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1. INTRODUCTION

The area of integer-valued time series has attracted a lot of interest in research and practice
during the last 35 years. It started with the pioneering work of McKenzie ([18], [19], [20]) and Al-Osh
and Alzaid [2], and Alzaid and Al-Osh [4]. Most of the existing models are based on the Binomial
thinning operator of Steutel and van Harn [27]. Models under a variety of generalized thinning operators
have been proposed by several authors. We refer to the review articles [21] and [25] for details and
additional references.

The Binomial thinning (cf. [27]) of a Z-valued random variable X denoted by a ® X, is defined
as

X
(1.1) a®X=>"Y,
=1

where o € (0,1) and {Y;} is a sequence of independent identically distributed (iid) Bernoulli(e) rv’s
independent of X. The operation ® incorporates the discrete nature of the variates and acts as the
analogue of the standard multiplication used in the continuous time series models.

Assume that 0 < a < 1, and (e, t > 1) is an iid sequence of Z-valued rv’s. A sequence
(X¢,t > 0) of Zy-valued rv’s is said to be an INAR (1) process if

(1.2) Xi=a0Xe—1+er  (t>1),

such that the binomial thinning a ® X;_1 in (1.2) is performed independently for each ¢. More precisely,
we assume the existence of an array (Yj, ¢ > 1, t > 0) of iid Bernoulli(a) rv’s, independent of {e¢},
such that
Xe—1
a® X1 = Z Yit—1.

i=1

In (1.2), {e¢} is referred to as the innovation sequence and o as the coefficient of the process {X¢}.

The main focus of this paper is on stationary INAR (1) models. The basic question of interest
in this case is the choice of the marginal distribution of the process and that of its innovation.

Two approaches to this question prevail. One, which we will refer to as the forward approach,
consists in selecting a specific marginal distribution for the process and then searching for the proper
innovation distribution. The other approach, referred to as the backward approach, consists of the exact
opposite: start out with the marginal distribution of the innovation sequence and then search for the
proper marginal distribution of the process.

Both approaches have been widely used in the literature. For the forward approach, we refer to
the review articles cited above and references therein. For models based on the backward approach, we
cite a number of fairly recent articles: [13], [22], [28], [23], [24], [7], and [16].

In the current work, we adopt the backward approach to develop INAR (1) models driven by
(1.2) and whose innovation has finite mean. Our motivation is mainly theoretical, in the context of
statistical distribution theory. We establish a number of basic properties of a specific infinite convo-
lution of distributions on Z4. These results are then used to obtain most of the needed properties of
the marginal and the conditional distributions of a stationary INAR (1) model. That is the object of
Section 2. As an application, we present new distributional properties for some stationary INAR (1)
models that show underdispersion, including two new INAR (1) models with g-series innovation distri-
butions. More specifically, in Sections 3-7 we study in details the models whose innovation follow the
Bernoulli distribution, the Binomial distribution, a g-series called the Poissonian Binomial distribution,
the logarithmic distribution, and the Heine distribution, another g-series, respectively. We note that the
INAR (1) models with Bernoulli, binomial and logarithmic innovations have been discussed in [7]. Our
results provide additional properties for these processes. We also note the backward approach has been
used by the authors in a related article (see [3]) that develops INAR (1) models with compound Poisson
innovations.

We will use throughout the rest of this paper the notation a =1—a, a € (0,1).
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We designate by u&“)(nﬁ”) and ugf])(nﬁ)) the r-th moment (cumulant) and the r-th factorial

moment (factorial cumulant) of the pmf {u,}, respectively. We will make use of the formulas (see [12],
Sections 1.2.7 and 1.2.8):

(1.3) W = 3o Srau) and =325 ny
J= J=

where S(r,j) are the Stirling numbers of the second kind defined as S(0,0) = 1,5(0,k) = S(r,0) =0
and

1< i
(1.4) S(rg) = = S (=17 ()
7! = k
2. Basic results on the backward approach

Our goal in this section is to establish several properties of a specific infinite convolution of
distributions on Z4. We then proceed to interpret our results in the context of stationary INAR(1)
models whose innovation has finite mean.

Theorem 2.1. Let W(z) be the pgf of a pmf {f,}. Assume ¥'(1) < oo, i.e., {fr} has finite
mean. Then, the function

(2.1) p(z) = H T(1—a' +a'z)
=0

is a pgf. Moreover, the convergence of the infinite product is uniform over the interval [0,1] and ¢(z)
satisfies

(2.2) o(z) = p(1 — a+ az)¥(z), z € [0,1].

Proof: First, we recall some basic results on pgf’s (we refer to [10]). For k > 0, let g, =
> i k41 fi be the sequence of the tail probabilities corresponding to {fy} and let

]

Q) =Y az",
k=0

be the generating function of {qx}. We have 1 — ¥(z) = (1 - 2)Q(2), 2 € [0,1], and Q(1) = >"32 g qx =
oo kfi = /(1) < co. Define hi(z) = 1 — ¥(1 — o’ 4+ a’z). It follows that h;(z) = a*(1 - 2)Q(1 —
o' + o'z). Noting that @ is increasing over [0,1],0 < 1 — z < 1, and Q(1) is finite, we conclude
that 0 < hi(z) < Q(1)a’ and -2 1 hi(2) < Q(1) 3052, 1 af. This implies Y372 | hy(2) converges
uniformly to 0 over the interval [0, 1]. For every n > 0, define

(2.3) pnt1(z) = [[ 90— o' +a'2),
1=0

n
which can be rewritten as pp11(2) = [] (1 — hi(z)). It follows by Theorem 1, p. 381, in [17], that the

sequence {pn41(2)} converges uniformfy over the interval [0, 1] to

e(z) = [[(1 = hi(2)) = [T w1 — o’ + a'2).

=0 =0

Next, we show that lim41 ¢(z) = 1. Define o (2) = [132,, 1 ¥(1 — a’ +a’z) and let § > 0 be arbitrary.

By the uniform convergence of {¢n+1(2)} to ¢(z), there exists a positive integer N(§) such that for any
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n > N(), sup,¢[p,1] ["n(2) — 1| < &. Note that ¢n41(-) of (2.3) satisfies pnt1(1) =1 and pny1(2) < 1.
Since
lo(2) = 1] = lent1(2)(rn(z) = 1) + ony1(2) — 1,

it follows that for any n > N(9), |¢(z) — 1| < § + |@n+1(2) — 1|, which in turn implies

limsup |¢(z) — 1| = limsup(1l — ¢(2)) < 0 + limTilnf 1= ent+1(2)) <4.
211 211 ®

Since ¢(z) is the limit of the sequence of pgf’s {¢n+1(2)}, we conclude that ¢(z) is a pgf by the Continuity
Theorem. Equation (2.2) is easily shown to hold. |

Theorem 2.2. Let {fr} be a pmf with finite mean and with pgf V(z). Let {p,} be the pmf
with pgf ¢(z) of (2.1) and let {frm} be the pmf with pgf U (1 — o’ +a’z), i > 0. The following assertions
are true.

1. f0>*f and

(1) fo+ 220:1(1 — ai)"fn, ifr=0
(24) ro= i [e5s} n i\ — :
ar 3o (M) fa(l—a)mr, ifr > 1
2.
(2.5) pr = lim <f<o> w fD sk f<k—1)) ,
k— o0 r
where f(© « f(1) x ...« f(k=1) designates the k-factor convolution of the pmf’s ~{fr<0)}7 {fT(l)}, ..
k—1
3. Assume the factorial cumulant generating function (fegf) InW(1+1t) =372, mff])’;—! of the pmf
{fr} exists for |t| < po for some pg > 0. Then, for every r > 1, HEP]) and HS P) are finite and are
given by (cf. (1.3)—(1.4))
) " ()
@ _ "I (®) _ NG
(2.6) A and Ky = Z;S(r,]) I y
=
4. If {f+} has a finite second cumulant, then the mean u(P), the variance (0(P))2 and the dispersion
index of IP) of {p,} are obtained in terms of their {f,} counterparts, u{), (¢(f))2 and I(/) as
follows:
@) (62 4 apl) 1% —1
2.7 () =+~ (py2 - \T )" AR d I®=—14+2 """~
(2.7) Iz o @) . an t 1.
k—1

Proof: The proof of (2.4) is straightforward. Since ¢(z) = llm H pK(2), with pg(z) of

(2.3), we obtain (2.5) by the Continuity Theorem and (2.4). Since the fcgf ln U(1 + t) of the pmf
{fr} exists for [t| < po, we have In ¥(1 + ait) =Y, otk LTt follows by (2.1) that Inp(1 +¢) =

] [r] r!
> o In¥(1+a’t). One can show by a standard argument that the series In ¢ (1+t) converges uniformly
in the interval [t| < p for every 0 < p < po. Therefore, by Weierstrass Theorem, p. 430 in [17], we have

o oo o (D
ir " KT t"
1ngol+t=§ E a <f) 511[] =} (It] < po),

r=11=0 r=

proving the first part of (2.6). The second part of (2.6) is deduced from (1.3)-(1.4). The formulas in
(2.7) follow from (2.2). |
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Remark 2.1. ‘We make a number of useful remarks.

1. Equations (2.6) and (2.7) are known (see [28]). We note that as a function of « the dispersion
index I(®) is increasing and concave down if the innovation distribution is underdispersed.

2. As noted in [28], it is easily seen from (2.7), that {p,} of (2.5) is underdispersed (i.e., (¢(P))2 <
u®)) if and only if {f} is underdispersed.
3. There are no simple formulas linking the r-th moment ,u,(«p) and the r-th factorial moment ,u(p)

[r]
Ef]) or n&p) can be calculated for every r > 1,

of

{pr} to their {fr} counterparts. However, if either s

then one can compute ,ugp) and ,U,Ef])

cumulants (see [12], Sections 1.2.7 and 1.2.8, and [26]).

recursively using standard formulas that link moments and

Next, we interpret Theorem 2.1 and Theorem 2.2 in the context of INAR (1) modeling.

If the INAR (1) process {X;} of (1.2) is stationary, then its marginal pgf ¢ x (z) and the common
pgf ¥(z) of the innovation sequence {e;} must satisfy the functional equation (2.2) with ¢(z) = ¢ x ().

The backward approach we have adopted in this paper translates as follows: one chooses a pgf
¥(-) and solve for ¢ x () that satisfies (2.2). It can be shown that in this case px(2) = limn— oo ©n(2),
with ¢n(2) of (2.3), provided that the limit exists and is a pgf.

The backward approach leads to the following existence theorem for a stationary INAR (1) pro-
cess.

Theorem 2.3. Let « € (0,1). Any pgf ¥(z) such that U’ (1) < co gives rise to a stationary
INAR (1) process {X:} defined on some probability space (Q, F, P) and driven by equation (1.2). Its
marginal pgf is

(2.8) px(z) = H\IJ(I—oci—&—aiz).

Proof: Since ¥’(z) < 1, by Theorem 2.1 px(z) is a pgf that satisfies equation (2.2). By
Proposition 2.1 in [8], there exists a stationary INAR (1) process { X+ } on some probability space (2, F, P)
such that its marginal distribution and that of its innovation sequence {e} have respective pgf’s ¢ x (2)
and ¥(z).

The following additional results (we refer to [2] and [20]) are needed in the sequel. An INAR (1)
model driven by (1.2) is necessarily a homogeneous Markov chain with the 1-step transition probabilities,

min(l,k)
(2.9) P(Xi=k|X;m1=0)= Y (;) i(1— ) IP(e =k — j).
=0

The k-step-ahead version of (1.2) for k > 1 is given by

k
d i
(2.10) Xt+k Lako X+ Z a? 1o Ettk—j+1
j=1
and the k-step autocorrelation of {X;} is
(2.11) Corr(Xy, Xt + k) = oF.

It follows from (2.10) that the conditional pgf of X,y given X; satisfies

Xt k—1 . .
(2.12) Oxppnlxe (2) = (1 — ok 4 akz> “xTI, v -a'+a'z),

Therefore, given X; = n, the distribution of X, is the convolution of a Binomial(n, ak) distribution
and the pmf {(f(()) w f) g x f(k_l))r} of Theorem 2.2.
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Remark 2.2. It is a well known fact that the INAR (1) process (1.2) is a branching process
with a Benoulli(«) offspring distribution and an immigration sequence of iid random variables with
common pgf ¥(z). It follows by Theorem in [11] that Theorem 2.3 holds under the weaker condition
> o ak(k + 1)~! < oo, where {qx} is the sequence of tail probabilities of ¥(z). For a more general
result, we refer to Theorem 2, p. 264, in [5].

3. Stationary INAR (1) models with Bernoulli innovations

In this section and subsequent ones, we describe the properties of the marginal and conditional
distributions of stationary INAR (1) processes with specific innovation sequences. We obtain useful
representations of the marginal pgf’s of these models as well as formulas for moments and cumulants of
their marginal distributions.

We start out with the case of Bernoulli innovations. First, we recall a definition.
Let g,c € (0,1) and m > 1. Kemp [14] (see also [12], p. 467) introduced and studied the

Poissonian Binomial (m, ¢, c) distribution as the distribution of a finite convolution of Bernoulli(cg®)
distributions, ¢ = 0,1,2, -+ ,m — 1 with pgf

m—1
(3.1) U(z)= [] A =ecq'(1—2))
i=0
and pmf
ke () i (8) 7 Lm0
(3.2) gr(m,q,c) = Z(—l) 7T(T>c g\? H gt ,r=0,1,---,m
k=r l

We will expand more on this distribution in Section 5.

The main result of this section follows next. Its proof is long and is deferred to the appendix

Theorem 3.1. Let {X:} be the stationary INAR (1) process driven by (1.2) and with a
Bernoulli(p) innovation sequence for some p € (0,1). Then,

1. the marginal pmf {p,} of {X:} is the weak limit of Poissonian Binomial(n,a,p) (see (3.1) and
(3.2)) as n — oo and is given by
oo 5)
k pka(2
(3.3) pr= lm g(nap) =3 (-0 (M) T
n—00 = r Hle(l —aob)

o0
2. the tail probabilities P(X¢ > r) = > p; of X are obtained by the formula

j=r
(3.4) P(X; > 1) = i(_nk—r(k - 1) ﬂ, P>
- k=r r—1 Hf:l(lial) B

3. the marginal pgf px (z) of {X} admits two useful representations:

- ald)
(3.5) ex( =1+ 3 HE=D

oo

(3.6) wX(z):exp{Zn(lpnan)(lz)"}.

n=1
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Additional properties of {X;} are given next.

By (2.9), the 1-step transition probability is given by

0, E>1+1
(3.7) P(X; =k X4—1=1) = par T, E=1+1
a1k (L yatp(a), k<

By (2.12), the conditional pgf of X, given X; satisfies

k-1

ey (2) = (1= 4 ak2) ™ 5 [T~ pai(1 - 2)).
=0

Therefore, given X = n, the distribution of X, is the convolution of a Binomial(n, a*) distribution
and the Poissonian Binomial (k, o, p) distribution of (3.2).

Next, we derive the factorial moments (,uff]),r > 1) of X;. Using the version (3.5) of px(z), we
deduce that

o -
T!pTQ(Q) t"
14+8) =1 _rpar b
2 ) +T§ i (1—at) 7!
Since the series converges everywhere, the factorial moments (the coefficients of ¢” /r!) and therefore the
moments of X (by (1.3)-(1.4)) of all orders are finite and are given by

T . J
r!p’"a(“’) L . j!pja(2)
(3.8) Mff]) =7 and ng) = Z S(ﬁj)ji (r=1).
13- o) T (Y
i=1 i=1
By (2.7), the mean, the variance and the index of dispersion of X; are
p 2 _p(l—p)+ap P

— , = d Ix=1- .

BX=7_"a %X 1— a2 an X 1+«

As expected, the marginal distribution of {X;} is underdispersed. We note that Ix is decreasing and
linear affine in p and increasing and concave down in « (see Figure 1).

By (3.6), the fcgf of X; is given by

Inpx(1+1t) =

Since the series above converges everywhere, the factorial cumulants and the cumulants of X; of all
orders are finite and given by (applying (1.3)-(1.4)):

(3.9) W@ =y T DRy e o ijs@n j)(—l)j*’lw (r>1).
[r] 1—-am) — ’ (1—ad) -
j=0
Remark 3.1. We note that if the innovation sequence {e¢} has the Power-Law distribution
of the first kind (PL1(\,p)), i.e., er ~ Pois(\) x Bernoulli(p), 0 < p < 1, then its marginal distribution

will result from the convolution of a Poisson(ﬁ) and the pmf {p,} of (3.3) in Theorem 3.1. The

PL;i(\ p) law was discussed in Section 2.3 of [28]. Additional distributional properties of this law such
as moments and cumulants, can be obtained from Theorem 3.1 and subsequent results in this section.
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Figure 1: Variance-mean ratio of the marginal distribution of an INAR(1)

process with a Bernoulli innovation.

Stationary INAR (1) models with Binomal innovations

The treatment is essentially similar to the Bernoulli case (m = 1).

results with minimal justifications for the most part.

Theorem 4.1.

We summarize the main

Let {X:} be the stationary INAR (1) process driven by (1.2) and with a

Binomial(m, p) innovation sequence for some positive integer m and some p € (0,1). Then

(4.3)

the marginal pmf {p,} of {X:} is the m-fold convolution of the marginal distribution (3.3) of the

INAR (1) process with a Bernoulli(p) innovation.

the marginal pgf px(z) of {X:} admits two representations:

= e - yral?)
(4.1) px(2) = |1+ -

; 171(1 - al)
and

> pn
_ _ n

(4.2) px () =exp { mn;r (-2 }-
Proof: Straightforward. We omit the details.

We proceed to give additional properties of {X¢}.

By (2.9), the 1-step transition probability of {X;} is

min(l,k)
P(X; =k|X,_1 =1) = prpm*a >
j=max(k—m,0)

(;) (o)) (5Z). k<iem
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By (2.12), the conditional pgf of X, given X; satisfies

k—1

90X¢+k\Xt(z) = (1 —aF +o¢kz>Xt X [H(l —pat(1 —z))]m.

=0

Therefore, the conditional distribution of X, given X; = n is the convolution of a Binomial(n, a*)
distribution and the m-fold convolution of the Poissonian Binomial (k, e, p) distribution of (3.2).

Since the power series expansion of px (1 + ) for px(z) of (4.1) is not easily computable, we
proceed to derive simpler recurrence formulas for the factorial moments (uff]),r > 1) of X; by using

instead the representation (4.2).

Let

(4.4) o(z) = Z bu(l—2)", by = _r

n=1

The series (4.4) converges uniformly over the interval (0,1) due to the fact that for every n > 1

OO
and z € (0,1), bn(1 — 2)™ < by, and that > by converges. It follows that ¢’(z) and subsequent higher
n=1
order derivatives exist and converge uniformly over (0,1) (see [17]). The r-th derivative of ¢(z) admits
the representation

— P (n—1)
(4.5) ¢ (z) = (-1)" Y (A= (r2 ).
n=r
Uniform convergence allows for the interchange of limit (as z 1 1) and summation in (4.5). Hence,

(r=1lp"
1—a”

(4.6) ¢ (1) = (-1) r=>1).

Since Inpx (z) = —me(z), it follows that ¢’y (2) = —mex(2)¢'(2). An induction argument

shows that the 7*" derivative, Lpg;)(z), of px(z) can be obtained by the following forward recursion

(with Ap( )( ) = px(z) and (8) =1):

(47) o (=) = —mZ (" el (2609 ().

Therefore, the factorial moments ,uff]) = gog;)(l), r > 1, are finite and satisfy the recurrence
relation (with MEP]) =1),
(4.8) ) = —mz ( Nuse-Day (=),

By (2.7), the mean, the variance and the index of dispersion of X; are

mp 5 mp(l+ a —p) p
= i mh-ra—p dlx=1-— ,
T—a %X 1— a2 and ix 14+«
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implying the marginal of {X;} is underdispersed.

We note that the dispersion indexes for INAR (1) processes with Bernoulli and binomial inno-
vations are identical. However, as pointed out by the referee, the additional parameter m of the model
with Binomial innovations gives further flexibilty for the parameterization of the INAR(1) model. For
example, we may estimate o using the sample autocorrelation function of order one, ACF(I) (cf (2.11)),

and A = mp using the sample mean . Thus, the remaining degree of freedom, p in )\ % % - can

be used to adjust the dispersion index.

The moments (g P ,7 > 1) of X; are finite and can be obtained from their factorial counterparts
via (4.8) and equations (1 3) (1.4).

Finally, and similarly to the Bernoulli case, the factorial cumulants and the cumulants of X; are
obtained via the pgf representation (4.2) and equations (1.3)-(1.4):

— Lip — 1D)lpr T i —1)Ipd
() _ M=) —1Dlp ® _ Nyt G =Dl
(4.9) Kl = Tar and Ky =m 2;) S(r,7)(—1) ool (r>1).
=
5. Stationary INAR (1) models with Poissonian Binomial innovations

In this section, we develop a stationary INAR (1) process with a Poissonian Binomial innovation
sequence with pgf and pmf given respectively in (3.1) and (3.2), for some positive integer m and some real
numbers ¢, ¢ € (0,1). This distribution belongs to the family of discrete g-series distributions with finite
range. It results from the convolution of m independent Bernoulli(p;) distributions , j = 1,2,--- ,m,
where the p;’s vary according to the geometric progression p; = cq?~1. For more on g¢-distributions, we
refer to the monograph [9].

We recall for further reference that a Poissonian Binomial(m, g, ¢) is underdispersed with mean,
variance, and dispersion index given by (see [14])

1— g™ 1—qag™ 1— 2m) .2
(5.1) po= d=d™e o (A—gMe (=) g g
€ 2
1-q 1—q 1-gq

(1+¢™)c
14+q

Theorem 5.1. Let {Xt} be the stationary INAR (1) process driven by (1.2) and with a
Poissonian Binomial(m, q,c) innovation sequence for some positive integer m and some real numbers
g,c € (0,1).

1. The marginal pgf px(z) of {X:} admits the following representations:

—1

(5.2) ox(2) =[]

=0 =

[1+Z (ca)) (S ()].

1(1—ab)
and

(5.3) @X(Z)exp{—zll__ir::ln(lc_%(l—z)"}-

n=1

2. The marginal pmf {p,} of {X:} is the convolution of the pmf’s ({p£j>}, 0<j<m-—1),
(5.4) pr =@ xpW x> 0),
where

S (cg)al?)

5.5 O = S (cnrr(® :
o W= E T O a-w
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Proof: Let W(z) be the pgf of the Poissonian Binomial (m, ¢, ¢) distribution as given in (3.1).
Then,

m—1
U(l—al +a'z) = H 1+ calq?(z — 1)),
3=0

which is the pgf of a Poissonian Binomial(m, g, ca’). By Theorem 2.1, the marginal pgf ¢ x (z) is

m—1 oo

px(z) = H H 1+ calqd(z —1)).

7=0 =0

Noting that [ (1+ca’q?(z—1)) is the marginal pgf of a stationary INAR (1) process with Bernoulli(cg?)
i=0

innovations, representations (5.2) and (5.3) follow from (3.5) and (3.6), respectively. By Theorem 3.1

and (3.3), for each j > 0, the pmf with pgf

_ i ch (z—1)" (3)
n=1 Hl— ]' - al)
is {p(])} of (5.5). Therefore, part 3 and (5.5) follow from (5.2). (]

Some additional properties of {X¢} are presented next.
By (2.9), the 1-step transition probability of {X;} is given by
min(l,k)

(5.6) P(Xt=k|Xi—1=1)= >
j=max(k—m,0)

l . .
(]-)Ol](l7a)l7]qkfj(m7q7c)7 k<l+m.

By (2.12), the conditional pgf of X, given X; satisfies

PX ¢y nl Xy (2) = (1 — ok + akz) ni_ll [kl_[l 1— (cg’)at(1 — z))]
Jj=0 =0

Therefore, the conditional distribution of X; ) given X; = n is the convolution of a Binomial(n, ak)
distribution and the Poissonian Binomial (k, o, c¢g¢’) distributions, j = 0,1,--- ,m — 1.

By (5.2), the power series expansion of ¢x(1 + t) exists but is not easily computable. We
proceed as in the Binomial case (Section 4) to derive the factorial moments (,uffl),r > 1) of X; via the

representation (5.3) of px (z) and a recurrence relation.

Let
I T S
(5.7) $1(2) = —Ingx (2) nzl T~ nd—am ™Y

The argument we used to derive (4.5)—(4.8) in Section 4 carries over almost verbatim. We state
the main steps without further explanations. The r-th derivative of ¢1(z) admits the representation

(5.8) CROEICHIDY 1,1;"”11"32”) EZ:gi(Lz)"—T r>1,

n=r

Hence,
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(1—g™)er

(r) _ r
(5.9 O T an

r—1!  (r>1).

Since Inpx (z) = —¢(2), the rth derivative, Lpg;)(z), of px(z) can be obtained by the following

forward recursion (with gag(()) (2) = ¢x(z) and (8) =1):

(5.10) e =->" (r ; 1)¢§)(Z)¢§T_j)(2)-

=0

(p)
[r]

The factorial moments u"; = <pg;>(1), r > 1, are finite and satisfy the recurrence relation (with

(p) _
r—1 r—1 )

(5.11) uP =3 ( ; JuBo ) =),
j=0

The moments of X, ugm = E(X7]), r > 1, are finite and can be obtained from their factorial
counterparts via equations (1.3)-(1.4).

By (2.7) and (5.1), the marginal distribution of {X;} is underdispersed with mean, variance and
dispersion index given by

b2 (1=dg™ec  (1-=¢"")c?
X -a)1-q @1-a2)(1-¢?)

iy — (A —g™)e
(1-a)1-q)’

and

Iy=1_ (EFdMe

(1+a)(1+4q)

We note that Iy is increasing in a and m (m > 2) and decreasing in ¢. Moreover, it is concave down in
q with concavity becoming more pronounced as c increases (see Figure 2).

c=0.1, m=5

c=04, m=5

c=0.9, m=5

Dispersion Index
Dispersion Index

Figure 2: Variance-mean ratio of the marginal distribtution of an INAR(1)
process with a Poissonian Binomial innovation.
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Similarly to the Bernoulli and the Binomial cases (Sections 3 and 4, respectively), the factorial
cumulants and the cumulants of X; are obtained in straightforward fashion from the pgf representation
(5.3) and equations (1.3)-(1.4):

L) _ (DT = DI — )
(5.12) R = (1—g¢)(1—ar)

(r=1)

and

(5.13)

DN (DG = D= gmi)ed
=2 S0 )

6. Stationary INAR (1) models with logarithmic innovations

We revisit in this section the INAR (1) process with a logarithmic(p) distribution introduced by
[7]. Most of the discussion will focus on the underdispersion version of the process.

We start out by recalling a few facts about the logarithmic distribution (see [12]). The pmf of

the logarithmic(p) distribution is given by fr = r > 1, where p € (0,1). Its pgf, mean, variance

—'rlnp
and dispersion index are given respectively by
1
(6.1) w(z = 202
Inp
(6.2) uh) =P oy _PRAED) gy PR
plnp (plnp)2 plnp

Note that the logarithmic distribution is underdispersed if p < 1 —1/e, equidispersed if p =1 —1/e and
overdispersed if p > 1—1/e.

The factorial moments and moments of { f,-} are respectively (cf. (1.3)-(1.4))

¢ __ prer-1! ) _ Z J -
6.3 =———— " and — —_— r>1).
(©5) fr T T = p) g o p —y 2D

We will also refer to the logarithmic-with—zeros(c, p) distribution, with ¢,p € (0,1), that arises
as a two-mixture of the Dirac measure &g sitting at 0 and the logarithmic(p) distribution with respective
mixing probabilities ¢ and 1—c (see [12], Sections 7.1 and 8.2). Its pgfis P(z) = c+(1—c)In[(1—pz)/Inp].

Lemma 6.1. Let p € (0,1) and let {fr} be the pmf of a logarlthmw(p) distribution with pgf
W(z) of (6.1). Then for every i > 0, the pmf, {fr } of (2.4) with pgf ¥(1 — o' + a 2) is a logarithmic-

with-zeros(b;, q;) distribution with b; = 1 — lln% and q; = #ﬂiai) (g0 = p,bo =0), i.e.,

T

q;
—rlng;

(6.4) ) = biso({r}) + (1 — by)

Noting fr(O> = fr, the k-factor convolution of the pmf’s {fr(o)}7 {fT(l)}7 e ,{fr(kil)},k > 2, is a finite
mixture of convolutions of logarithmic distributions, namely,

k—1
(6.5) (f<0> O N f(k—1)> =Cro g 4 S5 o <g<o> * gl 5 gli2) L4 gm)) :

1=1jeJ;
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where {gﬁj)} is the pmf of the logarithmic(q;), I = {1,2,--- ,k — 1}, J; is the collection of ordered
I-tuples j = (j1,J2, " ,J1), 1 <j1 < jo <--- < g <k—1and ju = {j1,j2, - ,Ji} is the corresponding
unordered [-tuple. The mixing probabilities are

69) Cro=TIb and o= ( 1 &) (I10bm).
j=1 h=1

JENu

Proof: If : = 0, (6.4) is true since {fr(m} = {fr}. Assume ¢ > 1. By (2.4),

)

i 1 X 1—af In(1 — p(1 — ot
59 = Z(p(n ) _ In(1—p( )

Inp oyt Inp
and for r > 1,
3 oo
G _ _ ()" (n - 1) iy
= — 1-— .
" rinp ; r—1 (p( ¢ ))
Using the power series expansion (1 —¢)~"~1 = 3" (:)t"*T, with ¢t = p(1 — o), it follows that
i 1 o "
] o e (r>1).
rlnp|1—p(1—a?)

Setting q; = #"iai), it is easily verified that fﬁi) satisfies (6.4). The second part of the Lemma and
equations (6.5) and (6.6) are proved by a tedious but straightforward induction argument. The details

are omitted. O

Theorem 6.1. Let {X:} be the stationary INAR (1) process driven by (1.2) and with a
logarithmic(p) innovation sequence for some p € (0,1). Then,

(i) the marginal distribution {p,} of {X} is the weak limit, as k — oo, of the sequence of pmf’s
(FO 5 fM sox f=1 k> 1), where f(O % f) x... x f(5=1) s described by equations (6.5)
and (6.6).

(ii) the marginal pgf px(z) of {X:} admits the representation

6.7) ex(m=T[[1- = m—2] (<z<,

Inp 1—gq;z

—

s
Il
o

with po = ¢px(0) = 0.

Proof: Part (i) is a direct consequence of (2.5) and Lemma 6.1. For part (ii), (6.7) follows
from (2.8) and the fact that when z = 0 the first factor in (6.7) is equal to O . O

Next, we provide additional properties of {X;}, some of which appeared in [7].

By (2.9), the 1-step transition probability of {X;} is given by

i min(l,k—1)

1 Jat—i
PXi=hXea == S (WeplaT sy
Inp T J k—j
By (2.12), the conditional pgf of X, given X; satisfies
k—1 —
Xt 1 7
=(1-af+ak2) [I[1- = m 2]
)= (1-a+at) T o e

=0
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Therefore, given X = n, the distribution of X;; is the convolution of a Binomial(n, a*) distribution
and the finite mixture of convolutions of logarithmic distributions described by (6.5) and (6.6).

By (2.7) and (6.3), the mean px, the variance 02 and the dispersion index Ix of the marginal
distribution of {X;} are given by

p(1+1np)

_p(p+Inp+a(plnp)?)
p(l+a)lnp’

(pInp)*(1 — a?)

N
p(l —a)np’

(6.8) ux = ok = and Iy =1+

Note that the distribution of X is underdispersed if and only if p < 1 — 1/e. The graph of
Ix restricted to that range is given in Figure 3 below. Ix is increasing and concave down in a and
decreasing and concave up in p.

Dispersion Index

Figure 3: Variance-mean ratio of the marginal distribution of an INAR(1)
process with an underdispersed logarithmic innovation.

Unlike the previously encountered models, the representations of the functions p x (z) and In p x (2)
of the distribution of X; are too complex to lead to manageable formulas for moments and cumulants
of X;. Instead, we proceed as in [28], Section 4.2, and use a number of recurrence formulas that will
compute these quantities in the following order:

()

1. Compute the r-th cumulant x,”’ of €; using the formula, derived in [26],

6.9) RN Ti (- 1>H(Tji)i#§f)7

=1 ¢

along with (6.3) (recall ngf) =) and Hgf) = (0(1)2, cf. (6.2)).

()]

2. Compute the r-th factorial cumulant Kl of e using the formula (see [12], Sections 1.2.7 and
1.2.8)
(6.10) nff]) = Z s(r,j)ngf),

5=0
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where s(r, 7) is the Stirling number of the first kind satisfying the recurrence relation
(6.11) s(r+1,5) = s(ryj — 1) — ns(r, ),
with s(n,0) =0 and s(1,1) = 1.

3. Compute the r-th factorial cumulant, Kff]), and cumulant, /-c(rp), of X¢ using (2.6).

4. Use the formulas in [12] to compute the moments {u.} of X¢, eq. (1.252), p. 54, and its factorial
moments {u[,}, eq. (1.244), p. 53.

Remark 6.1. Since both the innovation and the marginal distribution of the INAR (1) pro-
cess in this section have support in N* = {1,2,3,---}, it may be more suitable to adopt a measure of
dispersion different from the one relative to the Poisson distribution. We briefly discuss two approaches
and submit the relevant graphs as an illustration. For a random variable Y with support in N* such
that 0 < P(Y = 1) < 1, we suggest using dispersion indexes of the zero-shifted distribution of Y, that

is the distribution of Y — 1. We consider two such indexes: the standard one, we denote by Iy _; (as
in previous sections) and the one introduced in [1], we denote by I‘E,gfci), relative to the zero-shifted
geometric distribution (with the usual interpretation of under/equi/over-dispersion). The formulas are
as follows:

_ Var(Y)
T EY)-1

Iy

(6.12) Iy _1 B =T

(geo) _
and Iy, =

It is easily seen that for any p € (0,1), the zero-shifted version of the logarithmic(p) distribution is
overdispersed relative to both the Poisson and the zero-shifted geometric distributions. Applying the
formulas (6.12), along with (6.8), to the zero-shifted version of the marginal distribution of the stationary
INAR (1) with a logarithmic innovation, we obtain the following graphs for the two indexes:

(a) Standard Dispersion Index

(b) Zero-shifted Geometric Dispersion Index

W
iy
.

il
%%%ﬁ%’i’,’},’,%j///;llnﬂn

i

Dispersion Index
Dispersion Index

Figure 4: Two variance-mean ratios of the zero-shifted marginal distribu-
tion of an INAR(1) process with a Logarithmic innovation.

Both graphs show increase in p and decrease in a. Note also that for every o € (0,1) and

p € (0,1), Ix_1 exhibits all three dispersion states, whereas Igfiof shows underdispersion for every
a>0.58 and p € (0,1).
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7. Stationary INAR (1) processes with Heine innovations

A distribution on Z is said to have the Heine distribution (Heine(1\, ¢)) with parameters A > 0
and g € (0,1) if its pgf and pmf are respectively given by

(7.1) U(z) = [[(1 =85+ 852)
=0

and

Rt o )\rqr(rfl)/Z
7.2 = 1—Ag) ! d fr=2~— > 1),
(7.2) fo=TJ=AF)"" and f mzl(l_ql)fo (r>1)

where 3; = for j > 0.

1+>\ 7

The Heine distribution was introduced by Benkherouf and Bather [6]. It is a g-series distribution
with infinite support. Many of its properties were studied in [15] . More details can be found in these
references and in [12], Section 10.8.2. The Heine distribution is underdispersed and its mean and variance
are

o0 A r oo
(7.3) w= Z a and o2 =
=

<14 Aq" = (1+Aqn)?

We recall a few facts about double infinite products. Let {amn} be a double sequence The double

infinite product H H (1+a;j) is defined as the limit of the double sequence Py = H H (1+aij) as
Z_Oj 0 =0 7=0

m,n — oo. If E E la;j| < oo, then the double infinite product H H (14 a;;) converges. Moreover,
1=0j= 1=07=0

if TJ

=07

=

(14 a;5) and the iterated infinite products

[

are all convergent, then they necessarily have the same value.

(1+a”)] and ﬁ[ﬁ(l—&-aﬁ)]

0 j=0 =0

[
e[

J

The main result of this section is given next. Its proof is deferred to the appendix.

Theorem 7.1. Let {X:} be the stationary INAR (1) process driven by (1.2) and with a
Heine(}\, q) innovation sequence for some A > 0 and 0 < ¢ < 1. Then the marginal pgf ¢x (z) of {X:}
admits the following representations:

1.
oo oo n - — 1)71, (")
(7.4) wx(z)—j];[o[u;inl o I
where 8; is as in (7.1).
2.

(7.5) px(2) = exp{— S ﬁ(l - z)”}

n=1

with By = 352, 87, n > 1.
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3. The marginal pmf {p,} of {X;} is

(7.6) pr = lim (¢© x¢M 5. x gDy (r>0),
k—oo
where
k
. e k Bka(Q)
(7.7) ¢ =3 () ()= s>
’ kg () TT, (1 - a)

Next, we discuss additional properties of {X¢}.

The 1-step transition probability can be obtained from (2.9). Given there are no notable simpli-
fications of the formulas, we omit the details and refer to the following discussion by setting k = 1.

By (2.12), the conditional distribution of X, given X; = n results from the convolution of
k + 1 distributions, namely a Binomial(n, o) distribution and the distributions ({gg)}7 0<i<k-1)

defined as follows:
; &+l !
gﬁz) — azrz ( . )(1 —a)' frti,
=0

where {fr} is the pmf of the Heine(}, q) distribution (7.2).

The factorial cumulants and the cumulants of X; are obtained in straightforward fashion from
the pgf representation (7.5) and equations (1.3)-(1.4):

— | i — 1B
(78) HEP]) — (_1)T+1 (T 1)B7‘ (] 1)BJ
T 1—a”

=) (r>1).

.
and n,(np) = Z .S'(r,j)(—l)j'"'1
j=0

By (2.7) and (7.3), the mean, the variance and the index of dispersion of X; are given by

1 f: )‘qT 2 1 f: )‘qT ([1 LA 'r]—l + )
= , O = «
Hx l—a 14+ X" X 17a2T:01+)\qT 4

and

o= S™ M (14 agn! 1 A
x =2 Tt e /o 3 2]

Since the Heine distribution is underdispersed, the INAR (1) process with a Heine innovation is
underdispersed. We note that I'x is increasing in o and ¢ and decreasing in A (see Figure 5).

Similarly to the way (6.9)—(6.10) were derived, the moments and factorial moments of X; can be
computed using the formulas

r—1 r
r—1 )
(7.9) w =37 ( ; )Hff’_)juj and  p?) =37 s(r,))u,
=0 J j=0

with initial conditions uép) =1and ;L(lp) = f{gp), and where {s(r, j)} are the Stirling numbers of the first

kind of (6.11).

In turn, the factorial moments ,uff]),r > 1, of X; can be obtained via the formula (see [12],

Section 1.2.7):

(7.10) pB) =3 s(r,u?,
j=0

where {s(r,j)} are the Stirling numbers of the first kind of (6.11).
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lambda=1
lambda=3

lambda=25

Dispersion Index

Figure 5: Variance-mean ratio of the marginal distribution of an INAR(1)
process with a Heine innovation.

8. Conclusion

In this article we formalized a theoretical approach to study the distributional properties of a
stationary INAR (1) process based on binomial thinning when the innovation distribution is known. We
established a number of basic properties of a specific infinite convolution of distributions on Zjand
interpreted our results in the context of stationary INAR(1) models whose innovation has a finite mean.
As an application, we presented new distributional properties for some stationary INAR (1) models
that show underdispersion, including two new INAR (1) models with g-series innovation distributions.
Simulations and statistical analysis for some of these models will be the object of the authors future
work. Another direction of research would be to extend the results in this paper by using more general
thinning operators.
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Appendix

This section is devoted to the proof of Theorem 3.1 and Theorem 7.1. We first extablish a

Lemma.

Lemma 8.1. Assume n > 2 and a; € (0,1) fori=0,1,2,--- ,n — 1. Then,

n—1 n
(8.1) [Ta-a)=1+> (-1 3
i=0 k=1

0<j1<j2<-<jp<n—1

-
£
£

. . X k k—1 _ n—l
(8.2) Z adlad2 ... qdk = a(z) H %
01 <ja<--<jr<n—1 = 1@

for every k € {1.--- ,n}.

Proof: (1) follows by a straightforward induction.

(2) We also proceed by induction. The result is trivially true for n = 2 (forces k = 1). Assume

the assertion is true up to n. Equation (8.2) holds for n + 1 and k = n + 1, as in this case

. ] . n n+1 n+1) [ _ ant1-=l
Z aman.,.am:aEk:ok:a( 2 ):a( 2 )Hil @
1—altt
0<j1<j2<-<jn41<n 1=0
Assume now k € {1,2,--- ,n}. Setting J = (j1,52, - ,jx) € N, it is clear that

{JENF0<j1<jo< - <jr<n}=AUB,
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where A={JeENF:0<j1<jo< - <jpg<n—1}and B={JeNF:0<j1 <jo< - <jp_1 <
n — 1, jx = n}. Therefore,

k k k-1
OREN I CEE o) | R o 1 0

0<j1<jo<-<jp<nl=l JEAI=1 JEB  1=1
Using the induction hypothesis, it follows that

k—1

k . ke l_an—l
it — o(8) T Lz
=i e
and k—1 k—2
— k=20
> ar [Jan =anal s T 1220
JeB =1 =0

which implies

kl:f(l _ an—l) [(1 _ an—k-!—l)a(g) + (1 _ ak)ana(kgl)]

S et

k—1
0<j1<j2<-<jp<nl=1 ITa- al+l)
=0

Now, noting that (g) = (kgl) + k — 1, it is easily seen that

1- a"karl)a(g) +(1- ak)a"a(kgl) = a(g) (1—anthy.

Therefore, (8.2) holds for n + 1. |

Proof of Theorem 3.1:

Let {X:} be the stationary INAR (1) process with a Bernoulli(p) innovation sequence. By The-
orem 2.3 and (2.8), its marginal pgf is

[e')

(8.3) ex(2) = [J(1—pa'(1 - 2)).

=0

n—1

Since px(z) = nIme H (1 — pat(1 — 2)), we conclude by the continuity theorem that the marginal pmf

i=0
{pr} of {X:} is the weak limit of a sequence of Poissonian Binomial distributions of (3.1) and (3.2),
with m = n, ¢ = a and ¢ = p. Let r > 0. We define a purely atomic measure, we denote meas,, on
N, ={r,r+ 1,7+ 2,---} and its power set P(N,) as follows:

(8.4) <{k}>fﬂ (k>r)
‘ S L eyt T

with measo({0}) = 1. It is clear that > 72 meas,({k}) < co. Therefore, meas, is a finite measure.
Define now the sequence of functions {fn(-)} on N, by

(71)kir(k) kﬁl(lf&nil) fk=rr+1,---,n
fa(k) = ot L

0 if k > n.

OO
Define h(k) = (’:) on N;.. It is clear that | fn (k)| < h(k) (recall o € (0,1)) and that > h(k)meas,({k}) <
k=r

oo by the ratio test). Moreover, for every k € Ny,

70 = Jim_fak) = (08 (%),
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(n)

Rewriting py in terms of the discrete integral of fn(k) on the measure space
(N, P(N,), meas,) and calling on the dominated convergence theorem, we have

pr = nlew /NT fn(k) measy(dk) = /NT f(k) meas.(dk),

which is precisely (3.3) and thus part 1 of the Theorem is established. To show part 2, note that

oo oo ka(k)
POz =323 0 () oy

Since the double series above converges absolutely, interchanging summations is allowed, leading to

P(X: > 1) =Z(Z< Dr ))Hlpj?l(k)az)

k=r

We have by induction on k that Z S(—=1)kEI (’;) = (fl)k_T(lj:}), thus establishing (3.4).

For part 3, we note first that ¢ x (z) of (8.3) can be rewritten as

(8.5) px () = exp {Zlnu — pai(l - z))} .

=0

The representation (3.6) of ¢ x (2) follows by way of the power series expansion of
—1In(1 —x) Zm /n, 0<z<1

applied to = pa’(1 — z) in (8.5).

To prove (3.5), we first note that by letting a; = pa?(1 — z) in (8.1) and using (8.2), we obtain
the following expression for ¢, (z) of (2.3):

(k) k-1 1— OCnfl
(8.6) on—1(2) —1+§:p (z—1)k IITiEﬁT
k=1 1=0
and therefore,
(87) (2) [ED P TLa-a ptal? ]
8.7 px(z) = lim |1+ z—1 1—a™™
* nree k=1 1=0 Hf:l(l —al)

We proceed as in the proof of (3.3). We define a sequence of functions g, (k) on the finite measure space
(N, P(N), measo), where measg is defined in (8.4):

1 if k=0
k—1
gn(k) =S =D [TQ—-a™!) if1<k<n
=0

0 if k> n.

It is easily seen that |gn (k)] <1 (recall o € (0,1) and z € [0,1]) and that

1 if k=0
k)= lim gn(k) =
g(k) = lim_gn (k) {@_1ﬁ itk > 1.

Rewriting (8.7) in terms of the discrete integral on the measure space (N, P(N), measo) and calling on
the Dominated Convergence Theorem, we have

px(z) = nlimw/ﬁlgn(k) measo(dk) = /Ng(k) measo(dk),
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which is precisely (3.5).

Proof of Theorem 7.1:

First, we note that 0 < 8; < 1 for any j > 0. Moreover, for any n > 1,

o0
(88) zz: 1+)\qﬂn_17q <00

The pgf ¥(z) of the innovation sequence of {X;} (cf. (7.1)) yields

oo

V(i—a't+a's)=[[(1-ga'(1-2))  20)

=0
It follows by Theorem 2.3 and (2.8) that
oo} (e o] .
(8.9) ex =11 [H (1-Bjal(1—2)].

Aly and Bouzar

Clearly, the right hand side of (8.9) converges. A straightforward argument shows that the double infinite

product ]_[ ]_[ (1 = Bjai(1 — 2)) converges. In order to be able to interchange the order of the infinite

1=075=0
products in (8.9), it remains to show that the iterated infinite product

oo o0 oo
H[ 1—,8] l—z]:HPz
j=0 =0 j=0
converges, where for each j7 > 0,
oo
Pi(z) =] (1 - Bja'(1-2)).
i=0

Note that for each j > 0, P;(-) has the form of the pgf of the marginal of an INAR (1) process with a

Bernoulli(8;) innovation (see (8.3)). Therefore, by Theorem 3.1 and (3.5),

- e il
(8.10) ()=1+> 2 -~
n=1 Hl 1 1ial)
For j > 0, denote
VAR
Gz) =
! = I (1 =ah)
y (8.8) and 0 < z < 1, we have
SIEE 3 O
C] Z) < = S an,
n=1;= OHl 1( al) n—1 Hlnzl(l_al)
where
o o)
T I, (-
Since a, g € (0,1), we have
A(L = g™)an
lim 2L = i (1= g")a =0.
n—oo  aqn n—oo (1 — qn+1)(1 — an+1)

o0
By the ratio test, Y |(;(z)| converges uniformly over z € [0,1]. This in turn implies (see [17]) that
j=0

o0
I Pj(z) converges uniformly over z € [0,1]. The representation (7.4) then follows by interchanging the
ey



Underdispersed INAR (1) models 25

order of the infinite products in (8.9) and by using (8.10). We now prove (7.5). By the first part of the

proof, we have
oo
[T10 -t =2)].
0 i=0

4:]8

px(z) =

J

Applying the representation (3.6) to ;’io(l — ,Bjozi(l — z)) with p = B, we have

(8.11) ¢x () =exp i[i 1ﬂjan 172)71]

This implies that the double series in (8.11) is convergent. Since its terms are nonnegative (as 0 < z < 1),
the order of summation can be interchanged (by Cauchy’s criterion for double series). This establishes
the representation (7.5). By Theorem 3.1 and (3.3), P;(z) of (8.10) is the pgf of the pmf {q(J)} of (7.7).
Therefore, part 3 and (7.6) follow from the representatlon (7.4), Theorem 2.2 and (2.5).
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