components Y1, ..., Yp2 has survival function as [F (x)]βi

whereas the components Yp+1, ..., Yn2 has survival function [G(x)]βi and hazard rate ordering
results has been observed for series systems. A reversed hazard rate ordering result with
PRHR components has been observed.
In the last section, dependent random variables have been studied. Here we obtained usual
stochastic ordering results between two sample minimums and two sample maximums such
that the location parameter corresponding to the random variables from two sets obeys a
weak majorization ordering while the baseline distribution obeys a usual stochastic ordering
and the generating functions follows super-additive property.
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