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1. INTRODUCTION

The most well known continuous Markov stochastic process {X(t); t ∈ [0,∞)} is the Brownian
motion due to the name of the Scottish botanist Robert Brown (1773-1858), who in 1827 observed the
phenomenon: minute particles, who were executing a continuous jittery and erratic motion. As Brownian
motion was studied by Norbert Wiener (1894-1964) it is also known as Wiener process. The basic
framework is that for the stochastic process, as above, X(t) is considered the x component of a particle,
always as a function of time. Let at the time t0, X(t0) = x0 and let the conditional probability density
of X(t + t0) given X(t0) = x0 to be p(x, t|x0). In principle we postulate the probability law governing
the tradition, is stationary in time and therefore p(x, t|x0) does not depend on t0. Therefore the density
function p(x, t|x0) we stipulate that for “small t” X(t+t0) ≈ X(t0) i.e. we assume limt→0 p(x, t|x0) = 0,
see for details ([20], [11], [22]). The Brownian motion can be applied to continuous time optimization in
Economics, see [24] among others.

Since Albert Einstein (1879-1955) explained the behavior of the stochastic process physically,
[10], and he proved that eventually holds

(1.1)
∂p

∂t
= D

∂2p

∂x2

with D = 2RT/Nf the so called diffusion coefficient with R being the gas constant, T the temperature,
N the Avogadro number and f the coefficient of friction, the diffusion equation (1.1) attracted a special
interest. We mention that Schrodinger (1915) also investigated the Brownian Motion and worked with
the Normal Inverse Gaussian (NIG), see [19]. From an Analysis point of view is considered as a partial
differential equation, [32], among others, from physical point of view, known as Heat Equation (HE)-
modeling the proportion of the amount of heat divided by the “amount” (precisely the mass) of the
material, with a proportionality factor, which under a proper scale can be D = 1/2 i.e. (1.1) is reduced
to

(1.2)
∂2p

∂x2
= 2

∂p

∂t

Eventually Probability theory is also involved as we can easily verify that the unique solution of
(1.2), under the boundary conditions

(a) limt→0 p(x, t|x0) = 0, x 6= x0

(b) p(x, t|x0) is a density function in x thus
p(x, t|x0) ≥ 0 and

∫∞
−∞ p(x, t|x0)dx = 1.

is:

(1.3) p(x, t|x0) =
1
√

2πt
exp

{
−

1

2t
(x− x0)2

}
i.e. if, without loss of generality, we assume that x0 = 0, p(x, t|x0) coincides with the (distribution
function of the) standard Normal distribution

(1.4) φ(x) =
1
√

2πt
exp

{
−

1

2

(
x
√
t

)2
}

:= φ(x; 0, t)

The target of this paper is to work with a general form of (1.4) introducing an extra parameter,
γ say, and form φγ(x; 0, t) which is discussed in Section 3, and evaluate a constant term K = K(x, t; γ)
so that (1.2) to be generalized as:

(1.5)
∂2φγ

∂x2
= K

∂φγ

∂t
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Relation (1.5) is the introduced Generalized Heat Equation (GHE). This is discussed in Section 4. We
shall prove that for γ = 2, relation (1.2) is obtained. Section 2 is devoted to explain the line of thought
of the introduction of the extra parameter γ as a background to Section 3 where the γ-order Normal
distribution is introduced.

2. Background

The fact that we are facing the Heat Equation from a statistical point of view, provides evidence
that no Physics is involved in this paper, but certainly an appropriate background from the Analysis
point of view has been adopted to discuss the problem. Moreover it is emphasized that both in Physics
and Analysis there is a strong theoretical insight with different approaches facing the Thermal or Heat
equations. The pioneering work of Feller (1950) and Lévy (1948) covers the theoretical statistical back-
ground. Somebody might think that these are ”old references”, but they are the pioneering work in the
field, the ”back-bone” of the probability line of thought for the subject. We are referring to such pioneer
work in this paper, as actually there are not that many from a Probability point of view. Moreover, we
worked with the statistical oriented papers adopting an Analysis approach.

We shall use throughout this paper the statistical notation for example we let p to be the number
of the involved parameters, and not n as n is the sample size in Statistics. We avoid to adopt a as a
is the significance level. We are adopting γ instead, as the extra parameter of the γ-order Normal, see
Section 3. Recall that in all entropy type research problems, as well, the three lines of thought: Statistics,
Physics, Analysis are also met. Both Poincaré [3] and Logarithm Sobolev inequalities [6] are involved in
such problems, where the energy Enerµ(f) of a local integrable function f with f ∈ L2(Rn, µ) can be
defined as:

(2.1) Enerµ(f) := E[|∇f |2]

with ∇f the gradient of f and E the expectation of measure µ, i.e. E(f) =
∫
R fdµ, see for details [16].

Let X be a random variable with probability density function (pdf) f on Rp. Recall that, in
principle, a function f : Rp 7→ R is said to be in a Sobolev space W 1,γ(Rp), γ ≥ 1, [5], [29], if:

(i) f ∈ Lγ(Rp)

(ii) its gradient ∇f ∈ Lγ(Rp)

For f1/2 ∈W 1,2(Rp), Fisher’s entropy type information of f, J(X) say, is defined:

J(X) = 4

∫
Rp
|∇
√
f |2dx

see [6]. It is easy to see that:

J(X) =

∫
Rp
|∇ log f |2dx =

∫
Rp
|∇f |2f−1dx

=

∫
Rp

(∇f)(∇ log f)dx(2.2)

Considering (2.2), recall that the Shannon entropy is defined as:

(2.3) H(X) = −
∫
Rp
f log fdx

while considering the family of densities of X parameterized by θ ∈ Θ, with Θ be a (compact, when
limiting results are requested) subset of Rp, the Fisher’s (parametric) information matrix is:

(2.4) I(θ) := I2(θ) := Eθ|∇θ log fθ(x)|2
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The Vajda (parametric) information measure, [31], is defined as en extension of (2.4)

(2.5) Iγ(θ) := Eθ|∇θ log fθ(X)|γ , γ ≥ 1

Comparing I2(θ) and the general Iγ(θ), see (2.4) and (2.5), it is easy for somebody to think to obtain,
based on J = J2(X) in (2.2), a general form, Jγ(X) say. Such a procedure was also considered in the
sense that Rényi’s entropy, [25], generalized Kullback - Leibler information, [18]. For a recent study on
Rényi’s divergence measure see [13].

Under this line of thought [14] worked and generalized J(X) to Jγ(X), as well as Shannon
exponential entropy Nγ(X) through Shannon entropy H(X), see (2.3). Indeed:

It is easy to consider that the entropy-type Fisher’s information measure, see (2.2) can be ex-
tended to:

Jγ(X) =

∫
Rp
|∇ log f |γdx

=

∫
Rp
|∇f |γf1−γdx(2.6)

with γ ≥ 1 and f the pdf of a random variable X with f1/γ ∈W 1,γ(Rp). For γ = 2 we can verify that:

(2.7) J2(X) = J(X)

Moreover Shannon’s exponentially entropy, Nγ(X), can be extended and defined as:

(2.8) Nγ(X) = const(γ, p) exp

{
γ

p
H(X)

}
It is crucial that due to the generalized form of the entropy power, an extension of the Cramer-Rao
inequality can be obtained, relating Jγ(X) and Nγ(X). This has been also obtained from the Heisenberg
uncertainty inequality, see [4]. Indeed the following theorem holds, [14].

Theorem 2.1. It holds for the introduced entropy-type measures in (2.6) and (2.8) that
Jγ(X)Nγ(X) ≥ p.

Due to Theorem 2.1, the well-known Cramer-Rao inequality is obtained, when γ = 2, while an
example for the exponential family is discussed in [14].

It has been pointed out, [3], that the Logarithm Sobolev Inequality (LSI) can be also interpreted
as sharpening the uncertainty principle, related through Theorem 1 to Jγ(X) and Nγ(X). That is why
LSI was adopted and a new distribution (3.2) emerged, as it is discussed in Section 3.

3. The γ-order Normal distribution

Due to the discussion in Section 2 we consider the [8] extension of the [7] work for g ∈W 1,γ(Rp)
and 1 < γ < p with ‖g‖γ = 1 of the form:

(3.1)

∫
Rp
|g|γ log |g| ≤

p

γ2
log

(
cγ

∫
Rp
|∇g|γdx

)
where the optimal constant cγ = c(γ, p) equals:

c(p, γ) =
γ

p

(
γ − 1

e

)γ−1

π−γ/2

(
Γ( p

2
+ 1)

Γ(p γ−1
γ

+ 1)

)γ/p
, γ ∈ R \ [0, 1]
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For the [7] LSI, externals are precisely Gaussians, [6], while for [8] as it was pointed out by [14] and
presented by [15], [30] it is:

(3.2) φγ(x) = φγ(x;µ,Σ) = c(p, γ)[detΣ]−1/2 exp

{
−
γ − 1

γ
Q

1
2

γ
γ−1 (x)

}
,

with x ∈ Rp, Q(x) =< (x− µ),Σ−1(x− µ) >,

c(p, γ) = π−
p
2

(
γ−1
γ

)p γ−1
γ Γ( p

2
+1)

Γ(p γ−1
γ

+1)
, γ ∈ R \ [0, 1] and < a, b >= abT the inner product in Rn,

for a, b ∈ Rn.

Notice that with γ = 2 we obtain the classical multivariate Normal, while with Σ = Iσ2, I =
diag{1} ∈ Rp×p and p = 1 we obtain the standard normal distribution φ(x) with µ = 0:

φ2(x; 0, 1) =
Γ( 1

2
+ 1)

Γ( 1
2

+ 1)

(1/2)1/2

√
π

exp

{
−

1

2
x2

}
=

1
√

2π
exp

{
−

1

2
x2

}
= φ(x)(3.3)

The introduced γ-order Normal distribution N(µ,Σ; γ) is a Kotz-type distribution, as it was
pointed out by [14]. In principle, heavy-tailed distributions are those probability distributions whose
tails are not exponentially bounded, they have ”heavier” tails than we usually assume, practically more
that 0.05 as the standard Normal. The Normal Inverse Gaussian NIG(·) is a very nice attempt to take
into consideration the tails of the distribution and tries to cover the ”fat tails” problem, which appears
mainly in Finance studies, see [1], [2], [9], [26]. As far as Environmental Economics concerned, for the
uncertainty see [12] where (3.2) was used. Notice that the Brownian motion will be normally distributed
at all points in time, while a Lévy process, which is Generalized Hyperbolic (GH) distribution, can be
GH at one point and might fail to be GH at another point in time, [23]. Both the GH and the γ-order
GN are closed to affine transformations, while the Generalized Laplace (GL) and the NIG obey to the
”closed under convolution” principle.

Although the existent background of the γ-order GN, GN ∼ N(µ, σ2I; γ) depends on LSI, from
which it ”emerged” then the extra shape parameter γ provides an easy generalization of the multivariate

Normal. The involved ”international constant”

(
γ − 1

γ

) γ−1
γ

, [29], plays an important role in our

development and is very essential that it comes through LSI. When γ � 1 the Uniform distribution
is obtained and when γ � ∞ the Laplace distribution is obtained. Therefore we believe that γ-GN
covers more prons than cons and this distribution outperforms comparing the other two. Moreover, it
is a generalization of the distribution directly connected to the Heat Equation. It is rather helpful to
obtain results, for Fisher’s entropy type information. So there is a well working set of applications based
on γ-GN and everything is reduced to the classical Normal when γ = 2. It is true that from NIG we
can also reach Normal distribution but the NIG depends on four parameters, NIG(τ, α, δ, µ), where the
parameters are τ : for tail heaviness, α : asymmetry, δ : scale parameter, µ : location parameter. So
there are 4 parameters involved and a rather complicated probability density function (pdf) based on
modified Bessel function, of second kind. So it is rather difficult to be completely clear to those who are
not mathematicians. Notice that the NIG belongs to the GH type distribution, while the γ-GN is a Kotz
type distribution. The log-Normal (LN) it seems easier to be handled, but there is no shape parameter
- actually the shape changes due to the fact that the logarithm is applied.

The introduced γ-ordered generalized Normal offers the possibility to approximate heavy-tailed

distributions. The cumulative distribution function Φγ(z), for z =
x− µ
σ

, for the φγ(x;µ, σ2) as in (3.2)

has been obtained due to the following Theorem, see [30].

Theorem 3.1. LetX be a random variable from the univariateNγ(µ, σ2) with pdf φγ(x;µ, σ2)
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and Fγ the cdf. Let Φγ be the cdf of the standardized z =
1

σ
(x− µ) ∼ Nγ(0, 1). Then:

(3.4) Φγ(z) =
1

2
+

√
π

2Γ(γ0 + 1)Γ(γ1 + 1)
Erfγ1 [γ2z],

with Erf being the usual error function and

γ0 =
γ − 1

γ
, γ1 =

γ

γ − 1
, γ2 = γγ00 , z =

x− µ
σ

, x ∈ R.

Based on (3.4) a number of calculations have been proceeded and a part is presented here for
different γ and p values, see Table 1. For a graph of a Bivariate 10-order generalized Normal N(0, 1; 10)
see [15] or [16], while for the Kullback-LeibLer (K-L) information of two p-variate density functions from
Nγ(µ1, Iσ2) and Nγ(µ2, Iσ2) see [17].

p
γ 1 2 3

-2 0.6084 0.8100 0.8995
-1 0.5940 0.7737 0.8603
1∗ 1.0000 1.0000 1.000
2∗∗ 0.6827 0.9545 0.9973
5 0.6470 0.8953 0.9724
10 0.6390 0.8792 0.9614
±∞∗∗∗ 0.6320 0.8666 0.9510

Table 1: Probability mass P(‖X‖ ≤ 1), where X ∼ N(0, σ2Ip; γ), for
various p and γ. * Uniform ** Normal *** Laplace.

Considering (3.2). the (elliptical contoured) γ-order Normal is reduced to a spherical contoured
when Σ = σ2Ip, while when only one variable is involved and µ = 0 then:

(3.5) φγ(x; 0, σ2) =
Γ( 1

2
+ 1)

Γ(γ + 1)

γ2√
πσ

exp

{
−

1

2

(x
σ

)2
}
,

The distribution described in (3.5) , Nγ(0, σ2) say, is fundamental for generalizing the Heat Equation as
in (1.2). We introduce and prove the problem in the next section.

4. Generalizing the Heat Equation

Consider a Brownian motion {X(t); t ≥ 0} and assume that every increment is γ-order Normal
distribution with mean 0 and variance σ2t, σ is fixed, i.e. the definition of the Brownian motion is valid
under the γ-order Normal distribution.

As usually X(0) = 0 and X(t) is continuous at t = 0. We can assume without loss of generality
that σ = 1, or that the Brownian motion is standard, i.e. Nγ(0, t) is considered. That is, as we are
working underNγ(0, t), considering (3.5) with σ =

√
t the corresponding γ-order generalizing distribution

function is:

(4.1) φγ(x; 0, t) =
λ
√
πt

exp

{
−γ0

(
x
√
t

)γ1}
,

with

λ =
Γ( 1

2
+ 1)

Γ(γ0 + 1)
γ2
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γ0 =
γ − 1

γ
> 0, γ1 =

γ

γ − 1
, γ2 =

(
γ − 1

γ

) γ−1
γ

= γγ00

Lemma 4.1. Let φγ = φγ(x; 0, t) as in (4.1). Then it holds:

(4.2)
∂φγ

∂t
= φγ(x; 0, t)A(x; t, γ),

where A(x; t, γ) is a well defined function.

Proof of Lemma 4.1: From (4.1) differentiate with respect to t to get:

∂φγ

∂t
=

λ
√
π

(t−1/2)′ exp

{
−γ0

(
x
√
t

)γ}
+

λ
√
π
t−1/2

(
exp

{
−γ0

(
x
√
t

)γ})′
We let:

(4.3) Q(x, t) = −γ0

(
x
√
t

)γ1
.

Then:

∂φγ

∂t
= −

λ
√
π
t−3/2 exp{Q(x, t)}

+
λ
√
π
t−1/2 exp{Q(x, t)} ·Q′(x, t)

=
λ
√
πt

exp{Q(x, t)}
(
−

1

2
t−1 +

1

2
xγ1 t−

γ1+2
2

)
= φγ(x; 0, t)A(x; t, γ)(4.4)

Lemma 4.2. Let φγ = φγ(x; 0, t) as in (4.1). Then the following are true:

∂φγ

∂x
= φγ(x; 0, t)B1(x; t, γ),

∂2φγ

∂x2
= φγ(x; 0, t)B2(x; t, γ),

with B1(x; t, γ), B2(x; t, γ) well defined functions.

Proof of Lemma 4.2: Recall (4.3) and that γ0γ1 = 1. Differentiating with respect to x it
is

∂φγ

∂x
=

λ
√
πt

exp{Q(x, t)}′x

=
λ
√
πt

exp{Q(x, t)}(Q(x, t))′

= φγ(x; 0, t)
(
−γ0γ1t

− 1
2
γ1xγ1−1

)
= φγ(x; 0, t)

(
−t−

1
2
γ1xγ1−1

)
= φγ(x; 0, t)B1(x; t, γ)(4.5)

Thus, from (4.5) we get:

∂2φγ

∂x2
= φ′γ(x; 0, t)B1(x; t, γ) + φγ(x; 0, t)B′1(x; t, γ)

= φγ(x; 0, t)B2
1(x; t, γ) + φγ(x; 0, t)

(
−t−

1
2
γ1

1

γ1 − 1
xγ1−2

)
= φγ(x; 0, t)B2(x; t, γ)(4.6)
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Therefore we can state and prove the following Theorem, generalizing the Heat Equation (1.2) as in (4.4)

Theorem 4.1. There exists a well defined function K = K(x; t, γ) such that

(4.7)
∂2φγ

∂x2
= K

∂φγ

∂t

Proof of Theorem 4.1: From (4.4) it is, as γ1 = γ
γ−1

,

(4.8) A(x; t, γ) = −
1

2
t−1 +

1

2
x

γ
γ−1 /t

3γ−1
2(γ−1)

From (4.5) and (4.6) respectively we get

(4.9) B1(x; t, γ) = −t−
γ

2(γ−1) x
1

γ−1

B2(x; t, γ) = B2
1(x; t, γ) +

(
−t−

1
2

γ
γ−1

1

γ − 1
x

2−γ
γ−1

)
(4.10)

=
(
−t−

γ
2(γ−1) x

1
γ−1

)2

+

(
−t−

1
2

γ
γ−1

1

γ − 1
x

2−γ
γ−1

)
= t

− γ
γ−1 x

2
γ−1 −

1

γ − 1
t
− 1

2
γ
γ−1 x

2−γ
γ−1(4.11)

Therefore:

(4.12)

∂2φγ

∂x2

∂φγ

∂t

=
t
− γ
γ−1 x

2
γ−1 − 1

γ−1
t
− 1

2
γ
γ−1 x

2−γ
γ−1

1

2

(
−

1

t
+

x
γ
γ−1

t
3γ−2

2(γ−1)

) := K(x; t, γ) := K,

i.e.
∂2φγ

∂x2
= K

∂φγ

∂t
and K is well defined as in (4.12).

Corollary 4.1. With γ = 2 the classical homogeneous heat equation is true, i.e. (1.2) holds.

Proof of Corollary 4.1: From (4.12) with γ = 2 we obtain

(4.13) K(x; t, 2) =

x2

t2
−

1

t
1

2

(
−

1

t
+
x2

t2

) = 2

We can arrive at the same result through φ2(x; 0, t), verifying relation (1.2). Indeed:

∂φ2

∂t
=

1

2
φ2(x; 0, t)

(
−

1

t
+
x2

t2

)
∂φ2

∂x
= φ2(x; 0, t)

(
−
x

t

)
∂2φ2

∂x2
= φ2(x; 0, t)

(
x2

t2
−

1

t

)
= 2

∂φ2

∂t
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Corollary 4.2. With t = 1 it holds

(4.14)
∂φγ

∂x
= φγ(x)

(
−x

1
γ−1

)

Proof of Corollary 4.2: From (4.5) and (4.9)

∂φγ

∂x
= φγ(x; 0, 1)B1(x; 1, γ)

= φγ(x; 0, 1)
(
−x

1
γ−1

)

Corollary 4.3. From (4.14) with γ = 2 the well known relation:

(4.15) φ′2(x) = −xφ2(x)

holds.

Consider the generalized Heat equation (GHE) as in (4.7). In Table 2 and Figures 1 and 2 we
present, for given values of γ, the corresponding γ-order GN, φγ(x; 0, t) as in (4.1), with the value of λ as
in (4.1). The calculations were performed through MATLAB and the corresponding K = Kγ = K(x; t, γ)
is also evaluated and presented.

γ φγ Kγ

1.5 λ√
πt

exp

{
−0.3

(
x√
t

)3
}

−
1
2 t

3/2 − 0.5
(
x√
t

)2
xt

t3/2
(
−2
(
x√
t

)
+
(
x√
t

)4
)

1.9 λ√
πt

exp

{
−0.4736842105

(
x√
t

)2.1
}

−
1
2 t

3/2 − 0.5
(
x√
t

)1.1
xt

t3/2
(
−1.1

(
x√
t

)0.1
+
(
x√
t

)2.2
)

2 1√
2πt

exp

{
−0.5

(
x√
t

)2
}

2

2.1 λ√
πt

exp

{
−0.5

(
x√
t

)1.9
} 1

2 t
3/2 − 0.5

(
x√
t

)0.9
xt

t3/2
(

0.9
(
x√
t

)−0.09
−
(
x√
t

)1.81
)

2.5 λ√
πt

exp

{
−0.6

(
x√
t

)1.6
} 1

2 t
3/2 − 0.5

(
x√
t

)0.6
xt

t3/2
(

0.66
(
x√
t

)−0.33
−
(
x√
t

)1.33
)

3 λ√
πt

exp

{
−2/3

(
x√
t

)3/2
} t3/2 − xt

√
x√
t

t3/2 − 2xt
√

x√
t

Table 2: Evaluating φγ(x; 0, t) as (4.1) with λ =
Γ( 1

2 +1)

Γ(γ0+1) and Kγ for given

values of γ, see (4.1) and (4.7) the GHE.
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Figure 1: Plots of φγ(x; 0, 1) for values of γ close to 2. Namely γ = 1.9, 2
and 2.1

Figure 2: Plots of φγ(x; 0, 1) for values of γ. Namely γ = 1.5, 2.1 and 3.

Therefore not only a general form of the Heat Equation was provided due to Theorem 4.1, but
also minor results can be generalized due to the γ-order Normal. Notice that when t = 1 (equivalently
σ2 = 1) the values of φγ and Kγ are simplified.

It is clear that for values of γ = 1.9, 2, 2.1 i.e close to 2, the corresponding graphs are close to
the usual Normal, see Figure 1, but for values of γ = 1.5, 2.1, 3 i.e the corresponding graphs provide
evidence for their ”fat tails”, see Figure 2.

5. Discussion

From a statistical point of view the Heat Equation has faced little attention. Most of the work is
referring to the Brownian motion process as one of the two Lévy processes - the other one is the Poisson
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process. In Medical Physics, in their recent paper, [21], working on breast cancer and the involved
mathematical equations, came across the Heat Equation, due to the fact that the thermal diffusivity,
(α) in their notation, the time t and the penetration depth (δ) linked, in their notation, as δ = 3.65

√
αt

satisfy the transient conduction equation for the temperature T = T (x, t) in one dimension

∂2T (x, t)

∂x2
=

1

α

∂T (x, t)

∂t

For a given value of the thermal diffusivity and the depth of tumor the cold stress time is evaluated.
They also provided a review of the mathematical models concerning the subject. That is, the Heat
Equation participated in problems facing the underground application rather through Mathematics,
than Statistics, as the Gaussian is rather more familiar that any other distribution. But the Statistical
background is solid and we only try to offer a more general Gaussian to face applications with ”fat tails”,
and still obey to the GHE, as in (4.6).

From a physical point of view the appropriate name of the Heat Equation is diffusion equation
with a source term. From an Analysis point of view the Heat Equation is known as a parabolic differential
equation: briefly it describes the distribution of the heat flow (into/out) of a material in a given space
over time. The proportional factor is the specific heat capacity of the material. The Heat Equation
is a typical example of a continuity equation and it was related to the Gaussian. Schrodinger (1915)
was investigating the Brownian motion and he came across, as we already mentioned, to the Normal
Inverse Gaussian (NIG), see [27], [19]. The Brownian movement provides food for thought to continuous
optimization models in Economics, [24] among others. Let Fγ(x) to be the cdf of the rv X ∼ N(0, 1; γ).
For given different shape values for γ, the corresponding probability values have been evaluated, see also
[12], in Table 3.

GN(0, 1; γ)
γ Fγ(−3) Fγ(2)

2 0.0013 0.9772
3 0.0071 0.9598
10 0.0193 0.9396

-1/10 0.1656 0.8111

Table 3: Values of cdf of γ-order generalized Normal with µ = 0, σ = 1.

Let FNIG(x) to be the cdf of a rv X ∼ NIG(τ, α, δ, µ) = NIG(τ, 0, 1, 0). For given values of
tail heaviness taken from Table3 and keeping asymmetry parameter as well as location parameter equal
to zero, while the scale parameter is one, we present in Table 4 the values of the cdf FNIG(x), with
x = −3, 2 as for the N(0, 1; γ).

NIG(τ, 0, 1, 0)
τ FNIG(−3) FNIG(2)

0.0014 0.1018 0.9718
0.0193 0.0953 0.9701

Table 4: Values of cdf of NIG(τ, 0, 1, 0) for different values of heavy tail-
ness parameter τ.

Although the NIG(·) did not appear to our procedure, still it is clear that it provides ”heavy
tails” and this is evidence that the shape parameter γ in N(0, 1; γ) ”adjusts” the value of tail as well as
shape.

Now, with the γ-order Normal, we described a general family of distributions with a particular
extra shape parameter γ. The shape parameter can describe “fat tails distributions”, “close” to what is
known as Gaussian or Normal, see Table 2. Consider that with σ =

√
t = 1 the values of φ(0, 1; γ) = φγ

and Kγ = K(x, 1; γ) are simplified. In limited cases, as γ → 1 the Uniform distribution can be obtained
or the Laplace, when γ →∞, [30]. Notice that the “international constant” γγ00 plays an important role
to the described formulation. That certainly needs more investigation as the statistical generalization
might offer chance for food of thought under Mathematical or Physical considerations. Moreover the
generalization of the Normal provide generalized entropy type information measures, [17] and possible
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engineering implementations, [22]. Therefore we open a subject which can offer a number of different
lines of thought to work in future. We shall try to continue the statistical line of generalization we are
creating.
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