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1. INTRODUCTION

Over the years, a number of measures of inequality have been developed. Exam-
ples include the generalized entropy, the Atkinson, the Gini, the quintile share ra-
tio and the Zenga measures (see, e.g., Zenga [20]; Zenga [21]; Cowell and Flachaire
[3]; Cowell et al. [4]; Kpanzou [11]; Kpanzou [10]; Hulliger and Schoch [9]). Re-
cently, Mergane and Lo [15] gathered a significant number of inequality measures
under the name of Theil-like family. Such inequality measures are very important
in capturing inequality in income distributions. They also have applications in
many other branches of Science, e.g., in ecology (see, e.g., Magurran [14]), soci-
ology (see, e.g., Allison [2]), demography (see, e.g., White [19]) and information
science (see, e.g., Rousseau [16]).

The inequality measure of Zenga [22] is one of the most recent ones. It is receiv-
ing a considerable attention from researchers for its novelty indeed, but for its
interesting properties. Papers dealing with that measure cover theoretical aspects
including asymptotic theory and statistical inference (Greselin et al. [7]; Eldin
and Marilou [5]) and applied works to income data (Greselin et al. [6], Greselin
et al. [8]), etc.

In this paper, we focus on the discrete form of the inequality measure as intro-
duced by Zenga [22]. We justify the asymptotic study of the discrete and finite
form by a number of reasons. In some situations, only aggregated data exist.
Although this is hardly conceivable today, it is still possible and it is highly prob-
able that the researcher does not have access to the original data and has in hand
only data in form of frequency tables. Some other times, frequency tables may be
available while the full data is destroyed or lost. Right now, in Gambia, health
data collected from the health centers are stored in daily books and the national
health direction extracts frequency tables from those books and this type of data
is the only one available in their computerized system. So one of the main reasons
to work on the finite discrete data is the lack of accessibility to the full data for
one reason or another. The second main reason is that an asymptotic theory on
such kind of data will give the structure of the limit results with also no severe
conditions. By replacing the discrete finite probability law of the aggregated data
by a general probability law, we get the precise general asymptotic case. From
that simplified study, we see what might be expected in general theory before we
proceed with it.

Here, we suppose that the full data have been summarized into a frequencies table
as given in Table 1, where each class (ci−1, ci) is represented by a single point x∗i ,
usually taken as the middle of the class, x∗i = (ci−1+ci)/2 (other possible choices
are the mean or the median of the observations falling in the class).
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Table 1: Frequencies Tables

classes (ci−1, ci) Representatives xi∗ frequencies ni

(c0, c1) x∗1 frequencies n1

(c1, c2) x∗2 frequencies n2
...

...
...

(cm−1, cm) x∗m frequencies nm

Total x∗i n

We may thus adopt to approximately reconstitute the n ≥ 1 data as

x∗1︸︷︷︸
n1 times

· · · x∗j︸︷︷︸
nj times

· · · x∗m︸︷︷︸
nm times

In the sequel, we suppose that the data themselves are discrete and take a pre-
determined number of m values. First, we will give an asymptotic theory which
will be in the form of representation in multinomial laws, instead of a representa-
tion in Brownian Bridges as in general. Next, the influence function (IF) will be
derived by direct computations and this usually allows to again find the asymp-
totic variance and sometimes, as in our case, to find a different but equivalent
expression of that variance.

The work presented here will be applied to income data available in an aggregated
form. At the same time, it serves as a paving way to a more general approach.

Let us suppose that the income variable X is discrete and takes the m (m > 1)
ordered values −∞ = x0 < x1 < ... < xm < xm+1 = +∞ with the probabilities
pj > 0 , j ∈ {1, ...,m} with p1 + p2 + ...+ pm = 1. If the income is continuously
observed, we have a sequence of random replications X1, X2, ... defined on the
same probability space (Ω,A,P). For each n ≥ 1, the empirical distribution of X
on the sample is characterized by the empirical frequencies

n0 = 0, nj = #{h ∈ {1, ..., n}, Xh = xj}, j ∈ {1, ...,m},

and their normalized and cumulative forms given respectively by

f0 = 0, fj =
nj

n
, j ∈ {1, ...,m}

and

n∗
0 = f∗

0 = 0, n∗
j =

j∑
h=1

nh, f∗
j =

j∑
h=1

fh, j ∈ {1, ...,m},
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with

m∑
j=1

nj = n,

m∑
j=1

fj = 1, n∗
m = n, f∗

m = 1.

We also define

p∗0 = 0, p∗j =

j∑
h=1

ph, p∗m = 1.

The empirical and discrete Zenga [22]’s index is given by

Zd,n = 1−
m−1∑
j=1

fj
(n∗

j/n)
−1
∑

1≤h≤j nhxh

(1− (n∗
j/n))

−1
∑

j+1≤h≤m nhxh
,

which is obtained by summing Formula (3.1) in [22] over j ∈ {1, ...,m} and pre-
sented as a synthetic measure of inequality. The empirical cumulative distribution
function (cdf) based on the sample of size n ≥ 1 is

Fn(x) =
1

n

m∑
h=1

nh1[xh,xh+1[(x), x ∈ R

and is the non-parametric estimator of the true cdf

F (x) =
m∑

h=1

pj1[xh,xh+1[(x), x ∈ R.

We also have the empirical probability generated by the sample, given by

PX,n(A) =
1

n

m∑
j=1

1A(xj).

We may express Zd,n in terms of the empirical probability measure by
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Zd,n = 1−
m−1∑
j=1

PX,n(xj)

(∫
1]0,xj ](t)dPX,n(t)

)−1 (∫
t1]0,xj ](t)dPX,n(t)

)
(∫

1]xj ,+∞[(t)dPX,n(t)
)−1 (∫

t1]xj ,+∞[(t)dPX,n(t)
) .

Finally by considering the discrete measure ν =
∑

1≤j≤n δxj , where δxj is the
Dirac measure concentrated at xj with mass one, we may also write

Zd,n = 1−
∫ (∫

1]0,s](t)dPX,n(t)
)−1 (∫

t1]0,s](t)dPX,n(t)
)(∫

1]s,+∞[(t)dPX,n(t)
)−1 (∫

t]s,+∞[(t)dPX,n(t)
)PX,n(s)dν(s).

It is clear, by the convergence in law of a sequence of probability measures PX,n

to PX = PX−1 (the probability law of X), that Zd,n converges to

Zd = 1−
∫ (∫

1]0,s](t)dPX(t)
)−1 (∫

t1]0,s](t)dPX(t)
)(∫

1]s,+∞[(t)dPX(t)
)−1 (∫

t1]s,+∞[(t)dPX(t)
)PX(s)dν(s).

In this simple setting, the convergence is easily justified because of the finite-
ness of the summations and of the functions. In terms of cdf and mathematical
expectation, we have

Zd = 1−
∫ xm

x1

1
F (s)

∫ s
0 tdPX(t)

1
1−F (s)

∫∞
s tdPX(t)

PX(s)dν(s).

The integral in the last expression should be read as

∫ xm−

x1

1
F (s)

∫ s
0 tdPX(t)

1
1−F (s)

∫∞
s tdPX(t)

PX(s)dν(s) =

∫
1[x1,xm[(s)

1
F (s)

∫ s
0 tdPX(t)

1
1−F (s)

∫∞
s tdPX(t)

PX(s)dν(s),

so that neither 1− F (s) nor F (s) never vanishes on the integration domain.

On one hand, we are going to draw an asymptotic normality theory of Zd,n

using the m-multivariate binomial laws. On the other hand, the sensitivity of a
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statistic T (F ) and the impact of extreme observations on it are also two recurrent
questions in the research in the field (see Cowell and Flachaire [3]).

In that context, the asymptotic variance of the plug-in estimator T (Fn) of the
statistic T (F ) is of the form σ2 =

∫
L(x, T (F ))2dF (x). From this, we may say

that the influence function behaves in nonparametric estimation as the score
function does in the parametric setting (See Wasserman [17], Page 19). To define

the notion of IF, let us consider the contaminated probability law P−(ε)
X of PX at

x with mass ε > 0, defined by

(1.1) P(ε)
X = (1− ε)PX + εδx

and a functional of PX , namely T (PX). The influence function of the functional
T at x, if it exists, is given by

(1.2) IF (T, x) = lim
ε→0

T (P(ε)
X )− T (PX)

ε
.

The previous remarks motivate us to derive the IF of Zd(PX) and to compare it
with the asymptotic variance the Zenga’s plug-in estimator.

Before we proceed to our task, we point out that asymptotic normality results
for Zenga’s index are available in the literature, among them those of Greselin et
al. [7] and Eldin and Marilou [5].

Here is how the paper is organized, we give our asymptotic results as described
above in Section 2 in Theorems 2.1 and 2.2, and the proofs of these theorems are
given in the Appendixes A and B. Section 3 is devoted to simulation studies and
data-driven application to Senegalese Data. We conclude in Section 4.

2. ASYMPTOTIC THEORY FOR THE DISCRETE ZENGA MEA-
SURE

2.1. Asymptotic normality

Let us begin with the following reminder. For each m ≥ 1, the random
vector (n1, ...., nm) follows a m-dimensional multimonial law of parameters n ≥ 1
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and p = (p1, ..., pm)t. In such a case, a classical result of weak convergence (see,
e.g., Lo et al. [13]), as n → +∞, is the following

(
n1 − np1√

np1
, · · · , nm − npm√

npm

)t

≡ (N1,n, · · · , Nm,n)
t

⇝ Z = (Z1, · · · , Zm)t ∼ Nm(0,Σ),

the variance-covariance matrix Σ = (σh,k)1≤h,k≤m of Z is defined, for (h, k) ∈
{1, ...,m}2, h ̸= k, by

σhh = E(Z2
h) = 1− ph and σhk = E(ZhZk) = −√

phpk.

We invoke the Skorohod-Wichura Theorem (See Wichura [18]) to suppose that
Z is defined on the same probability space and that

(N1,n, · · · , Nm,n)
t →P Z, as n → +∞.

Let us give some notation. Define vectors C = (c1, ..., cm)t such that

cj =
√
pj

(1/p∗j )µ(j)

(1/(1− p∗j ))µ
(j)

1(j ̸=m), j ∈ {1, ...,m},

for j ∈ {1, ...,m− 1}, i ∈ {1, 2}, Dj,i = (dj,i,1, ..., dj,i,m)t such that

dj,1,h = (xh
√
ph) 1(h≤j), dj,2,h = − (xh

√
ph) 1(h≥j+1),

γj,1 = pj
(1/p∗j )

(1/(1− p∗j ))µ
(j)

, γj,2 = pj
(1/p∗j )

(1/(1− p∗j ))

µ(j)(
µ(j)

)2
and let Ej = (ej,1, ..., ej,m)t be the vector defined by its components as follows

ej,h = − (
√
ph) 1(h≤j).

Finally, let us defined
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−H = C +

m−1∑
j=1

(
γj,1Dj,1 + γj,2Dj,2 +

(
p∗j
)−2

Ej

)
.

Theorem 2.1. Under the notation given above, we have, as n → +∞,

√
n(Zd,n − Zd)⇝ Nm

(
0, HtΣH

)
. 3

Proof. The proof is given in Appendix A.

2.2. Influence function of Zd

Theorem 2.2. Under the notations given above, the influence function
of Zd is given, for x1 ≤ x ≤ xm, by

IF (Zd, x) =

∫
PX(s)

(
R1(s)

R2(s)2(1− F (s)
)1]s,+∞](x)−

1

R2(s)F (s)
1]0,s](x)

)
xdν

+

∫
PX(s)

(
R1(s)

R2(s)F (s)
1]0,s](x)−

R1(s)

R2(s)(1− F (s))
1]s,+∞](x)

)
dν

−
∫

δx(s)
R1(s)

R2(s)
dν +

∫
PX(s)

R1(s)

R2(s)
dν.

Proof. The proof is given in Appendix B.

3. SIMULATION AND DATA-DRIVEN APPLICATIONS

3.1. Simulation study

Quality of the convergence: We choose a Probability distribution of yearly
income supported by m = 10 points with lower endpoint x1 = 4, 515, 000 XOF
(9, 030 nearly) and upper endpoint xm = 9, 000, 000 XOF (170, 490 nearly), char-
acterized as in Table 2.
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Table 2: Underlying Probability Law (to be continued)

Values x1 x2 x3 x4 ...

4.515× 106 13.485× 106 22.455× 106 31.425× 106 ...
P(X = xi) 0.05 0.05 0.05 0.05 ...

Table 3: Continuation of Table 2

Values ... x5 x6 x7 ...

... 40.395× 106 49.365× 106 58.335× 106 ...
P(X = xi) ... 0.1 0.1 0.2 ...

Table 4: End of Table 2

Values ... x8 x9 x10

... 67.305× 106 76.275× 106 85.245× 106

P(X = xi) ... 0.2 0.1 0.1

Table 2 shows the good performance of the nonparametric estimation of the Zenga
index for sample size from n = 100 to n = 1500. Such sizes are comparable with
those of sample survey from populations counted in dozen of millions.

Table 5: Mean errors (ERM), Mean Square Errors (MSE), to be contin-
ued

Size 100 200 500 ...

ERM 3.6× 10−3 −5.36× 10−3 10−3 ...
MSE 6.4× 10−2 3.35× 10−2 2.49× 10−2 ...

Figure 2 shows the pretty good asymptotic normality approximation of the cen-
tered and normalized empirical Zenga’s estimator.

3.2. Data-driven applications

We use the income Data in Senegal (2001-2002) from the database related to
ANSD [1]. The incomes are given by households. We should use an adult-
equivalence scale to consider to be able to compare households. The notion of
adult-equivalence has already been described in Lo [12] and implemented on dif-
ferent sets of data, among them the data just described above. The data are
available for the whole country (Senegal) and for the 10 areas given in the fol-
lowing order:
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Table 6: End of Table 5

Size ... 750 1000 1500

ERM ... −8.41× 10−4 4.56× 10−5 −1.44× 10−3

MSE ... 2.16× 10−2 1.9× 10−2 1.64× 10−2

Figure 1: Histograms, Parzen Estimators and QQ-plots for sample sizes
500, 1000 and 1500 from left to right

(OA): Dakar, Diourbel, Fatik, Kaolack, Louga, Saint-Louis, Tamba, Thies, Zigu-
inchor, Kolda.

Dakar is the most urbanized area of Senegal and includes the capital of the coun-
try, also named Dakar. It concentrates almost 23.1% of the population.
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Table 7: Zenga and Gini index measures for Senegal’s administrative ar-
eas (2000), to be continued

Index Senegal Dakar Diourbel Fatick Kaolack Louga ..

Zenga 80.65 93.33 81.34 92.54 81.11 84.00 ..
Gini 75.00 80.90 75.26 80.39 75.16 16.25 ...

Table 8: End of Table 7

Index ... Saint-Louis Tamba Thies Ziguinchor Kolda

Zenga ... 87.69 86.64 82.61 82.11 80.24
Gini ... 78.83 77.26 75.72 75.52 47.86

The Zenga and the Gini indices have been computed for the 11 areas from the
aggregate data, and are display in Table 7 (continued in Table 8). Note that
these values are given in percentage (%).

Through the values in theses tables, the 11 areas are ordered from the least in-
equality index to the greatest as follows:

Ordering by Zenga’s index: Kolda (1), Senegal (2), Kaolack (3), Diourbel
(4), Ziguinchor (5), Thies (6), Louga (7), Tamba (8), Saint-Louis (9), Fatick
(10), Dakar (11).

Ordering by Gini’s index: Louga (1), Kolda (2), Senegal (3), Kaolack (4),
Diourbel (5), Ziguinchor (6), Thies (7), Tamba (8), Saint-Louis (9), Fatick (10),
Dakar (11).

These orderings are illustrated in Figure 2.

The most striking fact is that both indices do not order the areas in an exact
similar way. The most unfair areas (with the greatest values of the inequality
index) are the same with the same ordering, from areas 8 to 11. From areas 1
to 7, the ordering has slightly changed but the case of Louga is remarkable. It is
ranked first by Gini and seventh by Zenga.

One may think that the inequality should be greater in urban areas than in rural
zones. Indeed we see that with the areas of Thies, Saint-Louis, Dakar. But Factik
and Tamba are so urbanized areas. Investigating why the inequality indices (both
Zenga and Gini) are high should be investigated in accordance with local realities.



Asymptotic normality and influence function of Zenga’s discrete index 13

Figure 2: The areas are given in the horizontal line and are ordered ac-
cording to the ranking (AO) above. Blue: Zenga’s index. Red:
Gini’s index

4. CONCLUSION

In this paper, we have considered the discrete Zenga index for which we
derived the influence function and studied the asymptotic theory. The asymp-
totic normality is established through a multinomial representation. Through
simulation, we confirmed the asymptotic normality result obtained theoretically.
The results are also applied to Senegalese income data.

APPENDIXES

Appendix A. Proof of Theorem 2.1

Let us fix n ≥ 1. We have

Zn,d = 1−
m−1∑
j=1

nj

n

(
n

n∗
j

− 1

) ∑
1≤h≤j nhxh∑

j+1≤h≤m nhxh
.

We define

Z∗
d,n =

m−1∑
j=1

nj

n

(
n

n∗
j

− 1

) ∑
1≤h≤j nhxh∑

j+1≤h≤m nhxh
.
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and for 1 ≤ j ≤ m− 1,

µ(j) =

j∑
h=1

phxh and µ(j) =

m∑
h=j+1

phxh.

We have ∑
1≤h≤j nhxh∑

j+1≤h≤m nhxh
−

µ(j)

µ(j)

=

∑
1≤h≤j nhxh∑

j+1≤h≤m nhxh
−

nµ(j)∑
j+1≤h≤m nhxh

+
nµ(j)∑

j+1≤h≤m nhxh
−

µ(j)

µ(j)

=

∑j
h=1 xhNh,n

√
ph√

n
∑

j+1≤h≤m nhxh/n
−

µ(j)

∑m
h=j+1 xhNh,n

√
ph

√
nµ(j)

(∑
j+1≤h≤m nhxh/n

) .
Then

Z∗
d,n

=
m−1∑
j=1

nj

n

(
n

n∗
j

− 1

)
µ(j)

µ(j)

+
1√
n

m−1∑
j=1

nj

n

(
n

n∗
j

− 1

) ∑j
h=1 xhNh,n

√
ph∑

j+1≤h≤m nhxh/n
−

µ(j)

∑m
h=j+1 xhNh,n

√
ph

µ(j)
(∑

j+1≤h≤m nhxh/n
)


= : Z∗
d,n(1) +Rn(1, 1).

We also have

(
n

n∗
j

− 1

)
−

(
1

p∗j
− 1

)
=

(
n

n∗
j

− 1

)
−

(
n∑j

h=1 nph
− 1

)

= −
∑j

h=1 nh −
∑j

h=1 ph(∑j
h=1 ph

)(∑j
h=1 nh

)
= − 1√

n

∑j
h=1

√
phNh,n(∑j

h=1 ph

)(∑j
h=1 nh/n

) .
This leads to
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Z∗
d,n(1) =

m−1∑
j=1

nj

n

(
1

p∗j
− 1

)
µ(j)

µ(j)
−

m−1∑
j=1

nj

n

n
√
n
∑j

h=1

√
phNh,n(∑j

h=1 nh

)(∑j
h=1 nph

) µ(j)

µ(j)

= : Z∗
d,n(2) +Rn(1, 2).

Finally, we have

Z∗
d,n(2) =

m−1∑
j=1

pj

(
1

p∗j
− 1

)
µ(j)

µ(j)
+

1

n

m−1∑
j=1

√
npjNj,n

(
1

p∗j
− 1

)
µ(j)

µ(j)

=

m−1∑
j=1

pj

(
1

p∗j
− 1

)
µ(j)

µ(j)
+

1√
n

m−1∑
j=1

√
pjNj,n

(
1

p∗j
− 1

)
µ(j)

µ(j)
(L2)

=
m−1∑
j=1

(1/p∗j )µ(j)

(1/(1− p∗j ))µ
(j)

+
1√
n

m−1∑
j=1

√
pjNj,n

(
1

p∗j
− 1

)
µ(j)

µ(j)

= : Z∗
d +Rn(3).

It is clear that

Zd = 1− Z∗
d .

We finally get

√
n(Z∗

d,n − Z∗
d) =

√
nRn(1) +

√
nRn(2) +

√
nRn(3).

By using the convergence (strong and weak) on binomial probabilities, we get

√
nRn(1, 1)

=

m−1∑
j=1

nj

n

(
n

n∗
j

− 1

)∑j
h=1

(
xh

√
ph
)
Nh,n∑

j+1≤h≤m nhxh/n
−

µ(j)

∑m
h=j+1

(
xh

√
ph
)
Nh,n

µ(j)
(∑

j+1≤h≤m nhxh/n
)


→P

m−1∑
j=1

pj
(1/p∗j )

(1/(1− p∗j ))

(∑j
h=1

(
xh

√
ph
)
Zh

µ(j)
−

µ(j)

∑m
h=j+1

(
xh

√
ph
)
Zh(

µ(j)
)2

)
. (A1)
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Next

√
nRn(1, 2) = −

∑j
h=1

√
phNh,n(∑j

h=1 ph

)(∑j
h=1 nh/n

)
→P −

∑j
h=1

√
phZh

(p∗j )
2

. (A2)

Finally,

√
nRn(3) =

m−1∑
j=1

√
pj

(
1

p∗j
− 1

)
µ(j)

µ(j)
Nj,n

→P

m−1∑
j=1

√
pj

(1/p∗j )µ(j)

(1/(1− p∗j ))µ
(j)

Zj . (A3)

By combining Developments (A1), (A2) and (A3), we get

√
n(Z∗

d,n − Z∗
d)

→
m−1∑
j=1

pj
(1/p∗j )

(1/(1− p∗j ))

(∑j
h=1

(
xh

√
ph
)
Zh

µ(j)
−

µ(j)

∑m
h=j+1

(
xh

√
ph
)
Zh(

µ(j)
)2

)

−
∑j

h=1

√
phZh

(p∗j )
2

+
m−1∑
j=1

√
pj

(1/p∗j )µ(j)

(1/(1− p∗j ))µ
(j)

Zj

=

m−1∑
j=1

⟨γj,1Dj,1, Z⟩+ ⟨γj,2Dj,2, Z⟩+ ⟨(p∗j )−2Ej , Z⟩

+ ⟨C,Z⟩.

We conclude that √
n(Z∗

d,n − Z∗
d) →P HtZ. □

Appendix B. Proof of Theorem 2.2

Let us write, for s ∈ R,

R1(s) = R1(s,PX) =

∫
t1]0,s](t)dPX(t)∫
1]0,s](t)dPX(t)

,
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and

R2(s) = R2(s,PX) =

∫
t1]s,+∞[(t)dPX(t)∫
]s,+∞[dPX(t)

.

We have

Zd(PX) = Zd = 1−
∫

R1(s)

R2(s)
PX(s)dν(s).

By using Formula (1.1), we have

d(P(ε)
X − PX)

ε
= −dPX + dδx.

For short, we write

Ri(s,PX) = Ri(s) and Ri(s,P
(ε)
X ) = Ri(s, ε), i ∈ {1, 2}.

We have

Zd(P
(ε)
X )− Zd(PX) = −(1− ε)

∫
PX(s)

R1(s, ε)

R2(s, ε)
dν − ε

∫
δx(s)

R1(s, ε)

R2(s, ε)
dν

+

∫
PX(s)

R1(s)

R2(s)
dν

= −
∫

PX(s)

(
R1(s, ε)

R2(s, ε)
− R1(s)

R2(s)

)
dν

+ ε

∫
PX(s)

R1(s, ε)

R2(s, ε)
dν − ε

∫
δx(s)

R1(s, ε)

R2(s, ε)
dν.

Let us apply the definition of the IF as in Formula (1.2). Since P(ε)
X → PX

as ε → 0 (The convergence being meant as a convergence in law), we have no
problem to see that
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lim
ε→0

Zd(P
(ε)
X )− Zd(PX)

ε
=

∫
PX(s)

R1(s)

R2(s)
dν −

∫
δx(s)

R1(s)

R2(s)
dν

−
∫

PX(s) lim
ε→0

1

ε

(
R1(s, ε)

R2(s, ε)
− R1(s)

R2(s)

)
dν.(0.1)

So we have to find the influence function of R1(s)/R2(s). By formally representing
the differentiation of a functional T (PX) by

∂T (PX)

∂λ
,

we have that the influence function of R1(s)/R2(s) is given by

IF (R1(s)/R2(s), x) =
R2(s)

∂R1(s)
∂λ −R1(s)

∂R2(s)
∂λ

R2(s)2
.

But

R1(s, ε)−R1(s) =

∫
t1]0,s](t)dPX(t)∫
1]0,s](t)dP

(ε)
X (t)

−
ε
∫
t1]0,s](t)dPX(t)∫
1]0,s](t)dP

(ε)
X (t)

+
ε
∫
t1]0,s](t)dδx(t)∫
1]0,s](t)dP

(ε)
X (t)

−
∫
t1]0,s](t)dPX(t)∫
1]0,s](t)dPX(t)

=

∫
t1]0,xj ](t)d(P

(ε)
X (t)− PX(t))∫

1]0,s](t)dP
(ε)
X (t)

−
∫
1]0,s](t)d(P

(ε)
X (t)− PX(t))(∫

1]0,s](t)dP
(ε)
X (t)

) (∫
1]0,s](t)dPX(t)

) ∫ t1]0,s](t)dPX(t).

We get
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lim
ε→0

R1(s, ε)−R1(s)

ε
=

∫
t1]0,s](t)d(−PX(t) + δx)∫

1]0,s](t)dPX(t)

−
∫
1]0,s](t)d(−PX(t) + δx)(∫

1]0,s](t)dPX(t)
)2 ∫

t1]0,s](t)dPX(t)

=
−
(∫

t1]0,s](t)dPX(t)
)
+ x1]0,s](x)∫

1]0,s](t)dPX(t)

−
−
(∫

1]0,s](t)dPX(t)
)
+ 1]0,s](x)(∫

1]0,s](t)dPX(t)
)2 ∫

t1]0,s](t)dPX(t)

and so
∂R1(s)

∂λ
= −R1(s) +

x1]0,s](x)

F (s)
+R1(s)−

R1(s)

F (s)
1]0,s](x).

By treating R2(s) in the same manner, we have (we should not forget that we
differentiate in the probability)

∂R1(s)

∂λ
=

x1]0,s](x)

F (s)
− R1(s)

F (s)
1]0,s](x)

∂R2(s)

∂λ
=

x1]s,+∞](x)

1− F (s)
− R2(s)

1− F (s)
1]s,+∞](x).

Thus

lim
ε→0

R1(s, ε)−R1(s)

ε
=

(
1]0,s](x)

R2(s)F (s)
−

R1(s)1]s,+∞](x)

R2
2(s)(1− F (s))

)
x

+

(
R1(s)

R2(s)(1− F (s))
1]s,+∞](x)−

R1(s)

R2(s)F (s)
1]0,s](x)

)
.

By replacing this limit with its expression in Equation (0.1) we get.

lim
ε→0

Zd(P
(ε)
X )− Zd(PX)

ε
=

∫
PX(s)

R1(s)

R2(s)
dν −

∫
δx(s)

R1(s)

R2(s)
dν

+

∫
PX(s)

(
R1(s)

R2(s)2(1− F (s)
)1]s,+∞](x)−

1

R2(s)F (s)
1]0,s](x)

)
xdν



20 T.A. Kpanzou, D. Ba, G.B.O. Da and G.S. Lo

+

∫
PX(s)

(
R1(s)

R2(s)F (s)
1]0,s](x)−

R1(s)

R2(s)(1− F (s))
1]s,+∞](x)

)
dν.

From this, the proof is concluded. ■
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