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1. INTRODUCTION

The Maxwell distribution, also known in the statistic and physic literatures as Maxwell–
Boltzmann distribution, has probability density function (PDF) in the form

f(y;α) =

√
2
π

y2e−y2/(2α2)

α3
, y > 0,

where α > 0 is the scale parameter. The mean and variance of the Maxwell distribution
reduce to

E(Y ) = 2α

√
2
π

, and VAR(Y ) =
α2(3π − 8)

π
.

There are, of course, some works related specifically to the one-parameter Maxwell distri-
bution in the statistic literature. The reader is referred to Tyagi and Bhattacharya [31],
Bekker and Roux [3], Dey and Maiti [13], Dey et al. [12], Al-Baldawi [1], Li [24], Fan [15],
Dar et al. [11] and Hossain et al. [20], among others. It is evident that the one-parameter
Maxwell distribution has noticeable scientific importance and, of course, it leaves open quite
a number of new directions of research. In this paper, we provide a complete study regarding
this one-parameter family of distributions in a parametric regression setup on the basis of a
mean-parameterized Maxwell distribution.

In a parametric regression framework, it is typically more useful to model directly the
mean (mode or median) of the response variable. In the last few years, several works have
been published and so contributed to the regression literature on parameterizations based on
the mean, mode, or median. To mention a few, but not limited to, we refer the reader to Yao
and Li [33], Lemonte and Bazan [23], Chen et al. [6], Castellares et al. [5], Bourguignon et

al. [4], Gallardo et al. [17], Gómez et al. [19], Leão et al. [22] and Menezes et al. [26]. In this
paper, in order to obtain a regression structure for the mean of the Maxwell distribution, we
shall work with a different parameterization of the Maxwell PDF. Let µ = 2α(2/π)1/2 and,
hence, α = (1/2)µ(2/π)−1/2. In this case, substituting this expression in the Maxwell PDF, a
reparameterization for the PDF is obtained; that is, the mean-parameterized Maxwell PDF
is given by

(1.1) f(y;µ) =
(

2
π

)2 8y2

µ3
exp
(
− 4y2

πµ2

)
, y > 0,

so that E(Y ) = µ > 0 is the mean of the Maxwell distribution. Additionally, we have that
VAR(Y ) = 0.178µ2∝ µ2. The cumulative distribution function (CDF) of the mean-parameter-
ized Maxwell takes the form

F (y, µ) =
2γ(3/2, 4y2/(πµ2))√

π
, y > 0,

where γ(a, x) =
∫ x
0 ta−1e−tdt is the lower incomplete gamma function. We shall use the

notation Mw(µ) to refer to this distribution. We have that limy→0 f(y) = limy→∞ f(y) = 0
and, in addition, the mode is simply given by µ

√
π/2. The Maxwell failure rate function is

given by

r(y) =
(

2
π

)2 8y2

µ3

[
1− 2γ(3/2, 4y2/(πµ2))√

π

]−1

exp
(
− 4y2

πµ2

)
, y > 0.
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Figure 1 displays some plots of the PDF and failure rate function for some values of µ.
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Figure 1: Density and failure rate functions.

We have the following propositions.

Proposition 1. The Maxwell PDF is log-concave for all values of µ > 0.

Proof: The result follows by noting that the second derivative of log(f(y;µ)) is given
by

d2 log(f(y;µ))
dy2

= −
(

2
y2

+
8

πµ2

)
< 0.

Proposition 2. For any µ > 0, the Maxwell failure rate function is monotone in-
creasing.

Proof: The result holds by using the log-concavity of the Maxwell PDF.

Remark 1. It is rather easy to generate random variates from the mean-parameteri-
zed Maxwell distribution. If U follows a gamma distribution with shape parameter 3/2 and
scale parameter 1, then Y = µ

√
πU/4 ∼ Mw(µ).

In this paper, we shall provide a parametric regression structure for the Maxwell distri-
bution parameter, which involves covariates (explanatory variables) and unknown regression
parameters. Furthermore, some quantities (e.g., score function, Fisher information matrix,
etc.) related to the mean-parameterized Maxwell regression model are simple and compact,
which makes the frequentist approach very easy to implement. Obviously the Bayesian ap-
proach has its merits and could also be considered and, in addition, these methodologies
could be compared and contrasted. However, the comparison of these two methodologies
is beyond the scope of this paper and hence can be considered in a future work. Also, it
is quite common in practice, after modeling the real data at hand, to check the regression
model assumptions and conduct diagnostic studies in order to detect possible atypical ob-
servations that may distort the results of the analysis. A first way to perform sensitivity
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analysis is by means of global influence starting from the case deletion proposed by Cook [7].
In addition, Cook [8] introduced a general framework to detect atypical observations under
small perturbations on the data or in the model. In this paper, global and local influence
are also considered to detect atypical observations in the class of Maxwell regression models.
Throughout this paper, an atypical observation means that it can be an outlier1, or obser-
vation with a large residual in absolute value, or an influential observation in the sense of
global or local influences. Finally, it is well-known the residuals carry important information
concerning the appropriateness of assumptions that underlie statistical models, and thereby
play an important role in checking model adequacy identifying discrepancies between mod-
els and data. Hence, we propose the normalized quantile residual introduced by Dunn and
Smyth [14] for the Maxwell regression model to study discrepancies between the model and
data. In summary, the main contributions of this paper are as follows:

– We propose a Maxwell distribution parameterized in terms of its mean, allowing
easy interpretation of the distribution parameter.

– Based on the mean-parameterized Maxwell distribution, we propose a novel para-
metric regression model for positive response variables, which is quite simple and
may be very useful in practice, allowing for parameter interpretation in terms of the
response in the original scale; that is, the regression parameters are interpretable in
terms of the mean of the variable of interest.

– The direct modeling of the mean parameter in the mean-parameterized Maxwell
regression model will promote its wider use in practice, putting it on the same level
of interpretability and parsimony of some well-known regression models for positive
response variables.

– The simulation and data analysis examples in this article reinforce that the proposed
framework is a quite simple yet flexible way to model positive response variables.

The rest of this paper is organized as follows. The mean-parameterized Maxwell regres-
sion model is introduced in Section 2, and likelihood-based inference, as well as Monte Carlo
simulation experiments are also performed. In Section 3, we propose diagnostic measures
(i.e., global and local influence) for the mean-parameterized Maxwell regression model and,
in particular, the normal curvature of local influence is derived under a specific perturbation
scheme, namely: case weighting perturbation. Additionally, we also consider the normalized
quantile residual to assess departures from the underlying distribution. Section 4 contains
real data applications of the mean-parameterized Maxwell regression model for illustrative
purposes. The paper ends up with some concluding remarks in Section 5.

2. THE MAXWELL REGRESSION MODEL

The model. Let Y1, ..., Yn be n independent random variables, where each Yi (i = 1, ..., n)
is Maxwell distributed and has PDF (1.1) with mean parameter µi; that is, Yi ∼ Mw(µi) for
i = 1, ..., n. In this work, we assume the following functional relation:

(2.1) log(µi) = x>i β,

1An outlying observation, or “outlier,” is one that appears to deviate markedly from other members of the
sample in which it occurs.
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where β = (β1, ..., βp)> is a vector of unknown regression coefficients, β ∈ IRp with p < n,
and x>i = (xi1, ..., xip) are observations on p known covariates (or independent variables, or
regressors). Generally, we have xi1 = 1 (for i = 1, ..., n) in practice and, hence, β1 corresponds
to the intercept parameter. It is worth emphasizing that other other links for the mean
parameter in (2.1) could be considered, namely: identity (µi = x>i β), and square root (

√
µi =

x>i β). However, the logarithm function is the most common and useful in such a case; that is,
the main advantage of the exponential form µi = exp(x>i β) is that the requirement µi > 0 is
automatically satisfied for all i = 1, ..., n, whereas the identity and square root do not ensure
such a requirement for all i = 1, ..., n. Note that the variance VAR(Yi) = 0.178µ2

i ∝ µ2
i is a

function of µi and, as a consequence, of the covariate values. Hence, non-constant response
variances are naturally accommodated into the regression model. Moreover, we assume that
the model matrix X = [x1, ...,xn]> has column rank p.

Remark 2. Let ξ be the mode of the mean-parameterized Maxwell distribution, and
so we have that ξ = µ

√
π/2. The mean-parameterized Maxwell regression model is de-

fined by the link function log(µi) = x>i β, for i = 1, ..., n, where β = (β1, ..., βp)>, and x>i =
(xi1, ..., xip). Let xi1 = 1 (for i = 1, ..., n) and, hence, β1 corresponds to the intercept param-
eter. In this case, log(µi) = β1 + β2 xi2 + ···+ βp xip. Note that

log(ξi) = β∗1 + β2 xi2 + ···+ βp xip, i = 1, ..., n,

where β∗1 = β1 + log(
√

π/2) corresponds to the ‘adjusted’ intercept. Therefore, we can easily
obtain the Maxwell modal regression model from the mean-parameterized Maxwell regression
model.

Parameter estimation. Let y = (y1, ..., yn)> be the n-vector of the observed responses.
We have that the parameter vector β = (β1, ..., βp)> represents the effects of the covariates
on the mean parameter of the Maxwell regression model and, hence, we are interested in
estimating this regression parameter vector. To do so, we shall consider the traditional
maximum likelihood (ML) method. The log-likelihood function for this class of regression
models, except for an unimportant constant term, has the form

`(β) = −3
n∑

i=1

log(µi)−
4
π

n∑
i=1

y2
i

µ2
i

,

where µi = exp(x>i β) for i = 1, ..., n. The ML estimate β̂ = (β̂1, ..., β̂p)> of β = (β1, ..., βp)> is
obtained by maximizing the log-likelihood function `(β) with respect to β. The maximization
can be performed, for example, in the R software [28] by using the optim(...) function.
The score function, obtained by differentiating the log-likelihood function `(β) with respect
to the unknown parameters, is given by the p-vector U(β) = X>s, where s = (s1, ..., sn)>

with si = 8y2
i /(πµ2

i )− 3. After some algebra, the expected (Fisher) information matrix for β

takes the form K = 6X>X.

The ML estimate β̂ = (β̂1, ..., β̂p)> can also be obtained by solving the nonlinear system
of equations U(β̂) = 0p, where 0p denotes a p-dimensional vector of zeros. There is no
closed-form expression for the ML estimate β̂ and its computation has to be performed
numerically using a nonlinear optimization algorithm. For example, the Newton–Raphson
iterative technique (or the Gauss–Newton and Quasi-Newton methods) could be applied to
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solve these equations and obtain β̂ numerically. On the other hand, one can use the Fisher
scoring method to estimate β by iteratively solving the equation

(2.2) β(m+1) = (X>X)−1X>z(m),

where z = (z1, ..., zn)> = Xβ + (1/6)s acts as an adjusted dependent variable, and m =
0, 1, ... is the iteration counter. The cycles through the scheme (2.2) consists of an iterative
ordinary least squares algorithm to optimize the log-likelihood function, and the iterations
go on until convergence is achieved (a stopping criterion must be defined). Equation (2.2)
reveals that the calculation of the ML estimate β̂ can be carried out using any software with
a matrix algebra library as, for example, the R software. The optimization algorithms require
the specification of initial values to be used in the iterative scheme.

In the following, we make some assumptions on the behavior of `(β) as the sample size
n approaches infinity, such as the regularity of the first three derivatives of `(β) with respect
to β, and the existence and uniqueness of the ML estimate of β; see, for example, Cox and
Hinkley [9]. When n is large and under standard regularity conditions, the ML estimators
of the Maxwell regression parameters are asymptotically normal, asymptotically unbiased
and have asymptotic variance-covariance matrix given by the inverse of the expected Fisher
information matrix: β̂

a∼ Np(β,K−1). This asymptotic normal distribution can be used to
construct approximate confidence intervals for the Maxwell regression parameters. Let βr

(r = 1, ..., p) be r-th component of β = (β1, ..., βp)>. The asymptotic confidence interval for
βr is simply given by β̂r ± Φ−1(1− ϑ/2) se(β̂r), for r = 1, ..., p, with asymptotic coverage of
100(1− ϑ)%. Here, se(·) is the square root of the diagonal element of K(β̂)−1 corresponding
to each parameter (i.e., the asymptotic standard error), and Φ−1(·) is the standard normal
quantile function.

Finite sample bias of the ML estimator. It is well-known that ML estimators are
asymptotically unbiased and efficient, but for small samples, the ML estimators may not
be unbiased. Here, we shall provide a general closed-form expression for the second-order
biases of the ML estimators of the Maxwell regression parameters. To that end, we shall
use the general expression given by Cox and Snell [10, Eq. (20)]. The closed-form expression
will, in turn, allow us to obtain bias-corrected estimates of the unknown parameters. We
shall use the following notation: κrs = E(∂2`(β)/∂βr∂βs), κrst = E(∂3`(β)/∂βr∂βs∂βt) and
κ

(t)
rs = ∂κrs/∂βt, for r, s, t = 1, ..., p. After some algebra, we obtain

κrs = −6
n∑

i=1

xirxis, κrst = 12
n∑

i=1

xirxisxit, and κ(t)
rs = 0.

Let Ba denote the second-order bias of β̂a (a = 1, ..., p). From Cox and Snell [10], we can
express Ba in the form

Ba =
∑′

s,t,u

κa,sκt,u

(
κ

(u)
st − 1

2
κstu

)
,

where κr,s is the (r, s)-th element of K−1, and
∑′

denotes the summation over all combina-
tions of parameters β1, ..., βp. Plugging the cumulants given before into this expression, we
can obtain the bias of β̂, say B, in matrix form. We can show after some algebra that the
p× 1 bias vector B reduces to

(2.3) B = (X>X)−1X>δ,
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where δ is the n-vector containing the elements of the main diagonal of the matrix
−(6π)−1X(X>X)−1X>. Note that the second-order bias vector B is simply the set co-
efficients from a simple ordinary least squares regression of δ on the columns of the model
matrix X. As expression (2.3) makes clear, it is possible to express the bias vector of β̂ as
the solution of an ordinary least squares regression. Additionally, the bias vector B involves
simple operations on matrices and vectors, and we can calculate it numerically via software
with numerical linear algebra facilities such as R with minimal effort. It is worth emphasizing
that the bias vector B will be small when δ is orthogonal to the columns of X. However,
the second-order bias vector B may be large in small and moderate sized samples. From
(2.3), we define the bias-corrected ML estimate β̃ = β̂ −B. We say that β̃ = (β̃1, ..., β̃p)> is
bias-adjusted ML estimate to order n−1, since its bias is of order n−2. It is expected that β̃

has superior finite-sample behavior relative to β̂, whose bias is of order n−1. It is not difficult
to show that β̃

a∼ Np(β,K−1).

Simulation study. In what follows, we report Monte Carlo simulation experiments for
the mean-parameterized Maxwell regression model. To explore the performance of the ML
method in estimating the regression parameter vector β, we report the results of simula-
tions designed to evaluate the accuracy of the ML estimators of β. The bias-adjusted
ML estimate is also considered in the Monte Carlo simulations. The Monte Carlo experi-
ments were carried out using log(µi) = β1 xi1 + β2 xi2 + β3 xi3, where xi1 = 1 (i = 1, ..., n),
and n = 10, 20, 30, 50, 80 and 150. The true values of the regression parameters were taken
as β1 = 1.0, β2 = 0.5 and β3 = 1.5. The values of xi2 were obtained as random draws of
the standard normal distribution, and the values of xi3 were obtained as random draws of
the exponential distribution with mean equals 1. The covariate values were held constant
throughout the simulations. We evaluate the point estimates by considering the following
quantities: the mean, the relative bias2 (RB), and the mean square error (MSE). These
quantities are computed from 15,000 Monte Carlo replications. The numerical results are
presented in Table 1. Note that the performance of the ML estimator of β is good, exhibiting
small bias in all cases considered. It is noteworthy that the bias-adjusted estimator is better
than the usual ML estimator for estimating the Maxwell regression parameters, mainly in
very small sample sizes. However, for large sample sizes, the bias-corrected ML estimator
becomes less justifiable. As expected, the MSE decreases as the sample size increases. In
short, the numerical results reveal that the ML method can be used quite effectively to es-
timate the Maxwell regression parameters, and the bias-corrected ML estimator becomes a
good alternative when the sample size is very small.

We now consider a Monte Carlo simulation study in the following way. First, we simu-
late data from the mean-parameterized Maxwell regression model and analyse the simulated
data using the following models: mean-parameterized Maxwell, gamma, and inverse-Gaussian
regression models. Next, we simulate data from a gamma model and analyse the simulated data
using all three models (mean-parameterized Maxwell, gamma, and inverse-Gaussian regression
models). Finally, we simulate data from an inverse Gaussian model and analyse the simulated
data using all three models (mean-parameterized Maxwell, gamma, and inverse-Gaussian re-
gression models). The gamma and inverse Gaussian regression models are very useful models
for continuous positive response variables [see, for example, 25]. The Monte Carlo exper-
iments were carried out using log(µi) = β1 + β2 xi, for i = 1, ..., n, and n = 50, 90 and 150.

2The relative bias of an estimate bθ, defined as [E(bθ)− θ]/θ, is obtained by estimating E(bθ) by Monte Carlo.
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Table 1: Simulation results regarding the point estimates of the Maxwell
model parameters.

ML estimator Bias-corrected ML estimator

bβ1
bβ2

bβ3
eβ1

eβ2
eβ3

Mean 0.913 0.550 1.516 0.939 0.536 1.512
n = 10 RB −0.087 0.101 0.010 −0.061 0.072 0.008

MSE 0.297 0.533 0.665 0.293 0.546 0.661

Mean 0.971 0.510 1.499 0.981 0.506 1.498
n = 20 RB −0.029 0.019 0.000 −0.019 0.012 −0.002

MSE 0.245 0.500 0.517 0.244 0.503 0.515

Mean 0.988 0.495 1.496 0.991 0.497 1.498
n = 30 RB −0.012 −0.010 −0.003 −0.009 −0.006 −0.002

MSE 0.199 0.489 0.524 0.199 0.487 0.526

Mean 0.991 0.494 1.502 0.994 0.495 1.503
n = 50 RB −0.009 −0.013 0.002 −0.006 −0.009 0.002

MSE 0.187 0.470 0.455 0.187 0.468 0.455

Mean 0.994 0.500 1.500 0.996 0.500 1.500
n = 80 RB −0.006 0.001 0.000 −0.004 0.000 0.000

MSE 0.182 0.439 0.444 0.182 0.439 0.444

Mean 0.996 0.501 1.500 0.997 0.501 1.500
n = 150 RB −0.004 0.002 0.000 −0.003 0.002 0.000

MSE 0.175 0.430 0.432 0.175 0.430 0.432

The values of covariate xi were obtained as random draws of the uniform distribution on the
unit interval (0, 1), and the covariate values were held constant throughout the simulations.
We set β1 = 1.0 and β2 = 0.8. For the gamma and inverse Gaussian models, we consider
the precision parameter, say φ, equals to φ = 4 and φ = 5, respectively. Tables 2 and 3 list
the simulation results based on 10,000 Monte Carlo replications for the true data generating
process (DGP) under three different scenarios: the Maxwell model as the true DGP, the
gamma model as the true DGP, and the inverse Gaussian model as the true DGP. In Table 2
we present the point estimates, standard deviation (SD) between parentheses, and the values
of Akaike information criterion (AIC) and Bayesian information criterion (BIC), whereas in
Table 3 we present the coverage probability (CP) of the confidence intervals for β1 and β2 at
the nominal levels 90% and 95%.

From Table 2, as expected, note that the Maxwell model yields the best fit under the
Maxwell DGP, as well as the gamma and inverse models when these models correspond to
the true DGPs; see the AIC and BIC values for the fitted models. It is also interesting
to note that under the gamma DGP, the Maxwell model outperforms the inverse Gaussian
model based on the AIC and BIC values. It is worth mentioning that under the inverse
Gaussian DGP, the SDs of the ML estimates of the model parameters become larger than in
the other two DGPs (Maxwell and gamma models). On the other hand, the ML estimates
are close to the true values of the regression parameters, which indicates the ‘robustness’ of
each model when estimating the regression parameters under model misspecification. From
the numerical results in Table 3, we have that under the Maxwell DGP, the coverage rates of
the confidence intervals are close to the nominal significance levels for all regression models,
being the Maxwell regression model with the best performance, as expected. However, it
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is noteworthy that the coverage rates of the confidence intervals of the Maxwell regression
parameters under the gamma and inverse Gaussian DGPs are not near the nominal levels,
mainly under the gamma DGP. Finally, it should be mentioned that much more numerical
work is needed to come to any general conclusion about the ‘robustness’ of the Maxwell
regression model under model misspecification and, hence, future research regarding this
issue can be conducted in a separate paper elsewhere.

Table 2: Simulation results considering three different data generating
process.

Maxwell DGP
n Model

β1 β2 AIC BIC

Maxwell 1.005(0.098) 0.780(0.179) 233.618 237.807
50 Gamma 1.007(0.101) 0.780(0.191) 236.195 244.478

Inverse Gaussian 1.005(0.104) 0.783(0.198) 245.476 253.759

Maxwell 1.002(0.083) 0.785(0.151) 349.574 354.574
90 Gamma 1.004(0.086) 0.783(0.160) 352.967 362.466

Inverse Gaussian 1.003(0.090) 0.785(0.169) 367.312 376.812

Maxwell 1.000(0.057) 0.790(0.108) 582.682 588.703
150 Gamma 1.002(0.059) 0.788(0.113) 587.642 598.674

Inverse Gaussian 1.001(0.062) 0.790(0.120) 611.891 622.923

Gamma DGP
n Model

β1 β2 AIC BIC

Maxwell 1.033(0.145) 0.770(0.238) 249.305 253.494
50 Gamma 1.008(0.137) 0.767(0.227) 247.040 255.324

Inverse Gaussian 1.003(0.141) 0.778(0.239) 252.414 260.697

Maxwell 1.038(0.112) 0.777(0.183) 375.505 380.505
90 Gamma 1.012(0.104) 0.773(0.169) 371.079 380.578

Inverse Gaussian 1.010(0.105) 0.778(0.172) 379.219 388.719

Maxwell 1.029(0.092) 0.799(0.148) 625.968 631.989
150 Gamma 1.001(0.086) 0.796(0.138) 617.266 628.297

Inverse Gaussian 1.001(0.085) 0.796(0.139) 631.973 643.005

Inverse Gaussian DGP
n Model

β1 β2 AIC BIC

Maxwell 1.121(0.225) 0.938(0.483) 351.457 355.646
50 Gamma 1.006(0.172) 0.778(0.358) 281.375 289.658

Inverse Gaussian 1.002(0.176) 0.788(0.368) 272.734 281.017

Maxwell 1.128(0.203) 0.905(0.445) 525.594 530.594
90 Gamma 1.009(0.168) 0.748(0.350) 417.941 427.441

Inverse Gaussian 1.010(0.161) 0.744(0.332) 405.532 415.032

Maxwell 1.133(0.164) 0.950(0.362) 891.968 897.989
150 Gamma 1.012(0.129) 0.784(0.269) 702.632 713.664

Inverse Gaussian 1.009(0.127) 0.789(0.265) 681.196 692.228
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Table 3: Coverage rates of confidence intervals considering three differ-
ent data generating process.

Maxwell DGP

CP(90%) CP(95%)n Model

β1 β2 β1 β2

Maxwell 0.892 0.899 0.955 0.941
50 Gamma 0.890 0.900 0.941 0.945

Inverse Gaussian 0.855 0.903 0.917 0.941

Maxwell 0.917 0.897 0.952 0.948
90 Gamma 0.900 0.862 0.941 0.945

Inverse Gaussian 0.848 0.879 0.921 0.945

Maxwell 0.893 0.896 0.952 0.941
150 Gamma 0.897 0.876 0.962 0.945

Inverse Gaussian 0.855 0.866 0.928 0.928

Gamma DGP

CP(90%) CP(95%)n Model

β1 β2 β1 β2

Maxwell 0.776 0.800 0.841 0.883
50 Gamma 0.883 0.893 0.934 0.948

Inverse Gaussian 0.824 0.869 0.893 0.931

Maxwell 0.759 0.814 0.841 0.879
90 Gamma 0.890 0.890 0.938 0.948

Inverse Gaussian 0.828 0.900 0.917 0.945

Maxwell 0.759 0.790 0.828 0.855
150 Gamma 0.879 0.883 0.934 0.945

Inverse Gaussian 0.852 0.883 0.900 0.934

Inverse Gaussian DGP

CP(90%) CP(95%)n Model

β1 β2 β1 β2

Maxwell 0.886 0.828 0.955 0.897
50 Gamma 0.941 0.921 0.969 0.948

Inverse Gaussian 0.907 0.903 0.948 0.955

Maxwell 0.872 0.790 0.938 0.886
90 Gamma 0.948 0.900 0.983 0.972

Inverse Gaussian 0.910 0.897 0.966 0.962

Maxwell 0.834 0.731 0.872 0.831
150 Gamma 0.914 0.872 0.962 0.934

Inverse Gaussian 0.879 0.872 0.928 0.941

3. DIAGNOSTIC MEASURES

It is well-known that regression models are sensitive to the underlying model assump-
tions and hence a sensitivity analysis is strongly advisable after fitting regression models to
a dataset. In order to assess the sensitivity of the ML estimates of the mean-parameterized
Maxwell model parameters in the presence of atypical observations, we shall consider the
global and local influence methods [7, 8]. Additionally, the normalized quantile residual will
be considered to assess departures from the underlying distribution.
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Global influence. A first way to perform sensitivity analysis is by means of global influence
starting from the case deletion proposed by Cook [7], which is a common approach to study
the effect of dropping the i-th case from the dataset. Let β̂(−i) be the ML estimate of β

without the i-th observation in the sample. To assess the influence of the i-th case on the ML
estimate β̂ = (β̂1, ..., β̂p)>, the basic idea is to compare the difference between β̂(−i) and β̂.
If the deletion of an observation seriously influences an estimate, more attention should be
paid to that particular observation. Hence, if β̂(−i) is far from β̂, then this case is regarded as
an influential observation. To measure the global influence, the generalized Cook distance is
defined as the standardized norm of β̂(−i)− β̂ in the form GDi = (β̂(−i)− β̂)>Jn(β̂)(β̂(−i)− β̂)
for i = 1, ..., n, where Jn(β) = X>WX is the observed (Fisher) information matrix, and
W = diag{w1, ..., wn} with wi = 16y2

i /(πµ2
i ). Note that we have to compute β̂(−i) for all

i = 1, ..., n. To avoid employing the direct model estimation for all observations, we can use
the following one-step approximation to reduce the number of models to be fitted: β̂(−i) l

β̂−Jn(β̂)−1L̇i(β̂), where L̇i(β) = ∂`i(β)/∂β, and `i(β) = −3 log(µi)− 4y2
i /(πµ2

i ). It follows
that β̂(−i) − β̂ l −Jn(β̂)−1xi ŝi, where ŝi := si(β̂). Hence, the generalized Cook distance
reduces to GDi = ŝ2

i x>i (X>ŴX)−1xi, for i = 1, ..., n, where Ŵ := W (β̂). The index plot of
GDi may reveal those influential observations on the ML estimates of the Maxwell regression
parameters.

Local influence. In the following, the local influence method under a specific perturbation
scheme (case weighting perturbation) is carried out in order to assess the sensitivity of the
ML estimates of the Maxwell regression parameters. Let ω ∈ Ω be a k-dimensional vector
of perturbations, where Ω ⊂ IRk is an open set. The perturbed log-likelihood function is
denoted by `(β|ω). The vector of no perturbation is ω0 ∈ Ω such that `(β|ω0) = `(β).
The Cook’s idea for assessing local influence is essentially analyzing the local behavior of
the log-likelihood displacement LDω = 2[`(β̂)− `(β̂ω)], where β̂ω denotes the ML estimate
under `(β|ω), around ω0 by evaluating the curvature of the plot of LDω0+ad against a,
where a ∈ IR and d is a unit norm direction. One of the measures of particular interest is
the direction dmax corresponding to the largest curvature Cdmax . Cook [8] proved that the
normal curvature at the direction d is given by Cd(β) = 2|d>∆>Jn(β)−1∆d|, where ∆ =
∂2`(β|ω)/∂β∂ω> and Jn(β) are evaluated at β̂ and ω0. We have that Jn(β) = X>WX and,
after some algebra, we can show that ∆ = X>S, where S = diag{s1, ..., sn}. Let (1/2)Cdmax

be the largest eigenvalue of L = −∆>Jn(β)−1∆, and dmax be the corresponding unit norm
eigenvector (||dmax|| = 1). The index plot of the largest eigenvector (dmax) of L may reveal
those influential observations on the ML estimate β̂.

Residuals. Usually, the residuals are defined in order to study departures from the response
distribution assumptions. More precisely, the residuals carry important information concern-
ing the appropriateness of assumptions that underlie statistical models, and thereby play an
important role in checking model adequacy. The use of residuals for assessing the adequacy
of fitted regression models is nowadays commonplace due to the widespread availability of
statistical software, many of which are capable of displaying residuals and diagnostic plots,
at least for the more commonly used models. We shall consider the normalized quantile
residuals proposed in Dunn and Smyth [14] to check the adequacy of the Maxwell regression
model fitted to a dataset, which is simply defined as

(3.1) Ri = Φ−1

(
2γ(3/2, 4y2

i /(πµ̂2
i ))√

π

)
, i = 1, ..., n,
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where µ̂i = exp(x>i β̂). The normalized quantile residuals in (3.1) have a standard normal
distribution asymptotically [14, 16]. Since the exact distribution of the above residual is not
known, it is usual to add envelopes as suggested by Atkinson [2, § 4.2] into the normal quantile-
quantile plot (QQ-plot) for Ri to decide whether the observed residuals are consistent with the
fitted regression model. Thus, observations corresponding to absolute residuals outside the
limits provided by the simulated envelope are worthy of further investigation. Additionally, if
a considerable proportion of points falls outside the envelope, then one has evidence against
the adequacy of the fitted model.

Remark 3. The simple closed-form expression for the bias vector of the ML estimators
of the Maxwell regression parameters in (2.3) can be used to define improved Pearson residuals
[see, for example, 10] for the mean-parameterized Maxwell regression model. Hence, future
research can be done to compare through Monte Carlo simulations the improved Pearson
residuals and the normalized quantile residuals.

4. ILLUSTRATIVE EXAMPLES

In what follows, we shall consider real data examples to illustrate the Maxwell regression
model in practice. All computations regarding the mean-parameterized Maxwell regression
model were carried out using the R program. The R code to compute the ML estimates of
the mean-parameterized Maxwell regression model parameters is provided in the Appendix.

Life of metal pieces data. Here, we consider the biaxial fatigue data on the life (in cy-
cles to failure) of metal pieces reported by Rieck and Nedelman [29]. The response variable
(Y ) is the life (in number of cycles to failure) of n = 46 metal pieces, and the explanatory
variable (x) is the work per cycle (mJ/m3). We assume that Yi ∼ Mw(µi), for i = 1, ..., 46,
where log(µi) = β1 + β2 log(xi). The ML estimates, asymptotic standard errors (SE) and
the 95% asymptotic confidence intervals (CI) of the Maxwell regression parameters are listed
in Table 4. Figure 2 displays the normalized quantile residuals for the Maxwell regression
model. We have in this figure the quantile residuals against the index, and the normal QQ-
plot (with generated envelopes), respectively. Note that the residuals appear satisfactory
(random) and, more important, there is no observation falling outside the envelope. There-
fore, the mean-parameterized Maxwell regression model provides a good fit to the biaxial
fatigue data. Figure 2 shows the index plot of the generalized Cook distance, as well as
the index plot of |dmax|. The generalized Cook distance identifies the cases #4 and #46 as
possible influential observations on the ML estimates of the Maxwell regression parameters.
We remove each of these observations individually from the dataset and, after that, we fit
the mean-parameterized Maxwell regression model. We observe that there is no inferential
change regarding the regression parameters when removing the cases #4 and #46 from the
dataset and, hence, these observations have no influence on the ML estimates of the Maxwell
regression parameters. The estimated Maxwell regression model is

log(µ̂i) = 12.4733− 1.706 log(xi), i = 1, ..., 46.

The coefficients of the mean-parameterized Maxwell regression model can be interpreted as
follows. The expected life (in cycles to failure) of a metal piece should decrease approxi-
mately 81.84% [(1− e−1.7060)× 100%] as the logarithm of work per cycle increases one unity;
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that is, there is a decrease in the expected rate of life (in cycles to failure) by a factor of
(approximately) 0.1816 [exp(−1.7060) = 0.1816].

Advertising media data. Next, we shall consider data corresponding to the impact of
newspapers on sales. These data are the advertising budget (in thousands of dollars) along
with sales. The advertising experiment has n = 200 observations, and they are available in the
R package datarium [21]. The response variable (Y ) corresponds to the sales (in thousands of
dollars), while the covariate (x) corresponds to the advertising budget on newspapers (in thou-
sands of dollars). We assume that Yi ∼ Mw(µi), for i = 1, ..., 200, where log(µi) = β1 + β2 xi.
The mean-parameterized Maxwell regression estimates are provided in Table 4. In addition,
Figure 3 confirms that the Maxwell regression model is suitable to model the data, since there
are no observations falling outside the envelope. The index plots of GDi (generalized Cook
distance) and |dmax| (local influence) are presented in Figure 3. It is identified the cases #37
and #129 as possible influential observations on the ML estimates of the mean-parameterized
Maxwell regression parameters. We remove each of these observations individually from the
dataset and, after that, we fit the Maxwell regression model. There is no inferential change
regarding the regression parameters when removing these cases from the dataset, so these
observations have no influence on the ML estimates of the Maxwell regression parameters.
The estimated Maxwell regression model is

log(µ̂i) = 2.6879 + 0.003 xi, i = 1, ..., 200,

and the ML estimates of the mean-parameterized Maxwell regression parameters deliver the
following interpretation. The expected sale (in thousands of dollars) should increase (approx-
imately) 0.301% [(e0.003 − 1)× 100%] as the advertising budget on newspapers increases one
thousand dollars; that is, there is an increase in the expected sale by a factor of (approxi-
mately) 1.003 [exp(0.003) = 1.003].

Radioimmunoassay data. Now, we consider the radioimmunoassay data, reported in
Tiede and Pagano [30]. These data were obtained from the Nuclear Medicine Department
of the Veteran’s Administration Hospital, Buffalo, New York. The variable of interest (Y )
is the radioactivity count rate, and the covariate (x) corresponds to the dose concentration
(measured in micro-international units per milliliter). We assume that Yi ∼ Mw(µi), for
i = 1, ..., 14, where log(µi) = β1 + β2 xi. Table 4 lists the ML estimates, asymptotic SEs and
the 95% asymptotic CIs of the Maxwell regression parameters. Residuals plots are displayed in
Figure 4, which confirms that the mean-parameterized Maxwell regression model is suitable to
model the data, since there are no observations falling outside the envelope. Figure 4 displays
the index plot of the generalized Cook distance, as well as the index plot of |dmax|. It is
identified the cases #1, #2 and #14 as possible influential observations on the ML estimates
of the Maxwell regression parameters. We remove each of these observations individually
from the dataset and, after that, we fit the mean-parameterized Maxwell regression model.
It is noteworthy that there is no inferential change regarding the regression parameters when
removing the cases #1, #2 and #14 from the dataset, revealing that these observations
have no influence on the ML estimates of the Maxwell regression parameters. The estimated
Maxwell regression model is

log(µ̂i) = 8.6091− 0.0190 xi, i = 1, ..., 14.
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The mean-parameterized Maxwell parameter estimates deliver interesting interpretation. The
expected radioactivity count rate should decrease approximately 1.88% [(1− e−0.0190)×100%]
as the dose concentration increases one unity; that is, there is a decrease in the expected
radioactivity count rate by a factor of (approximately) 0.98 [exp(−0.0190) = 0.98].

Table 4: Parameter estimates.

Life of metal pieces data
Parameter

Estimate SE 95% CI

β1 12.4733 0.4007 (11.688; 13.259)
β2 −1.7060 0.1114 (−1.924;−1.488)

Advertising media data
Parameter

Estimate SE 95% CI

β1 2.6879 0.0498 (2.590; 2.785)
β2 0.0030 0.0011 (0.001; 0.005)

Radioimmunoassay data
Parameter

Estimate SE 95% CI

β1 8.6091 0.1390 (8.337; 8.881)
β2 −0.0190 0.0032 (−0.025;−0.013)
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Figure 2: Residuals plots (top), and influence plots (bottom); life of metal pieces data.
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Figure 3: Residuals plots (top), and influence plots (bottom); advertising media data.
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Figure 4: Residuals plots (top), and influence plots (bottom); radioimmunoassay data.
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4.1. Competing models

Obviously, there are plenty of regression models in the statistic literature that can be
used to model continuous positive response variables. Perhaps the most useful (and simple
as well) regression models to deal with positive response variables are the gamma and inverse
Gaussian generalized linear models [25]. Beyond the very simple form of these models, the
gamma and inverse Gaussian regression models have been quite used in practice mainly
because of the well-developed R function glm(). The gamma PDF is

f(y) =
φφyφ−1

Γ(φ)µφ
exp
(
−φy

µ

)
, y > 0,

where µ > 0 is the mean, and φ > 0 is the precision parameter. In the generalized linear
model terminology, φ−1 > 0 corresponds to the dispersion parameter. We shall use the nota-
tion Ga(µ, φ) to refer to this distribution. The gamma distribution reduces to the exponential
distribution when φ = 1. If Y ∼ Ga(µ, φ), the variance is VAR(Y ) = φ−1µ2 ∝ µ2. Remem-
bering that the variance of the mean-parameterized Maxwell distribution is 0.178µ2 ∝ µ2 and,
hence, the heteroscedastic form based on the gamma and Maxwell distributions are similar,
thus modeling the variance of the response variable in a quadratic form. The inverse Gaussian
PDF is

f(y) =
(

φ

2πy3

)1/2

exp
(
−φ(y − µ)2

2µ2y

)
, y > 0,

where µ > 0 is the mean, and φ > 0 is the precision parameter. We shall use the notation
IG(µ, φ) to refer to this distribution. If Y ∼ IG(µ, φ), the variance is VAR(Y ) = φ−1µ3 ∝ µ3.

In the following, we fit the gamma and inverse Gaussian regression models to the data
previously analyzed using the mean-parameterized Maxwell regression model. For each of the
three datasets previously analyzed, we consider the same regression structures for the mean
parameter of the gamma and inverse Gaussian models that were considered for the mean of
the Maxwell model. The parameter estimates of the gamma and inverse Gaussian parameters
are listed in Tables 5 and 6, respectively. Residuals plots are displayed in Figures 5 and 6 for
the gamma and inverse Gaussian regression models, respectively. We consider the deviance
residual for these regression models, which appear to be a very good choice in the generalized
linear model framework [27]. Similar to the mean-parameterized Maxwell regression model,
Figure 5 also reveals that the gamma regression model seems to be appropriate to fit these
real datasets, once none observation is outside the envelope. On the other hand, the inverse
Gaussian regression model appears not suitable to model the advertising media data (some
observations are outside the envelope), but it appears suitable to model the other datasets
(see Figure 6). At this moment, the natural question is which one is the best in modeling
these datasets. The next section addresses this question.
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Table 5: Parameter estimates; gamma regression.

Life of metal pieces data: bφ−1 = 0.1554
Parameter

Estimate SE 95% CI

β1 12.4449 0.3869 (11.686; 13.203)
β2 −1.6945 0.1076 (−1.905;−1.484)

Advertising media data: bφ−1 = 0.1318
Parameter

Estimate SE 95% CI

β1 2.7047 0.0443 (2.618; 2.791)
β2 0.0031 0.0010 (0.001; 0.005)

Radioimmunoassay data: bφ−1 = 0.0990
Parameter

Estimate SE 95% CI

β1 8.6514 0.1071 (8.441; 8.861)
β2 −0.0191 0.0025 (−0.024;−0.014)

Table 6: Parameter estimates; inverse Gaussian regression.

Life of metal pieces data: bφ−1 = 0.00034
Parameter

Estimate SE 95% CI

β1 11.7484 0.5068 (10.755; 12.742)
β2 −1.5103 0.1280 (−1.761;−1.260)

Advertising media data: bφ−1 = 0.0079
Parameter

Estimate SE 95% CI

β1 2.7057 0.0438 (2.620; 2.792)
β2 0.0031 0.0010 (0.001; 0.005)

Radioimmunoassay data: bφ−1 = 3.15e-05
Parameter

Estimate SE 95% CI

β1 8.5721 0.1259 (8.325; 8.819)
β2 −0.0170 0.0019 (−0.021;−0.013)
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Figure 5: Residuals plots for the gamma regression: life of metal pieces
data (top), advertising media data (middle), and radioim-
munoassay data (bottom).
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Figure 6: Residuals plots for the inverse Gaussian regression: life of
metal pieces (top), advertising media data (middle), and ra-
dioimmunoassay data (bottom).
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4.2. Choosing the best model

Here, we try to put some light on the following natural question: what is the best
regression model to fit the data in the previous sections among the mean-parameterized
Maxwell, gamma and inverse Gaussian regression models. It is worth stressing that this
question is not easy to be answered in generality. The values of AIC and BIC of all fitted
regression models are listed in Table 7. The Maxwell and gamma regressions outperform the
inverse Gaussian regression to model the life of metal pieces data as well as the advertising
media data, while these three regression models can be considered equivalent to model the
radioimmunoassay data. On the basis of AIC and BIC values, it seems that the Maxwell and
gamma regression models should be chosen as the best regression models to fit these three
datasets. In terms of parsimony, the mean-parameterized Maxwell regression model should
be preferable, once it has the advantage of having fewer parameters to be estimated than the
gamma regression model. Remembering that in the gamma regression model is necessary to
estimate a precision parameter, while in the Maxwell regression model is not.

Table 7: AIC and BIC values.

Life of metal pieces Advertising media Radioimmunoassay
Model

AIC BIC AIC BIC AIC BIC

Maxwell 635.14 638.80 1295.17 1301.77 240.21 241.50
Gamma 635.73 641.22 1292.80 1302.70 239.49 241.41
Inverse Gaussian 647.68 653.17 1322.40 1332.30 241.38 243.30

From now on, we only consider the mean-parameterized Maxwell and gamma regression
models. By following with the analysis in order to select the best regression model, we shall
consider the generalized likelihood ratio test statistic (VLR) proposed by Vuong [32]. The
statistic VLR measures the distance between two models in terms of the Kullback–Leibler
information criterion. The test statistic can be expressed as VLR = ΛΨ−1/2, and

Λ =
1√
n

n∑
i=1

log

(
Mw(µ̂i)

Ga(µ̂i, φ̂)

)
,

Ψ =
1
n

n∑
i=1

[
log

(
Mw(µ̂i)

Ga(µ̂i, φ̂)

)]2

−

[
1
n

n∑
i=1

log

(
Mw(µ̂i)

Ga(µ̂i, φ̂)

)]2

.

The statistic VLR converges in distribution to a standard normal distribution under the null
hypothesis of equivalence of the models. The null hypothesis is not rejected if |VLR| ≤ Φ−1(1−
α/2), where Φ−1(·) is the standard normal quantile function, and α is the significance level.
On the other hand, we reject at significance level α the null hypothesis in favor of the Maxwell
model being better (worse) than the gamma model if VLR > Φ−1(1−α) (VLR < −Φ−1(1−α)).
Table 8 lists the observed values of VLR (and the corresponding p-values), indicating that
the mean-parameterized Maxwell and gamma regression models are equivalent to fit these
datasets. However, in terms of parsimony, the mean-parameterized Maxwell regression model
should be preferable as mentioned early. In summary, the results in this section reveal that the
mean-parameterized Maxwell regression model can be a good (and simple as well) alternative
to the well-developed gamma regression model in practice.



A simple mean-parameterized Maxwell regression model for positive response variables 523

Table 8: Generalized likelihood ratio statistic.

Data VLR p-value

Life of metal pieces −0.9320 0.3513
Advertising media −0.5243 0.6001
Radioimmunoassay −1.2102 0.2262

5. CONCLUDING REMARKS

In this paper, based on the mean-parameterized Maxwell distribution, a parametric
class of regression models to deal with positive response variables was studied. By employing
the frequentist approach, the estimation of the Maxwell regression parameters is conducted by
the maximum likelihood method. We also provide a closed-form expression for the expected
Fisher information matrix. Monte Carlo simulation experiments reveal that the maximum
likelihood method is quite effective to estimate the Maxwell model parameters, and that the
initial guesses we recommend for the Maxwell regression parameters worked perfectly well
in the Monte Carlo simulations as well as real data applications. We also give a simple for-
mula for calculating bias-corrected maximum likelihood estimates of the mean-parameterized
Maxwell regression parameters. We discuss diagnostic techniques (global and local influence,
and residuals analysis) for the mean-parameterized Maxwell regression model. Diagnostic
methods have been an important tool in regression analysis to detect anomalies with the fit-
ted model, such as departures from the model assumptions, presence of outliers and presence
of influential observations. In particular, an appropriate matrix for assessing local influence
on the Maxwell parameter estimates under a specific perturbation scheme is obtained. Ad-
ditionally, we illustrate the methodology developed in this paper by means of applications to
real data. We verify through the real data applications that the mean-parameterized Maxwell
regression model was superior to the well-known inverse Gaussian regression model, and was
very similar to the gamma regression model, which is, probably, the most used regression
model to deal with positive response variables in practice. Finally, it is worth stressing that
the formulas related with the mean-parameterized Maxwell regression model are manageable
(such as log-likelihood function, score function, expected Fisher information matrix, etc.)
and with the use of modern computer resources and its numerical capabilities, this regression
model may prove to be an useful addition to the arsenal of applied statisticians.

The previous developments regarding the mean-parameterized Maxwell regression model
indicate that this model can be indeed very useful in practice. Therefore, we would like to
point out that the current work opens new possibilities for future works. In particular, an
interesting extension of the mean-parameterized Maxwell regression model which allows for
explanatory variables to be measured with error may be developed. Also, one may study
the mean-parameterized Maxwell regression model under random effects. Additionally, due
to recent advances in computational technology, one may explore other estimation methods
for the mean-parameterized Maxwell regression model such as the Bayesian approach. In
addition, Bayesian influence diagnostics can also be treated via the Kullback–Leibler diver-
gence and, hence, atypical observations can also be identified in a Bayesian context. A very
interesting extension of the developments considered in this paper would be to study the
mean-parameterized Maxwell regression model in a semiparametric context. Obviously an
in-depth investigation of such studies is beyond the scope of the current paper, but certainly
are very interesting topics for future works.
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APPENDIX. The R code

## R function to estimate the mean-parameterized
## Maxwell parameters (link function = "log")
Maxwell.reg <- function(formula, data){

cl <- match.call()
if (missing(data))
data <- environment(formula)

mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$drop.unused.levels <- TRUE
oformula <- as.formula(formula)
mf$formula <- formula
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
mt <- terms(formula, data = data)
Y <- model.response(mf, "numeric")
X <- model.matrix(mf)
if (length(Y) < 1)
stop("empty model")

if (!(min(Y) >= 0))
stop("invalid dependent variable")

floglikMax <- function(vPar){
veta <- X%*%vPar
vmu <- exp(veta)
loglik <- sum( -3*log(vmu) - (4/pi)*(Y^2/vmu^2) )
loglik

}
fscoreMax <- function(vPar){
veta <- X%*%vPar
vmu <- exp(veta)
vt <- (8/pi)*(Y^2/vmu^2) - 3
vt <- as.vector(vt)
score <- t(X)%*%vt
score

}
fFisherMax <- function(){
6*(t(X)%*%X)

}
start <- c( solve(t(X)%*%X)%*%t(X)%*%log(Y+0.1) )
opt <- optim(start, fn = floglikMax, gr = fscoreMax, method = "BFGS",

control=list(fnscale=-1), hessian=FALSE)
if (opt$conv != 0)
stop("algorithm did not converge")

beta <- opt$par
se <- sqrt(diag(solve(fFisherMax())))
z.value <- beta/se
p.value <- 2*(1 - pnorm(abs(z.value)))
names(beta) <- colnames(X)
rval <- cbind( round(beta, 6), round(se, 6),

round(z.value, 6), round(p.value, 6) )
colnames(rval) <- c("Estimate", "Std. Error",

"z value", "Pr(>|z|)")
return(rval)

}

## Example: Life of metal pieces data
## y = "number of cycles to failure" and x = "work per cycle"
data(Biaxial, package="ssym")
attach(Biaxial)
y <- Life
x <- log(Work)
Maxwell.fit <- Maxwell.reg(y ~ x)
Maxwell.fit

Estimate Std. Error z value Pr(>|z|)
(Intercept) 12.473253 0.400698 31.12885 0
x -1.706004 0.111374 -15.31775 0



A simple mean-parameterized Maxwell regression model for positive response variables 525

ACKNOWLEDGMENTS

The author would like to thank two anonymous reviewers for their insightful comments
and suggestions. The author also acknowledges the financial support of the Brazilian agency
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq: grant 304776/2019–0).

REFERENCES

[1] Al-Baldawi, T.H.K. (2015). Some Bayes estimators for Maxwell distribution with conjugate
informative priors, Al-Mustansiriyah Journal of Science, 26, 64–69.

[2] Atkinson, A.C. (1985). Plots, Transformation and Regression: An Introduction to Graphical
Methods of Diagnostic Regression Analysis, Oxford University Press, New York.

[3] Bekker, A. and Roux, J.J.J. (2005). Reliability characteristics of the Maxwell distribution:
A Bayes estimation study, Communications in Statistics – Theory and Methods, 34, 2169–2178.

[4] Bourguignon, M.; Leão, J. and Gallardo, D.I. (2019). Parametric modal regression
with varying precision, Biometrical Journal, 61, 1–19.

[5] Castellares, F.; Ferrari, S.L.P. and Lemonte, A.J. (2018). On the Bell distribution
and its associated regression model for count data, Applied Mathematical Modelling, 6, 172–
185.

[6] Chen, Y.; Genovese, C.R.; Tibshirani, R.J. and Wasserman, L. (2016). Nonparametric
modal regression, The Annals of Statistics, 44, 489–514.

[7] Cook, R.D. (1977). Detection of influential observation in linear regression, Technometrics,
19, 15–18.

[8] Cook, R.D. (1986). Assessment of local influence, Journal of the Royal Statistical Society B,
48, 133–169.

[9] Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics, Chapman and Hall, London.

[10] Cox, D.R. and Snell, E.J. (1968). A general definition of residuals (with discussion), Jour-
nal of the Royal Statistical Society B, 30, 248–275.

[11] Dar, A.A.; Ahmed, A. and Reshi, J.A. (2017). Bayesian analysis of Maxwell–Boltzmann
distribution under different loss functions and prior distributions, Pakistan Journal of Statis-
tics, 33, 419–440.

[12] Dey, S.; Dey, T. and Maiti, S.S. (2013). Bayesian inference for Maxwell distribution under
conjugate prior, Model Assisted Statistics and Applications, 8, 193–203.

[13] Dey, S. and Maiti, S.S. (2013). Estimation of the parameter of Maxwell distribution under
different loss functions, Journal of Statistical Theory and Practice, 4, 279–287.

[14] Dunn, P.K. and Smyth, G.K. (1996). Randomised quantile residuals, Journal of Compu-
tational and Graphical Statistics, 5, 236–244.

[15] Fan, G. (2016). Estimation of the loss and risk functions of parameter of Maxwell distribution,
Science Journal of Applied Mathematics and Statistics, 4, 129–133.

[16] Feng, C.; Sadeghpour, A. and Li, L. (2017). Randomized quantile residuals: an omnibus
model diagnostic tool with unified reference distribution, arXiv preprint arXiv:1708.08527.



526 Artur Lemonte

[17] Gallardo, D.I.; Gómez-Déniz, E.; Leão, J. and Gómez, H.W. (2020). Estimation
and diagnostic tools in reparameterized slashed Rayleigh regression model. An application to
chemical data, Chemometrics and Intelligent Laboratory Systems, 207, 104–189.

[18] Green, P.J. and Silverman, B.W. (1994). Nonparametric Regression and Generalized Lin-
ear Models, Chapman and Hall, Boca Raton.
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