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1. INTRODUCTION

Heavy tails are common in many areas of the sciences and engineering. These are
commonly modeled by a power law distribution applied to the upper tail of the data, ignoring
the body of the data. Ignoring the body of the data implies loss of information and loss of
the power of the model.

The use of the power law distribution to model heavy tails is most common in the
physics literature. Two recent papers published in the literature applying the power law dis-
tribution to model heavy tails are Campolieti [8] and Balthrop and Quan [3]. Campolieti [8]
modeled the top 100 richest net wealth data from Canada Business Magazine. Models of this
kind can be used to describe the economy of a country, accurate models of fitting wealth data
can give a better prediction of the financial condition of a country. Balthrop and Quan [3]
modeled the U.S. cumulative coal production data. Coal productivity is a significantly im-
portant factor to the economy of a country. Energy or electricity production relies mostly on
coal production. Hence a good model of coal production data is essential for predicting the
price of coal.

The aim of this paper is to show that composite lognormal distributions (Nadarajah
and Bakar [14, 15]) can be used to model the entirety of the data sets in Campolieti [8] and
Balthrop and Quan [3]. In addition, we show that these distributions provide better fits than
the power law distribution even when the former are applied to the full data (as described in
the data section) and the latter is applied just to the upper tail of the data.

The use of composite lognormal distributions to model data is not new. Cooray and
Ananda [9] were the first to suggest the use of composite lognormal distributions. But Nadara-
jah and Bakar [14, 15] were the first to write an R package (R Core Team [16]) to implement
the use of composite lognormal distributions. More recent papers on composite distributions
include Caldeŕın-Ojeda [4, 5], Caldeŕın-Ojeda and Kwok [7], Caldeŕın-Ojeda [6], Aminzadeh
and Deng [2], Kim et al. [11] and Mutali and Vernic [13]. The distributions in these papers
have been used to model among others city sizes.

The contents of this paper are organised as follows. Some details of the composite
lognormal and power law distributions are given in Section 2. The two data sets and their
summary statistics are given in Section 3. The fits of the distributions to the data sets are
discussed in Section 4. Finally, some conclusions are noted in Section 5.

2. METHODS

2.1. Composite lognormal distributions

In this section, we discuss the composite lognormal distribution in Nadarajah and Bakar
[14, 15]. The composite lognormal distribution is made up by joining together two distinct
distributions: one for the body and the other for the tail. The body is described by the
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lognormal distribution while the distribution for the tail can be arbitrary. The cumulative
distribution function (cdf) of the composite lognormal distribution is

F (x) =
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[
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)]−1
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)
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where φ > 0, θ denotes the point at which the two distributions are joined together, Φ(·) de-
notes the cdf of the standard normal distribution, f0 denotes the probability density function
(pdf) of the tail, and F0 denotes the cdf of the tail. The following conditions ensure that
F (x) is continuous and differentiable at θ:
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where ψ(·) denotes the pdf of the standard normal distribution.

Different choices for f0 and F0 lead to different models for the composite lognormal
distribution. In Section 4, we consider fourteen different models: the composite lognormal-
Fréchet, composite lognormal-log logistic, composite lognormal-generalized Pareto, composite
lognormal-Weibull, composite lognormal-inverse Weibull, composite lognormal-Pareto, com-
posite lognormal-paralogistic, composite lognormal-inverse paralogistic, composite lognormal-
Burr, composite lognormal-inverse Burr, composite lognormal-inverse Pareto, composite log-
normal-inverse exponential, composite lognormal-exponential, composite lognormal-gamma,
composite lognormal-inverse gamma, composite lognormal-transformed gamma and compos-
ite lognormal-inverse transformed gamma distributions. We fitted all of the distributions
by the method of maximum likelihood. The best distribution was chosen according to the
following information criteria:

• the Akaike Information Criterion (AIC) due to Akaike [1] defined by

AIC = 2k − 2 log L̂,

where k denotes the number of parameters and L̂ denotes the maximized likelihood;

• the Bayesian Information Criterion (BIC) due to Schwarz [17] defined by

BIC = k log n− 2 log L̂,

where n denotes the number of data;

• the Hannan Quinn Criterion (HQC) due to Hannan and Quinn [10] defined by

HQC = −2 log L̂+ 2k log log n.

The smaller the values of these criteria the better the fit. The goodness of fit of the
distributions was assessed by the p-values of the Kolmogorov–Smirnov, Anderson Darling and
Cramer von Mises statistics.
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The fourteen different models considered include the following:

• the composite lognormal-inverse Burr distribution with

f0(x) =
λ1λ2

(
x
λ3

)λ1λ2

x

[
1 +

(
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)λ2
]λ1+1

and
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where λ1 and λ2 are shape parameters while λ3 is a scale parameter;

• the composite lognormal-generalised Pareto distribution with
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where λ1 is a shape parameter, λ2 is a location parameter and λ3 is a scale parameter;

• the composite lognormal-inverse paralogistic distribution with
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,

where λ1 is a shape parameter and λ2 is a scale parameter.

2.2. Estimation

Suppose x1, x2, ..., xn is a random sample from (2.1). Let Λ denote the parameters
specifying f0(·) and F0(·). The maximum likelihood estimates of θ, σ and Λ, say θ̂, σ̂ and Λ̂,
respectively, were obtained as follows:

i) Compute the likelihood function

L(θ, σ,Λ) =
φn−m

(1 + φ)n[1− F0(θ)]
n−m

∏
xi≤θ

ψ
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)
Φ
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,
where

m =
n∑

i=1

I{xi ≤ θ}

and I{·} denotes the indicator function. µ and φ are given by (2.2). Hence, they
are functions of θ, σ and Λ.
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ii) Take its log as

logL(θ, σ,Λ) = (n−m) log φ− n log(1 + φ)

− m log
[
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logψ
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iii) Set initial values for θ, σ and Λ.

iv) Maximize the log-likelihood function to obtain

θ̂, σ̂, Λ̂ = argmaxθ,σ,Λ logL(θ, σ,Λ),(2.3)

using the optim function in R.

v) Repeat steps iii) and iv) for a range of initial values to make sure that θ̂, σ̂ and
Λ̂ are unique.

In Section 4, we compare the best of the composite lognormal distributions to the power
law distribution given by the cdf:

F (x) = 1−
(
K

x

)α

(2.4)

for x > K and α > 0. For a given random sample x1, x2, ..., xn from (2.4), the maximum
likelihood estimates of K and α are

K̂ = min(x1, x2, ..., xn)

and

α̂ = n

[
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(
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,

respectively.

Campolieti [8] and Balthrop and Quan [3] fitted the power law distribution to the upper
tail of the data. They used the following procedure to estimate the parameters:

1. Order the data as x(1) ≤ x(2) ≤ ··· ≤ x(n).

2. Let K̃ = x(i) and estimate α by

α̃ =

[
n∑

i=1

I
{
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}][ n∑
i=1

log
(
xi
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)]−1

.

3. Compute the Kolmogorov–Smirnov statistic

sup
x≥ eK

∣∣∣∣∣∣F̃ (x)− 1 +

(
K̃

x

)
eα
∣∣∣∣∣∣,

where F̃ (·) denotes the empirical cdf of the data.

4. Repeat steps 2 and 3 for i = 1, 2, ..., n− 1.

5. Choose K̃ and α̃ to correspond to the smallest value of the Kolmogorov–Smirnov
statistic.
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3. DATA SETS

The two data sets are described in Sections 3.1 and 3.2. We shall refer to the data as
described in these sections as “full data” sets.

3.1. Canadian net wealth data

The data were collected from the rich 100 list “Canadian Business magazine”. The rich
list is published every year on line by the magazine. However, due to the webpages being
updated, we were able to get the data only for the years 2014–2018, 2012 and 2009. Due to
changes in policy from one year to another, 2014 had 101 data points while for 2018 had 98
data points. The remaining years had 100 data points each.

Table 1: Summary statistics of net wealth data in billions of nominal Canadian Dollars
(the deflated figures by the Consumer Price Index are given in the second row
for each year).

Year Mean Median Standard deviation Skewness Kurtosis Min Max CPI

2018 3.44 2.11 4.61 6.02 47.39 1.07 41.14
0.0258 0.0158 0.0346 5.9245 43.4279 0.008 0.308 133.4

2017 3.07 2.03 4.25 6.47 53.48 0.875 39.13
0.0235 0.0155 0.03259 6.3692 49.41976 0.0067 0.3 130.4

2016 2.88 1.89 4.00 6.47 53.31 0.835 36.76
0.0224 0.0147 0.0311 6.375 49.2505 0.0065 0.2863 128.4

2015 2.56 1.80 3.34 6.40 52.47 0.782 30.738
0.0202 0.0142 0.0264 6.3065 48.4212 0.0062 0.2428 126.6

2014 2.29 1.46 2.91 5.91 46.35 0.721 26.075
0.0183 0.0116 0.0232 5.8207 42.438 0.0058 0.2083 125.2

2012 2.02 1.39 2.33 5.29 38.88 0.654 20.129
0.0166 0.0114 0.0191 5.2145 35.1037 0.0054 0.1654 121.7

2009 1.73 1.15 2.39 6.48 53.72 0.49 21.99
0.0151 0.01005 0.0208 6.3829 49.6533 0.0043 0.1922 114.4

Table 1 gives the summary statistics of the data in terms of nominal and real figures.
The Consumer Price Index was taken from https://www150.statcan.gc.ca/t1/tbl1/en/

tv.action?pid=1810000501. Since the rich people are getting richer with time in terms of
both nominal and real figures, the values of mean, median, maximum and minimum increase
with year. The skewness is positive every year. The kurtosis is much greater than 3 every
year, meaning that the data are heavy tailed.
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3.2. Cumulative coal production data

The data were collected from the U.S. Energy Information Administration (EIA) web-
site. Balthrop and Quan [3] used the cumulative yearly production data from 1983 to 2016.
Due to the website being updated, we use the data from 2001 to 2018. The data contained a
large number of zeros (over 800 data points were zero), and these were removed before fitting
of the distributions.

Table 2: Summary statistics of coal data (unit: short tons).

Mean 4413710

SD 38518025

Skewness 27.62912

Kurtosis 954.948

Min 43

Max 1528026392

Sample size 4180

Table 2 shows that the skewness is positive. The kurtosis is once again much larger
than 3, which indicates the data has a large heavy tail.

4. RESULTS AND DISCUSSION

In this section, we illustrate the flexibility of the composite lognormal distributions
using the two real data sets. Fourteen of the composite lognormal distributions were fitted
to both data sets in full. For comparison, the power law distribution is also fitted to the full
data sets. The power law distribution is also fitted to the upper tail of the data sets.

In the discussion throughout Sections 4.1 and 4.2, “p-values” refer to p-values of the
Kolmogorov–Smirnov statistic. But Tables 10 and 12 also report p-values of Anderson Darling
and Cramer von Mises statistics. The conclusions based on these p-values are the same as
those based on p-values of the Kolmogorov–Smirnov statistic.

In Section 4.3, we investigate finite sample performance of the maximum likelihood
estimators of composite lognormal distributions to see if the conclusions reported in Sections
4.1 and 4.2 are reasonable.

4.1. Canadian net wealth data

Tables 3 to 9 give the best three distributions giving the smallest information criteria for
eachyear.Thepowerlawdistributiondoesnotmakethebestthreedistributionsforanyoftheyears.
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Table 3: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2009.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −261.42 −251.42 −240.99 −247.20

Composite lognormal-inverse paralogistic −251.60 −243.60 −235.79 −240.44

Composite lognormal-generalized Pareto −209.98 −199.98 −189.56 −195.76

Table 4: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2012.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −231.72 −221.72 −211.30 −217.50

Composite lognormal-inverse paralogistic −222.22 −214.22 −206.41 −211.06

Composite lognormal-generalized Pareto −221.91 −211.91 −201.49 −207.69

Table 5: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2014.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −244.64 −234.64 −224.18 −230.40

Composite lognormal-inverse paralogistic −237.97 −229.97 −222.13 −226.80

Composite lognormal-generalized Pareto −228.74 −218.74 −208.28 −214.51

Table 6: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2015.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −211.45 −201.45 −191.03 −197.23

Composite lognormal-inverse paralogistic −208.74 −200.74 −192.92 −197.58

Composite lognormal-generalized Pareto −236.70 −226.70 −216.28 −222.48

Table 7: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2016.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −239.28 −229.28 −218.86 −225.06

Composite lognormal-inverse paralogistic −229.61 −221.61 −213.80 −218.45

Composite lognormal-generalized Pareto −234.94 −224.94 −214.52 −220.72
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Table 8: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2017.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −240.90 −230.90 −220.48 −226.69

Composite lognormal-inverse paralogistic −240.07 −232.07 −224.25 −228.91

Composite lognormal-generalized Pareto −215.20 −205.20 −194.78 −200.98

Table 9: The three best composite lognormal distributions according to
information criteria for Canadian net wealth data in 2018.

Model −2 log L AIC BIC HQC

Composite lognormal-inverse Burr −251.60 −241.60 −231.26 −237.42

Composite lognormal-inverse paralogistic −244.83 −236.83 −229.08 −233.69

Composite lognormal-generalized Pareto −233.40 −223.40 −213.06 −219.22

Table 10 lists the p-values for the power law distribution and the very best composite log-
normal distributions chosen as the ones having the smallest information criteria values.

Table 10: Fitted models and p-values for the Canadian net wealth data (the first row of
p-values for each year is for the Kolmogorov–Smirnov statistic, the second row
of p-values for each year is for the Anderson Darling statistic, the third row of
p-values for each year is for the Cramer von Mises statistic).

Year n
Composite model

Power law fitted Power law fitted
to full data to upper tail

Best model p-value p-value p-value eK no of data > eK

2018 98 Composite lognormal- 0.973 0.060 0.99 2.77 37
inverse Burr 0.970 0.055 0.98

0.974 0.058 0.99

2017 100 Composite lognormal- 0.853 0.011 0.994 2.96 27
inverse paralogistic 0.855 0.010 0.994

0.855 0.008 0.995

2016 100 Composite lognormal- 0.9996 0.098 0.99 2.35 38
inverse Burr 0.999 0.095 0.95

0.998 0.097 0.96

2015 100 Composite lognormal- 0.844 0.020 0.98 1.96 48
generalised Pareto 0.840 0.030 0.99

0.851 0.035 0.96

2014 101 Composite lognormal- 0.921 0.063 0.92 1.85 42
inverse Burr 0.935 0.065 0.93

0.922 0.068 0.90

2012 100 Composite lognormal- 0.996 0.065 0.9 1.48 46
inverse Burr 0.999 0.061 0.9

0.995 0.062 0.91

2009 100 Composite lognormal- 0.998 0.020 0.959 1.17 48
inverse Burr 0.995 0.025 0.966

0.999 0.022 0.954
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The p-values for the very best composite lognormal distributions range from 0.8 to 0.99. The
largest of these p-values is 0.9996 (2016) and the smallest is 0.844 (2015). The composite
lognormal inverse Burr distribution gives the largest p-values for five of the seven years.

The p-values for the power law distribution are always less than 0.1 when applied to
the full data. When applied to the tail (containing a fraction of the full data), the p-values
are much closer to 1. But for four of the seven years the p-values for the very best composite
lognormal distributions are still greater. For the year 2018, the p-value for the very best
composite lognormal distribution is slightly smaller (0.973 compared to 0.99), but the power
law tail models only 37 of the 98 observations. For the year 2017, the p-value for the very
best composite lognormal distribution is again slightly smaller (0.853 compared to 0.994),
but the power law tail models only 27 of the 100 observations. For the year 2015, the p-value
for the very best composite lognormal distribution is again slightly smaller (0.844 compared
to 0.98), but the power law tail models only 48 of the 100 observations.

The probability and quantile plots comparing the fits of the power law distribution and
the very best composite lognormal distributions are shown in Figures 1 to 7.

Both the quantile and probability plots confirm that the composite lognormal distribu-
tions provide better fits than the power law distribution. Nearly all of the plotted points in
the probability plots lie close to the 45 degree line for the composite lognormal distributions.
The quantile plots show that the composite lognormal distributions provide good fits to the
data except for a few extremely large observations. The power law distribution fitted to the
full data gives poor fits. The power law distribution fitted to the tail gives much better fits
but still not good as the composite lognormal distributions.
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Figure 1: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2009.

Figure 1: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2009.
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Figure 2: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2012.

Figure 2: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2012.
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Figure 3: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2014.

Figure 3: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2014.
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Figure 4: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for Canadian net wealth data in 2015.

Figure 4: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for Canadian net wealth data in 2015.
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Figure 5: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2016.

Figure 5: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2016.
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Figure 6: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse paralogistic and power law distri-
butions for Canadian net wealth data in 2017.

Figure 6: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse paralogistic and power law distri-
butions for Canadian net wealth data in 2017.
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Figure 7: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2018.

Both the quantile and probability plots confirm that the composite lognormal distributions pro-
vide better fits than the power law distribution. Nearly all of the plotted points in the probability plots
lie close to the 45 degree line for the composite lognormal distributions. The quantile plots show that
the composite lognormal distributions provide good fits to the data except for a few extremely large ob-
servations. The power law distribution fitted to the full data gives poor fits. The power law distribution
fitted to the tail gives much better fits but still not good as the composite lognormal distributions.

Figure 7: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-inverse Burr and power law distributions
for Canadian net wealth data in 2018.
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4.2. Cumulative coal production data

Table 11 gives the best five distributions giving the smallest information criteria. The
power law distribution once again does not make the best five distributions. The p-values
of the best five distributions given in Table 12 range from 0.94 to 0.97. The largest p-value
of 0.9723 is given by the composite lognormal-generalised Pareto distribution. The smallest
p-value of 0.9407 is given by the composite lognormal-Pareto distribution. The composite
lognormal-generalised Pareto distribution also gives the smallest information criteria values.

The fit of the power law distribution to the full data (n = 4180) gave a p-value <

2.210−16. The fit of the power law distribution to the tail containing 1095 observations of the
full data gave K̃ = 1027417 and p-value = 0.108. All of the p-values in Table 12 are much
greater than 0.108.

Table 11: The five best composite lognormal distributions according to
information criteria for cumulative coal production data.

Model −2 log L AIC BIC HQC

Composite lognormal-generalised Pareto −9464.96 −9454.96 −9429.60 −9445.99

Composite lognormal-log logistic −9134.55 −9126.55 −9107.54 −9119.83

Composite lognormal-inverse paralogistic −9270.34 −9262.34 −9243.33 −9255.61

Composite lognormal-paralogistic −9219.03 −9211.03 −9192.01 −9204.30

Composite lognormal-Pareto −9410.33 −9402.33 −9383.32 −9395.60

Table 12: p-values for the five best composite lognormal distributions for
cumulative coal production data.

p-values
Model

Kolmogorov–Smirnov Anderson Darling Cramer von Mises

Composite lognormal-generalised Pareto 0.972 0.971 0.974

Composite lognormal-log logistic 0.965 0.964 0.966

Composite lognormal-inverse paralogistic 0.963 0.960 0.959

Composite lognormal-paralogistic 0.944 0.950 0.948

Composite lognormal-Pareto 0.941 0.940 0.938

The probability and quantile plots comparing the fits of the power law and composite
lognormal-generalised Pareto distributions are shown in Figure 8.

The probability plot shows that the composite lognormal-generalised Pareto distribu-
tion provides a near perfect fit. The quantile plot shows that the composite lognormal-
generalised Pareto distribution provides a good fit except for some extremely large observa-
tions. Neither of the two power law models provide as good a fit as the composite lognormal-
generalised Pareto distribution.



Applications of composite lognormal distributions 473

18 J. Lyu and S. Nadarajah

0.0e+00 5.0e+08 1.0e+09 1.5e+09

0
.0

e
+

0
0

5
.0

e
+

0
8

1
.0

e
+

0
9

1
.5

e
+

0
9

Expected

O
b

s
e

rv
e

d

0.0e+00 5.0e+08 1.0e+09 1.5e+09

0
.0

e
+

0
0

5
.0

e
+

0
8

1
.0

e
+

0
9

1
.5

e
+

0
9

0.0e+00 5.0e+08 1.0e+09 1.5e+09

0
.0

e
+

0
0

5
.0

e
+

0
8

1
.0

e
+

0
9

1
.5

e
+

0
9

Model

Composite
Power law tail
Power law

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Expected

O
b

s
e

rv
e

d

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 Model

Composite
Power law tail
Power law

Figure 8: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for cumulative coal production data.

The probability plot shows that the composite lognormal-generalised Pareto distribution provides
a near perfect fit. The quantile plot shows that the composite lognormal-generalised Pareto distribution
provides a good fit except for some extremely large observations. Neither of the two power law models
provide as good a fit as the composite lognormal-generalised Pareto distribution.

4.3. A simulation study

In this section, we assess the performance of the maximum likelihood estimates given by (2.3)
with respect to sample size n. The assessment of the performance of the maximum likelihood estimates
of (θ, σ,Λ) is based on a simulation study:

Figure 8: Quantile (left) and probability (right) plots for the fits of the
composite lognormal-generalised Pareto and power law distri-
butions for cumulative coal production data.
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4.3. A simulation study

In this section, we assess the performance of the maximum likelihood estimates given
by (2.3) with respect to sample size n. The assessment of the performance of the maximum
likelihood estimates of (θ, σ,Λ) is based on a simulation study:

1. Generate ten thousand samples of size n from the composite lognormal distribution
by inverting

F (x) = uk

for k = 1, 2, ..., n, where u1, u2, ..., un is a random sample from uniform(0, 1) and
F is given by (2.1);

2. Compute the maximum likelihood estimates for the ten thousand samples in step 1,
say

(
θ̂i, σ̂i, Λ̂i

)
for i = 1, 2, ..., 10000.

3. Compute the biases and mean squared errors given by

b̂iase(n) =
1

10000

10000∑
i=1

(êi − e)

and

M̂SEe(n) =
1

10000

10000∑
i=1

(êi − e)2

for e = θ, σ,Λ.

We repeated these steps for n = 10, 11, ..., 500 with θ = 1, σ = 1 and Λ corresponding to
the composite lognormal-inverse paralogistic distribution; so, computing b̂iasθ(n), b̂iasσ(n),
b̂iasλ1(n), b̂iasλ2(n), M̂SEθ(n), M̂SEσ(n), M̂SEλ1(n) and M̂SEλ2(n) for n = 10, 11, ..., 500.

Figures 9 and 10 show how the biases and the mean squared errors vary with respect
to n. The red line corresponds to the biases being zero. The following observations can be
made:

1. The magnitude of the biases of the estimators generally decrease to zero;

2. The mean squared errors of the estimators generally decrease to zero;

3. The biases are generally negative for λ1 and λ2;

4. The biases appear largest in magnitude for λ1 and λ2;

5. The mean squared errors appear largest for θ and σ.

The results of the simulation study show that: the accuracy of the estimators of θ, σ,
λ1 and λ2 as measured by bias is reasonable for all n ≥ 300; the accuracy of the estimators
of θ, σ, λ1 and λ2 as measured by mean squared error is reasonable for all n ≥ 300. The
sample size used in Section 4.2 is much greater than 300 but the sample sizes in Section 4.1
are not greater than 300. Hence, the conclusions in Section 4.2 should be reasonable but the
conclusions in Section 4.1 should be treated conservatively.
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1. Generate ten thousand samples of size n from the composite lognormal distribution by inverting

F (x) = uk

for k = 1, 2, . . . , n, where u1, u2, . . . , un is a random sample from uniform(0, 1) and F is given by
(2.1);

2. Compute the maximum likelihood estimates for the ten thousand samples in step 1, say
(
θ̂i, σ̂i, Λ̂i

)
for i = 1, 2, . . . , 10000.

3. Compute the biases and mean squared errors given by

b̂iase(n) =
1

10000

10000∑
i=1

(êi − e)

and

M̂SEe(n) =
1

10000

10000∑
i=1

(êi − e)2

for e = θ, σ,Λ.

We repeated these steps for n = 10, 11, . . . , 500 with θ = 1, σ = 1 and Λ corresponding to the compos-

ite lognormal-inverse paralogistic distribution; so, computing b̂iasθ(n), b̂iasσ(n), b̂iasλ1
(n), b̂iasλ2

(n),

M̂SEθ(n), M̂SEσ(n), M̂SEλ1
(n) and M̂SEλ2

(n) for n = 10, 11, . . . , 500.
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Figure 10: M̂SEθ(n), M̂SEσ(n), M̂SEλ1(n) and M̂SEλ2(n) versus n.

Figures 9 and 10 show how the biases and the mean squared errors vary with respect to n. The
red line corresponds to the biases being zero. The following observations can be made:

1. The magnitude of the biases of the estimators generally decrease to zero;

2. The mean squared errors of the estimators generally decrease to zero;

3. The biases are generally negative for λ1 and λ2;

4. The biases appear largest in magnitude for λ1 and λ2;

5. The mean squared errors appear largest for θ and σ.

The results of the simulation study show that: the accuracy of the estimators of θ, σ, λ1 and λ2 as
measured by bias is reasonable for all n ≥ 300; the accuracy of the estimators of θ, σ, λ1 and λ2 as
measured by mean squared error is reasonable for all n ≥ 300. The sample size used in Section 4.2
is much greater than 300 but the sample sizes in Section 4.1 are not greater than 300. Hence, the
conclusions in Section 4.2 should be reasonable but the conclusions in Section 4.1 should be treated
conservatively.

We have presented results only for θ = 1, σ = 1 and a particular composite lognormal dis-
tribution. But the results were similar for other choices for θ and σ and other composite lognormal
distributions.

5. Conclusions

In this paper, we have illustrated the power of composite lognormal distributions for two real
data sets recently published in the physics literature. These data sets (in full or in part) have been

Figure 10: M̂SEθ(n), M̂SEσ(n), M̂SEλ1(n) and M̂SEλ2(n) versus n.
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We have presented results only for θ = 1, σ = 1 and a particular composite lognormal
distribution. But the results were similar for other choices for θ and σ and other composite
lognormal distributions.

5. CONCLUSIONS

In this paper, we have illustrated the power of composite lognormal distributions for two
real data sets recently published in the physics literature. These data sets (in full or in part)
have been previously modeled by the power law distribution. All of the composite lognormal
distributions provide much better fits than the power law distribution when both were fitted
to the full data sets. For the first data set, several of the composite lognormal distributions
(composite lognormal-inverse Burr, composite lognormal-inverse paralogistic and composite
lognormal-generalised Pareto distributions) provide better fits than the power law distribution
even when the former were fitted to the full data and the latter was fitted only to the upper
tail. For the second data set, all of the composite lognormal distributions provide much better
fits than the power law distribution even when the former were fitted to the full data and
the latter was fitted only to the upper tail. The goodness of fit was assessed by probability
plots, quantile plots and p-values of the Kolmogorov–Smirnov, Anderson Darling and Cramer
von Mises statistics. Software for fitting composite lognormal distributions is freely available
from Nadarajah and Bakar [14].

Finally, we like to point out that the use of the power law distribution to model the
two real data sets was motivated by a theoretical framework. Lee et al. [12] describe the
rationale for the composite lognormal distributions in (2.1) as “the lognormal distribution
models a large portion of the data well, but quickly fades away to zero. Thus it fits poorly a
portion of the tail. On the other hand, F0 fits the tail portion well, but fits the other portion
poorly. By combining two distributions with one fitting the portion below a given threshold
and the other fitting the portion larger than the threshold, the composite distribution (2.1)
was proposed”. But to the best of our knowledge there is no theoretical motivation yet for
the composite lognormal distributions. Finding a theoretical motivation for the composite
lognormal distributions is a possible future work.
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