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1. INTRODUCTION

Quality control is one of the most important issues of the modern industry, to de-
termine whether the quality of the products or process is satisfactory according to certain
criteria established in advance. We distinguish two types of control, the control during pro-
duction: which is the one carried out at different stages during the production process, and
the reception control: which is the one carried out by the producer or the consumer during
the inspection of a finished product, which also requires taking sampling plans. There have
been several criteria to construct sampling plans. Criteria based on decision theory are the
most efficient for quality control, in the sense that the sampling plan is determined by taking
an optimal decision. Numerous study have investigated along with this approach, we refer to
[9, 11, 19, 10].

Recently, a number of studies have investigated Bayesian sampling plans based on the
lifetime censored data. Readers are referred to the sampling plan based on type II censored
sample [12] and [5], sampling plan based on type I censored sample [13] and [18], interval
censored sample [6]. The type I hybrid censored sample was initially introduced in [8]. In [7]
the exact distribution of the maximum likelihood estimator (MLE) of the expected lifetime
is provided where the lifetime of components follows exponential distribution under type I
and type II hybrid censoring. Reference [14] have studied sampling plans under type I and
type II hybrid censoring for quadratic loss function based on the results of [7]. Furthermore,
a Bayesian sampling plan based on type I hybrid censored samples has been developed in
[15] using a conventional one-sided decision function. Modified type II hybrid censoring has
been provided by [20]. For exponential distribution under type I censoring and type I hybrid
censoring a new shrinkage estimator for the expected lifetime has been studied in [17], which
always exists even if no failure occurs at the termination time. In addition, Reference [17]
provided that the construction of the Bayes decision function (as in [20], [15]), which is based
on the posterior expectation, becomes more difficult if the loss function is not polynomial.

In some industrial process, the quality characteristics data are derived from a complex
production process or from an uncertain environment. Much acceptance sampling plans
have been proposed under this situation, [2, 3] have developed acceptance sampling plan for
variable and attribute using the neutrosophic statistics. [4] discussed a Bayesian sampling
plan under two-sided decision function based on linear random doubt zone.

In this work, we develop a Bayesian single variable sampling plan for Weibull distribu-
tion based on the modified type II hybrid censored sample under random decision function.
However, we generalize the work of [4] into two valuable issues. The first issue, the Weibull
distribution, which is frequently used in life testing due to flexibility in term of hazard func-
tion (see e.g. [1]), and with the commonly used of other distributions as special cases, such
as the exponential and Rayleigh distributions. The second issue, the type II hybrid censoring
which is a generalization of type II censoring. The type II hybrid censoring has the advan-
tage that at least m failures or more can be observed at the censoring time, which leads to
significant efficiency of the model. The rest of this paper is organized in the following way. In
Section 2, we provide the proposed random decision function and all necessary assumptions.
In Sections 3 and 4, we obtain an explicit expression for the Bayes risk using a polynomial
and non polynomial loss respectively. A simple algorithm based on the grid search method
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to obtain an optimal sampling plan is provided in Section 5. In Section 6, we give numerical
examples for the polynomial and non polynomial loss functions followed by some remarks.
We finish by a conclusion in Section 7.

2. FORMULATION OF THE PROBLEM

Suppose that we have a batch of items prepared for inspection. The lifetime of each
item is a random variable X which follows a Weibull distribution W (λ, µ):

f(x|λ, µ) =

{
λµxµ−1 exp(−λxµ), for x ≥ 0,

0, otherwise,

with the shape parameter µ is known and the scale parameter λ is unknown. It is easy to
show that Xµ follows an exponential distribution with expected lifetime 1/λ. Further, We
assume that λ has a prior distribution Γ(α, β) where α and β are known, with the pdf:

g(λ;α, β) =

{
λα−1 exp(−βλ)βα/Γ(α), for λ > 0,

0, otherwise.

Given a random sample of size n, taken from a batch for life testing. Assume that the
modified type II hybrid censoring is adopted. Let X = (X(1), X(2), ..., X(n)) be the order
statistic of sample (X1, X2, ..., Xn), the life test terminates at the random time τn,m =
min

{
max

(
X(m), t

)
, X(n)

}
with m ≤ n. The likelihood function in this case is given by:

l(X|λ) =


n!(λµ)m ∏m

i=1 Xµ
(i)

(n−m)!
e
−λ
�Pm

i=1 Xµ
(i)

+(n−m)Xµ
(m)

�
for D = 0, 1, ...,m− 1,

n!(λµ)D ∏D
i=1 Xµ

(i)

(n−D)!
e
−λ
�PD

i=1 Xµ
(i)

+(n−D)tµ
�

for D = m,m + 1, ..., n

where D represents the number of observed failures that occur before time t.
Then, the MLE of θ = 1/λ is given by:

(2.1) θ̂ =


Pm

i=1 Xµ
(i)

+(n−m)Xµ
(m)

m , for D = 0, 1, ...,m− 1,PD
i=1 Xµ

(i)
+(n−D)tµ

D , for D = m,m + 1, ..., n,

According to [7], the exact distribution of the MLE of θ:

(2.2) fθ̂(y) =
n∑

d=0

d∑
j=0

(−1)j

(
n

d

)(
d

j

)
e−λtµ(n−d+j)g(y − aj,M ;M,λM).

where aj,M = (n− d + j)tµ/M , and M = max{d,m}.

Let Cs, Ct and Cr be positive constants and represent respectively the unit inspection
cost, the cost per unit of time used for the test and the loss due to rejection of the batch. Let
a0 + a1λ + · · ·+ akλ

k denote the loss of accepting the batch and be positive and increasing
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in λ. When the life test is interrupted, the unfailures items can be reused and therefore have
the salvage value vs, where 0 < vs < Cs, then the loss function is defined as follows:

(2.3) L(λ, δ(x)) =

nCs − (n−Dn,m)vs + Ctτn,m +
k∑

i=0
aiλ

i, for δ(x) = d0,

nCs − (n−Dn,m)vs + Ctτn,m + Cr, for δ(x) = d1,

where d0 and d1 represent the decisions of accepting and rejecting the batch respectively.
The random variable Dn,m denotes the number of failures that occur before the termi-
nation time τn,m. δ(x) is the decision function which depends on the observation failures
x = (x(1), x(2), ..., x(n)). We propose the following two-sided decision function:

(2.4) δ(x) =


d0, for θ̂ ≥ T0,{

d1, with probability pθ

d0, with probability 1− pθ

for T1 ≤ θ̂ < T0,

d1, for θ̂ < T1,

where pθ = T0−θ̂
T0−T1

, and 0 < T1 < T0. Note that, the decision function in Equation (2.4) is
described similarly as in [4].

3. COMPUTATION OF THE BAYES RISK

Based on the decision function δ(x), the Bayes risk can be computed as follows:

R(n, m, t, T0, T1) = E{E[L(λ, δ(x))]}

= E

{
E

[
nCs + Ctτn,m − (n−Dn,m)vs + d1Cr + (1− d1)

k∑
i=0

aiλ
i|λ

]}
= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+

k∑
i=0

aiγi

+ E

{
E

[
d1

k∑
i=0

ωiλ
i|λ

]}
= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+

k∑
i=0

aiγi + r(n, m|d1),

here γi represents the i-th moment of λ, and

(3.1) ωi =

{
Cr − a0, for i = 0,

−ai for i = 1, ..., k.
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Such as

r(n, m|d1) = E

{
E

[
k∑

i=0
ωiλ

id1|λ
]}

= E

{
k∑

i=0
ωiλ

iE
[
Iθ̂<T1

+ pθIT1≤θ̂<T0
|λ

]}
=

k∑
i=0

ωi

∞∫
0

βα

Γ(α)e
−βλλα+i−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi

(
n
d

)(
d
j

) ∞∫
0

[
T1∫

aj,M

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β+My)λλα+M+i−1dy

+
T0∫
T1

T0−y
T0−T1

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β+My)λλα+M+i−1dy

]
dλ

=
n∑

d=0

d∑
j=0

k∑
i=0

βαMMΓ(M+α+i)
Γ(α)Γ(M)

[
T1−aj,M∫

0

yM−1

(β+Maj,M+My)α+M+i dy

+
T0−aj,M∫
T1−aj,M

T0−y−aj,M

T0−T1

yM−1

(β+Maj,M+My)α+M+i dy

]
,

Using z =
My

My + β + Maj,M
we obtain

r(n, m|d1)

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi

(
n
d

)(
d
j

) βαΓ(M+α+i)

Γ(α)Γ(M)(β+Maj,M)α+i

[q1∫
0

zM−1(1− z)α+i−1dz

+T0−aj,M

T0−T1

q0∫
q1

zM−1(1− z)α+i−1dz − β+Maj,M

T0−T1

q0∫
q1

zM−1(1− z)α+i−1dz

]

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi(n
d)(

d
j)βαΓ(α+i)

Γ(α)(β+Maj,M)α+i

{
Iq1(M,α + i) + T0−aj,M

T0−T1
[Iq0(M,α + i)−

Iq1(M,α + i)]− β+Maj,M

(α+i−1)(T0−T1) [Iq0(M + 1, α + i− 1)− Iq1(M + 1, α + i− 1)]
}

,

where qi =
M(Ti−aj,M)

β+M(Ti−aj,M)+Maj,M
. Bx(a, b) and Ix(a, b) denote the incomplete Beta function

and the cdf of Beta distribution respectively.

Hence, the Bayes risk R(n, m, t, T0, T1) can be expressed as:

R(n, m, t, T0, T1)(3.2)

=
n∑

d=0

d∑
j=0

k∑
i=0

(−1)jωi(n
d)(

d
j)βαΓ(α+i)

Γ(α)(β+Maj,M)α+i

{
Iq1(M,α + i) + T0−aj,M

T0−T1
[Iq0(M,α + i)−

Iq1(M,α + i)]− β+Maj,M

(α+i−1)(T0−T1) [Iq0(M + 1, α + i− 1)− Iq1(M + 1, α + i− 1)]
}

+ n(Cs − vs) + vs

n∑
d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)( β
β+(n−j)tµ

)α
+

k∑
i=0

aiγi + τ∗Ct,
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where, for m < n

τ∗ = E{E[τn,m|λ]}

= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) αβ1/µ

(n−j)1+1/µ B1−q∗

(
1 + 1

µ , α− 1
µ

)
+ tn!

(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

)
× βα

(m+j−i)(n−m−j)

(
1

((n−m−j)tµ+β)α − 1
((n−i)tµ+β)α

)]
+ n

n−1∑
j=0

(−1)n−j−1
(
n−1

j

) αβ1/µ

(n−j)1+1/µ Bq∗

(
1 + 1

µ , α− 1
µ

)
,

and, for m = n

τ∗ = E{E[τn,m|λ]} = nαβ1/µB
(
1 + 1

µ , α− 1
µ

) n−1∑
j=0

(−1)j

(
n− 1

j

)
1

(j+1)1+1/µ ,

with q∗ = (n−j)tµ

β+(n−j)tµ . The computation of E{E[Dn,m|λ]} and E{E[τn,m|λ]} is provided in the
appendix.

4. BAYES RISK FOR NON-POLYNOMIAL LOSS FUNCTION

In this section we provide an explicit expression for the Bayes risk under non-polynomial
loss function, which can be written as:

(4.1) LNP (λ, δ(x)) =

{
nCs − (n−Dn,m)vs + Ctτn,m + exp(cλ)− cλ− 1, for δ(x) = d0,

nCs − (n−Dn,m)vs + Ctτn,m + Cr, for δ(x) = d1,

where the loss of accepting the batch exp(cλ)− cλ− 1 is of the form LINEX loss (see e.g.
[1, 16]). The value of c must be positive for ensuring that, the loss of accepting the batch is
increasing in λ.

RNP (n, m, t, T0, T1) = E{E[LNP (λ, δ(x))]}
= E{E[nCs + Ctτn,m − (n−Dn,m)vs + d1Cr + (1− d1)(exp(cλ)− cλ− 1)|λ]}

= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+
(

β
β−c

)α
− cα

β − 1

+ E{E[d1(Cr + 1 + cλ− exp(cλ))|λ]}

= n(Cs − vs) + vsE{E[Dn,m|λ]}+ CtE{E[τn,m|λ]}+
(

β
β−c

)α
− cα

β − 1 + r′(n, m|d1),

with
r′(n, m|d1) = E{E[d1(Cr + 1 + cλ− exp(cλ))|λ]}

= E
{

(Cr + 1 + cλ− exp(cλ))E
[
Iθ̂<T1

+ pθIT1≤θ̂<T0
|λ

]}
=

1∑
i=0

ω′i

∞∫
0

βα

Γ(α)e
−βλλα+i−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ

−
∞∫
0

βα

Γ(α)e
−(β−c)λλα−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ,

where ω′0 = Cr + 1, ω′1 = c.
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From the previous section, we have

∞∫
0

βα

Γ(α)e
−(β−c)λλα−1

[
T1∫
0

fθ̂(y)dy +
T0∫
T1

T0−y
T0−T1

fθ̂(y)dy

]
dλ

=
n∑

d=0

d∑
j=0

(−1)j
(
n
d

)(
d
j

) ∞∫
0

[
T1∫

aj,M

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β−c+My)λλα+M−1dy

+
T0∫
T1

T0−y
T0−T1

βαMM(y−aj,M)M−1

Γ(α)Γ(M) e−(β−c+My)λλα+M−1dy

]
dλ

=
n∑

d=0

d∑
j=0

βαMMΓ(M+α)
Γ(α)Γ(M)

[
T1−aj,M∫

0

yM−1

(β−c+Maj,M+My)α+M dy

+
T0−aj,M∫
T1−aj,M

T0−y−aj,M

T0−T1

yM−1

(β−c+Maj,M+My)α+M+i dy

]

=
n∑

d=0

d∑
j=0

(−1)j(n
d)(

d
j)βα

(β−c+Maj,M)α

{
Iq′1

(M,α) + T0−aj,M

T0−T1

[
Iq′0

(M,α)− Iq′1
(M,α)

]
− β−c+Maj,M

(α−1)(T0−T1)

[
Iq′0

(M + 1, α− 1)− Iq1(M + 1, α− 1)
]}

,

with q′i =
M(Ti−aj,M)

β−c+M(Ti−aj,M)+Maj,M
.

Therefore, the Bayes risk expression under the loss function 4.1 is given by:

RNP (n, m, t, T0, T1)(4.2)

=
n∑

d=0

d∑
j=0

1∑
i=0

(−1)jω′i(n
d)(

d
j)βαΓ(α+i)

Γ(α)(β+Maj,M)α+i

{
Iq1(M,α + i) + T0−aj,M

T0−T1
[Iq0(M,α + i)−

Iq1(M,α + i)]− β+Maj,M

(α+i−1)(T0−T1) [Iq0(M + 1, α + i− 1)− Iq1(M + 1, α + i− 1)]
}

−
n∑

d=0

d∑
j=0

(−1)j(n
d)(

d
j)βα

(β−c+Maj,M)α

{
Iq′1

(M,α) + T0−aj,M

T0−T1

[
Iq′0

(M,α)− Iq′1
(M,α)

]
− β−c+Maj,M

(α−1)(T0−T1)

[
Iq′0

(M + 1, α− 1)− Iq1(M + 1, α− 1)
]}

+ n(Cs − vs)

+ vs

n∑
d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)( β
β+(n−j)tµ

)α
+

(
β

β−c

)α
− cα

β − 1 + τ∗Ct.

5. NUMERICAL APPROXIMATIONS

The expression of R(n, m, t, T0, T1) and RNP (n, m, t, T0, T1) are quite complicated, so
we cannot get the optimal sampling plan analytically. Using the grid search method we can
obtain an optimal sampling plan numerically. As given in [17], we assume that T0 has an
upper bound since 0 < T0 < T ∗

0 , and for t as given in [13], we obtain a confidence interval
[tL, tU ] such that P (X > tU ) = η/2 and P (X < tL) = η/2 where:

P (X < tL) =
∞∫
0

tL∫
0

βα

Γ(α)λ
α−1e−βλλxµ−1e−λxµ

dxdλ = η/2,
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and

P (X > tU ) =
∞∫
0

∞∫
tU

βα

Γ(α)λ
α−1e−βλλxµ−1e−λxµ

dxdλ = η/2,

hence

tL =
{

β
[(

1− η
2

)−1/α − 1
]} 1

µ

tU =
{

β
[(η

2

)−1/α − 1
]} 1

µ
.

5.1. An upper bound for the optimal size sample

To obtain the optimal sampling plan, we provide an upper bound for the optimal sample
size, and then the optimal sampling plan can be obtained in a finite number of search steps.

Theorem 5.1. The optimal sample is bounded by:

(5.1) N = min

{[
Cr

Cs − vs

]
,

[∑k
i=0 aiγi

Cs − vs

]}
,

where [x] is the integer part of x.

Proof: Let (0, 0, 0, 0, 0) and (0, 0, 0,∞,∞) be the sampling plans that accepts and
rejects the batch without taking sampling respectively. For (n′,m′, t′, T ′

0, T
′
1) an optimal sam-

pling plan, we have R(n′,m′, t′, T ′
0, T

′
1) ≤ R(0, 0, 0, 0, 0) =

∑k
i=0 aiγi. and R(n′,m′, t′, T ′

0, T
′
1) ≤

R(0, 0, 0,∞,∞) = Cr.

As n(Cs − vs) ≤ R(n′,m′, t′, T ′
0, T

′
1), therefore

n(Cs − vs) ≤ min

{
Cr,

k∑
i=0

aiγi

}

n ≤ min

{[
Cr

Cs − vs

]
,

[∑k
i=0 aiγi

Cs − vs

]}
.

Hence the result.

Algorithm 5.1. To derive an optimal sampling plan (n′,m′, t′, T ′
0, T

′
1) based on the

minimization of the Bayes risk, a finite algorithm is described in the following steps:

a) Start with (n, m, t) = (0, 0, 0), compute N from (5.1) and compute R(0, 0, 0, T0, T1)

= min
{

R(0, 0, 0,∞,∞) = Cr, R(0, 0, 0, 0, 0) =
k∑

i=0
aiγi

}
.

b) For fixed (n, m, t), compute the optimal T ′
0,(n,m,t) and T ′

1,(n,m,t) using grid search
method, such that
R

(
n, m, t, T ′

0,(n,m,t), T
′
1,(n,m,t)

)
= min

0<T1<T0≤T ∗
R(n, m, t, T1, T0), with grid size 0.0125.



Hybrid Bayesian sampling plan 377

c) For fixed (n, m), compute the optimal t′(n,m) using grid search method, such that

R
(
n, m, t′(n,m), T

′
0,(n,m,t), T

′
1,(n,m,t)

)
= min

tL≤t≤tU
R

(
n, m, t, T ′

0,(n,m,t), T
′
1,(n,m,t)

)
, with

grid size tU−tL
100 .

d) For 0 ≤ m ≤ n ≤ N , choose (n′,m′, t′, T ′
0, T

′
1) which corresponds to the smallest

value of the Bayes risks R
(
n, m, t′(n,m), T

′
0,(n,m,t), T

′
1,(n,m,t)

)
.

6. AN ILLUSTRATIVE EXAMPLE

To implement the Algorithm 5.1, we assume that the loss is a quadratic function with
(k = 2). Then, we assume that the loss function is a quintic polynomial. Using the upper
bound of sample size and the grid search method various numerical examples are presented
in Tables 1–4. In each table we indicate the optimal Bayesian sampling plans by S0 ≡
(n′,m′, t′, T ′

0, T
′
1), and the corespondent Bayes risk by R0 ≡ R(n′,m′, t′, T ′

0, T
′
1). Also, we

denote the expected number of observation failures by E[D0], and the expected termination
time by E[τ0]. During computation and in some cases the optimal sampling plan is achieved
when T1 close to T0. So, to make a sense to the sampling plan (n, m, t, T0, T1) we assume that
T0 − T1 ≥ 0.05, T ∗ = T ∗

0 = 2 and η = 0.05. As the true values of parameters and coefficients
for the quadratic loss for which we made the calculations, we take µ = 2, α = 2, β = 1,
a0 = a1 = a2 = 3, Cs = 0.5, vs = 0.2, Ct = 2, Cr = 30. For the previous standard values, the
optimal sampling plan is (5, 1, 0.3104, 0.7750, 0.2000), which means, we put 5 items for life
testing, and when t = 0.3104 is less than the time of fifth failure X(5), the life test terminates
after the maximum between the first failure and t = 0.3104, otherwise the life test terminates
at X(5). We accept the batch if the estimator of the average lifetime θ̂ is greater than or
equal 0.7750, and we reject it if θ̂ is less than 0.2000. For θ̂ is between 0.7750 and 0.2000,
the batch is rejected and accepted with probability pθ̂ =

(
0.7750− θ̂

)
/(0.7750− 0.2000) and

1− pθ̂ respectively, the corresponding Bayes risk is R0 = 23.9637.

In Table 1, we observe that for α fixed and β decreases while µ = 2, a0 = a1 = a2 = 3,
Cs = 0.5, vs = 0.2, Ct = 2 and Cr = 30, the Bayes risk R0 increase. And for β fixed R0 is
increasing in α. On the other hand, we can see that the expected number of failure E[D0] is
close to m′ and the expected termination time E[τ0] is always greater than t′. Furthermore,
for each couple (α, β) = (1.5, 0.2),(2.0, 0.4),(2.5, 0.6),(3.0, 0.8),(3.5, 0.8),(3.5, 1.0), the batch is
rejected without any sample cost, and thus R0 = Cr = 30. In Table 2, we can see that, the
minimum Bayes risk R0 significantly increases with the values of a2, and the optimal sample
size n′ decreases for a2 increasing. Furthermore, the optimal number of fixed failures m′

is close to n′ when a2 increases. For a2 ≤ 2 and the other parameters and coefficients are
fixed, the sampling plan S0 = (0, 0, 0, 0, 0) with R0 = a0 + a1α/β + a2(α2 + α)/β2 where the
batch is accepted for no sampling case. And, for a2 ≥ 15 the optimal plan S0 = (0, 0, 0,∞,∞)
with R0 = Cr = 30, the batch is rejected without taking sampling. In Table 3, it is observed
that E[D0] ≥ m′ and E[τ0] ≥ t′, this indicates that the sampling plan S0 takes more time to
better observe the lifetime components, and can obtain more information about the expected
lifetime of items. Also, the number of fixed failures brings closer to the optimal sample size
when Ct closes to 0. On the other hand, for Ct increases the optimal sample size increases and
the minimum Bayes risk increases. From Table 4, it can be seen that, R0 is increasing in Cr.
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And, for Cr ≤ 17.5, the batch will be rejected with R0 = Cr. For Cr ≥ 45, the batch will be
accepted with minimum Bayes risk R0 = 27.

Table 1: Optimal sampling plans and Bayes risks for α and β vary.

α β n′ m′ t′ T ′
0 T ′

1 E[D0] E[τ0] R0

1.5 0.2 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
1.5 0.4 3 2 0.0825 0.6000 0.5500 2.0000 0.6113 28.3413
1.5 0.6 4 1 0.4172 0.1100 0.3000 1.5853 0.5178 25.4861
1.5 0.8 5 1 0.3413 0.8500 0.3250 1.3627 0.4815 22.3640
2.0 0.4 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
2.0 0.6 3 2 0.0874 0.6000 0.5500 2.0000 0.5881 28.8383
2.0 0.8 4 3 0.1009 0.4750 0.4250 3.0000 0.7894 26.5777
2.0 1.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
2.5 0.6 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
2.5 0.8 3 2 0.0902 0.6000 0.5500 2.0000 0.5764 29.2431
2.5 1.0 4 3 0.1009 0.4750 0.4250 3.0000 0.7492 27.3505
2.5 1.2 4 1 0.3577 0.8250 0.2000 1.3065 0.4528 24.9906
3.0 0.8 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3.0 1.0 3 2 0.0921 0.6000 0.5500 2.0000 0.5694 29.5670
3.0 1.2 4 3 0.1008 0.4750 0.4250 3.0000 0.7252 27.9490
3.5 0.8 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3.5 1.0 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3.5 1.2 3 2 0.0933 0.5750 0.5250 2.0000 0.5648 29.8291

Table 2: Optimal sampling plans and Bayes risks for a2 varies.

a2 n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

2.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 21.0000
2.5 6 1 0.2884 0.7000 0.3000 1.3312 0.3873 22.8246
3.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
4.0 5 1 0.3762 1.0750 0.3500 1.5060 0.4607 25.4895
5.0 4 1 0.4421 1.2500 0.3250 1.5159 0.5278 26.0883
6.0 4 1 0.4860 1.5250 0.3750 1.6468 0.5575 27.4065
7.0 4 3 0.1129 0.7250 0.6750 3.0000 0.8827 28.0233
8.0 3 2 0.1129 0.8500 0.8000 2.0000 0.7592 28.5096
10.0 3 2 0.1129 1.0000 0.9500 2.0000 0.7592 29.1995
15.0 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000

Table 3: Optimal sampling plans and Bayes risks for Ct varies.

Ct n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

1.0 3 3 0.2226 0.4000 0.3500 3.0000 1.1436 23.2092
1.5 4 3 0.1129 0.4000 0.3500 3.0000 0.8827 23.6896
2.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
2.5 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 24.1743
3.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 24.3711
4.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 24.7584
5.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 25.1458
6.0 6 1 0.2884 0.7500 0.2500 1.3312 0.3873 25.5331
8.0 7 1 0.2665 0.7500 0.2500 1.3437 0.3583 26.3014
10.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 27.0000
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Table 4: Optimal sampling plans and Bayes risks for Cr varies.

Cr n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

17.5 0 0 0.0000 ∞ ∞ 0.0000 0.0000 17.5000
20.0 4 1 0.4640 1.4000 0.3250 1.5804 0.5425 19.2507
22.5 4 1 0.4421 1.2500 0.3250 1.5159 0.5278 20.6154
25.0 4 1 0.3982 1.0250 0.2500 1.3943 0.5000 21.8282
27.5 4 1 0.3982 0.9750 0.3000 1.3943 0.5000 22.9330
30.0 5 1 0.3104 0.7750 0.2000 1.2956 0.4212 23.9637
32.5 6 1 0.2884 0.7250 0.2750 1.3312 0.3873 24.7412
35.0 6 1 0.2884 0.7000 0.3000 1.3312 0.3873 25.4510
40.0 6 1 0.2884 0.6750 0.3250 1.3312 0.3873 26.1433
45.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 27.0000

6.1. Numerical examples for higher degree polynomal and non polynomial loss

To simulate the Bayes risk performance and obtain the optimal sampling plan under
non polynomial loss, a similar algorithm to the one in Section 5 is considered:

a) Start with (n, m, t) = (0, 0, 0), compute N from (5.1) and compute RNP (0, 0, 0,

T ′′
0 , T ′′

1 ) = min
{

RNP (0, 0, 0,∞,∞) = Cr, RNP (0, 0, 0, 0, 0) =
(

β
β−c

)α
− cα

β − 1
}

.

b) For fixed (n, m, t), compute the optimal T ′
0,(n,m,t) and T ′

1,(n,m,t) using grid search
method, such that
R

(
n, m, t, T ′′

0,(n,m,t), T
′′
1,(n,m,t)

)
= min

0<T1<T0≤T ∗
R(n, m, t, T1, T0), with grid size 0.0125.

c) For fixed (n, m), compute the optimal t′(n,m) using grid search method, such that

R
(
n, m, t′′(n,m), T

′′
0,(n,m,t), T

′′
1,(n,m,t)

)
= min

tL≤t≤tU
R

(
n, m, t, T ′′

0,(n,m,t), T
′′
1,(n,m,t)

)
, with

grid size tU−tL
100 .

d) For 0 ≤ m ≤ n ≤ N , choose (n′′,m′′, t′′, T ′′
0 , T ′′

1 ) which corresponds to the smallest
value of the Bayes risks R

(
n, m, t′′(n,m), T

′′
0,(n,m,t), T

′′
1,(n,m,t)

)
.

Table 5 provides some optimal sampling plans for the polynomial loss with order k = 5.
Under setting: µ = 2, a1 = a2 = a4 = 0, a0 = a3 = 1, Cs = 0.5, vs = 0.2, Ct = 2 and Cr = 30,
while α, β and a5 vary. It appears from this table that the minimum Bayes risk R0 increases
quickly when a5 increases while α and β fixed are fixed. On the other hand, the values
of E[τ0] are significant comparing with Table 2, in this case we may observe more than m′

failures and this will result in an efficient life testing procedure.

In Table 6, various optimal sampling plans and their minimum Bayes risk are depicted
for different values of α, β and c while µ = 2, Cs = 0.5, vs = 0.2, Ct = 2, Cr = 30. Such that
SNP (n′′,m′′, t′′, T ′′

0 , T ′′
1 ) ≡ SNP and RNP (n′′,m′′, t′′, T ′′

0 , T ′′
1 ) ≡ RNP denote optimal sampling

plan and its minimum Bayes risk respectively. As shown in Table 6, the Bayes risk RNP

decreases when c is close to 0 for α and β fixed. When c is close to β, RNP and E[τ0] are large.
There are some optimal sampling plans under no sampling case. For instance see (α, β, c) =
(2, 1, 0.5), (2, 1.5, 0.7), (4, 2, 1), the optimal sampling plan SNP = (0, 0, 0, 0, 0) and the batch
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is accepted without any sample cost. When (α, β, c) = (5, 3, 2.5), SNP = (0, 0, 0,∞,∞) and
the batch must be rejected without any sample cost.

Table 5: Optimal sampling plans and Bayes risks under polynomial loss
with order 5, for α, β and a5 vary.

α β a5 n′ m′ t T ′
0 T ′

1 E[D0] E[τ0] R0

2 1.0 1 6 5 0.1129 0.7625 0.7125 5.0000 1.0373 26.6566
2 1.0 2 6 5 0.1129 0.8875 0.8375 5.0000 1.0373 28.0317
2 1.0 3 5 4 0.1129 1.1250 1.0750 4.0000 0.9701 29.1941
2 1.5 1 7 5 0.1382 0.6625 0.6125 5.0000 1.1045 21.1053
2 1.5 2 7 5 0.1382 0.7875 0.7375 5.0000 1.1045 23.0980
2 1.5 3 7 5 0.1382 0.8750 0.8250 5.0000 1.1045 24.2304
3 1.5 1 6 5 0.1127 0.7750 0.7250 5.0000 0.9528 28.3606
3 1.5 2 5 4 0.1127 0.9875 0.9375 4.0000 0.8911 29.7964
3 1.5 3 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
3 2.0 1 7 6 0.1302 0.6625 0.6125 6.0000 1.1577 23.7820
3 2.0 2 7 6 0.1302 0.7875 0.7375 6.0000 1.1577 26.0688
3 2.0 2 6 5 0.1302 0.9125 0.8625 5.0000 1.1002 27.3013

Table 6: Optimal sampling plans and Bayes risks under non polynomial
loss for α, β and c vary.

α β c n′′ m′′ t′′ T ′′
0 T ′′

1 E[D0] E[τ0] RNP

2 1.0 0.5 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 02.0000
2 1.0 0.8 5 4 0.1129 0.2250 0.1750 4.0000 0.9701 12.5445
3 1.5 0.7 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 04.1918
3 1.5 1.0 6 5 0.1127 0.2875 0.2375 5.0000 0.9528 15.8429
3 1.5 1.3 7 6 0.1127 0.4500 0.4000 6.0000 1.0026 21.8487
4 2.0 1.0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 13.0000
4 2.0 1.2 6 5 0.1127 0.3625 0.3125 5.0000 0.9168 19.9275
4 2.0 1.5 7 6 0.1127 0.5375 0.4875 6.0000 0.9647 25.4796
4 2.0 1.8 6 5 0.1127 0.7375 0.6875 5.0000 0.9168 28.9217
5 3.0 1.5 6 5 0.1234 0.4375 0.3875 5.0000 0.9825 20.9812
5 3.0 2.0 6 5 0.1234 0.7750 0.7250 5.0000 0.9825 28.5097
5 3.0 2.5 0 0 0.0000 ∞ ∞ 0.0000 0.0000 30.0000
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7. CONCLUSION

In [14], Bayesian sampling plans for exponential distribution based on type II hybrid
censored samples under the quadratic loss have been discussed, since the time-consuming cost
and the salvage value are not included in the loss function. However, Several single variables
sampling plans have been improved in recent years, most improvements have been achieved by
considering the one-sided decision function. Such that, these studies do not take into account
that a doubt zone can be existed in the decision interval, e.g. this can be happened when the
experimenter estimates that the minimum acceptable and the maximum rejectable surviving
time are not equal. Nevertheless, there are still some interesting and relevant problems to be
addressed in this situation. With this purpose, we have determined Bayesian sampling plans
for Weibull distribution under type II hybrid censoring based on a two-sided decision function
with a random doubt zone. We provided an explicit expression for the Bayes risk using a
suitable polynomial loss, which includes the unit inspection cost, the time consuming-cost, the
rejection cost, the salvage value, and the after-sales cost. Furthermore, we have expressed an
explicit form for the Bayes risk under non polynomial loss with the LINEX form. It is noticed
that, the Bayes risk under the polynomial loss (resp. non polynomial loss) is always quite
complicated. So, we proposed an upper bound for the optimal size of the sample and a finite
algorithm to simulate the risk function numerically based on the grid search method. Based
on the results, it can be concluded that the Bayes risk based on the two-side decision function
have robust behavior with considering the changes of the parameters and coefficients in the
proposed sampling plan. However, in this paper we have considered Weibull distribution with
known shape parameter. Further study of the issue is still required for completely Bayesian
analysis to the two-parameter Weibull distribution. More research will be needed along with
this issue for other censoring.
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A. APPENDIX

A.1. Computation of E{E(Dn,m|λ)}

Let F (x|λ, µ) be the cdf of X. The probability function of Dn,m, such that Dn,m =
m,m + 1, ..., n can be calculated as follows:
For j = m + 1, ..., n

P (Dn,m = j) = P (X1 ≤ t, X2 ≤ t, ...,Xj ≤ t, Xj+1 > t,Xj+2 > t, ..., Xn > t)

=
(

n

j

)
F (t|λ, µ)j(1− F (t|λ, µ))n−j =

(
n

j

)(
1− e−λtµ

)j
e−λ(n−j)tµ ,

P (Dn,m = m) = 1− P (Dn,m > m) = 1−
n∑

d=m+1

(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ

=
m∑

d=0

(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ ,

Then for m ≤ n

E(Dn,m|λ) =
n∑

d=m

dP (Dn,m = d)

=
n∑

d=m+1

d
(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ + m

m∑
d=0

(
n
d

)(
1− e−λtµ

)d
e−λ(n−d)tµ

=
n∑

d=m+1

d∑
j=0

(−1)d−jd
(
n
d

)(
d
j

)
e−λ(n−j)tµ + m

m∑
d=0

d∑
j=0

(−1)d−j
(
n
d

)(
d
j

)
e−λ(n−j)tµ

=
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)
e−λ(n−j)tµ ,

it is easy to show that when m = n, E(Dn,m|λ) = nP (Dn,m = n) = n. Hence

E{E(Dn,m|λ)} =
∞∫
0

E(Dn,m|λ)g(λ;α, β)dλ

=
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

) βα

Γ(α)

∞∫
0

e−λ(β+(n−j)tµ)λα−1dλ

=
n∑

d=0

d∑
j=0

(−1)d−jM
(
n
d

)(
d
j

)( β
β+(n−j)tµ

)α
.

A.2. Computation of E{E(τn,m|λ)}

The computation of E{E(τn,m|λ)} is similar as in [20]. Let IA be the indicator function
of a set A.
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For m < n, when X(m) ≥ t, τn,m = X(m), then

E
(
XmI{Xm≥t}|λ

)
=

∞∫
t

yfX(m)
(y)dy

= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) ∞∫
t

e−λ(n−j)yµ
λyµdy

Therefore
E

{
E

(
XmI{Xm≥t}|λ

)}
= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) ∞∫
0

∞∫
t

βα

Γ(α)e
−λ(β+(n−j)yµ)λαyµdydλ

= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) ∞∫
t

αβα µyµ

(β+(n−j)yµ)α+1 dy.

A simple transformation z = (n− j)yµ/(β + (n− j)yµ) yields

E
{
E

[
XmI{Xm≥t}|λ

]}
= m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) αβ1/µ

(n−j)1+1/µ B1−q∗

(
1 + 1

µ , α− 1
µ

)
.

For Xm < t < Xn, τn,m = t, then

E
[
tI{Xm<t<Xn}|λ

]
=

t∫
0

∞∫
t

tn!(λµ)2(xy)µ−1e−λ(xµ+yµ)

(m−1)!(n−m−1)!

(
1− e−λxµ)m−1(

e−λxµ − e−λyµ)n−m−1
dydx

= tn!
(m−1)!(n−m−1)!

t∫
0

∞∫
t

m−1∑
i=0

(−1)m−i−1
(
m−1

i

)
λµxµ−1e−λ(m−i)xµ

×
n−m−1∑

j=0
(−1)n−m−j−1

(
n−m−1

j

)
λµyµ−1e−λ(n−m−j)yµ

e−λjxµ

= tn!
(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

) t∫
0

λµxµ−1e−λ(m+j−i)xµ
dx

×
∞∫
t

λµyµ−1e−λ(n−m−j)yµ
dy

]
= tn!

(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

(−1)n−i−j
(
m−1

i

)(
n−m−1

j

)
e−λ(n−m−j)tµ−e−λ(n−i)tµ

(m+j−i)(n−m−j) .

Thus

E
{
E

[
tI{Xm<t<Xn}|λ

]}
=

∞∫
0

E
[
tI{Xm<t<Xn}|λ

]
g(λ;α, β)dλ

= tn!
(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

)
× βα

(m+j−i)(n−m−j)

(
1

((n−m−j)tµ+β)α − 1
((n−i)tµ+β)α

)]
.

For X(n) ≤ t, τn,m = X(n), then

E
{
E

[
X(n)I{Xn≤t}|λ

]}
=

∞∫
0

t∫
0

yfX(n)
(y)g(λ;α, β)dydλ

= n
n−1∑
j=0

(−1)n−j−1
(
n−1

j

) αβ1/µ

(n−j)1+1/µ Bq∗

(
1 + 1

µ , α− 1
µ

)
.
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Hence, for m < n

E{E[τn,m|λ]} = m

(
n

m

)
m−1∑
j=0

(−1)m−j−1
(
m−1

j

) αβ1/µ

(n−j)1+1/µ B1−q∗

(
1 + 1

µ , α− 1
µ

)
+ tn!

(m−1)!(n−m−1)!

m−1∑
i=0

n−m−1∑
j=0

[
(−1)n−i−j

(
m−1

i

)(
n−m−1

j

)
× βα

(m+j−i)(n−m−j)

(
1

((n−m−j)tµ+β)α − 1
((n−i)tµ+β)α

)]
+ n

n−1∑
j=0

(−1)n−j−1
(
n−1

j

) αβ

1
µ

(n−j)1+1/µ Bq∗

(
1 + 1

µ , α− 1
µ

)
For m = n, τn,m = X(n)

E{E[τn,m|λ]} =
∞∫
0

∞∫
0

yfX(n)
(y)g(λ;α, β)dydλ

= nαβ1/µB
(
1 + 1

µ , α− 1
µ

) n−1∑
j=0

(−1)j
(
n−1

j

)
1

(j+1)1+1/µ .
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