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1. INTRODUCTION

The response surface methodology (RSM) is a widely used statistical method
for modelling and analyzing a process in which the response of interest is affected
by various input variables, and the objective of this method is to optimize the re-
sponse [3]. The main idea of RSM is to use a sequence of designed experiments to
obtain an optimal response. If x1, x2, ..., xv are v independent variables, y is the
response variable, and N is the total number of observations, then the response
function can be approximated in some region of the polynomial model given by

yu = f(x1u, x2u, ..., xvu) + eu,

where u = 1,2,...,N, yu is the response from uth treatment combination and xiu
is the level of the ith (i = 1,2,...,v) factor in the uth combination. The function
f(.) describes the form in which the response and the input variables are related.
eu is the random error associated with the uth observation that is independently
and normally distributed as eu ∼ N(0, σ2). For details on RSM, one can refer to
[4], [8], [10], [11].

In RSM, it is mainly assumed that the observations are independent and
that neighbouring units have no effect. But in agricultural field trials, the neigh-
bouring effect or overlap effect is very prominent ([1], [2], [5], [6], [12]). For
example, if a chemical treatment is sprayed on one plot, wind drift may allow
the spray to spread to adjacent/neighbouring plots, or preceding soil preparation
may allow sterilized soil from one plot to mingle with non-sterile soil from the
next plot. As a result, it is vital to assume that the response received from a
given plot is influenced not only by the treatment combinations used on that plot
but also by the treatment combinations used on the plots next to it. So, it gives
a great scope to take into account the neighbouring effects in RSM. Because of
these neighbouring effects, the variation of treatment differences arises. If the
neighbour effect is present and is included in the model, there is a considerable
reduction in the residual sum of squares, and the response is predicted with more
precision [7]. Over the years, work on different aspects of RSM with neighbour
effects from immediate adjacent neighbours has been done for factors with same
levels ([13], [14], [15], [16], [17], [18]). The response surface model with neighbour
effects up to distance 2 has also available in the literature [9]. Some attempts
were also made to develop asymmetrical response surface designs of the form
2n × 3 and 2n × 3n in the presence of neighbour effects [19].

Here, a general methodology for constructing response surface designs of
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the form sn1
1 × sn2

2 has been developed, incorporating neighbour effects and an
R package named rsdNE has also been developed for the generation of these
designs.

2. Response Surface Model with Neighbour Effects

Consider a response surface with n1 factors at s1 levels each and n2 factors
at s2 levels each resulting in sn1

1 ×sn2
2 combinations. The form f(xu) of considered

here is as follows:

f(xu) = β0 +

n1∑
i=1

βixi +

n1+n2∑
i=n1+1

βixi +

n1∑
i=1

βiixi
2 +

n1+n2∑
i=n1+1

βiixi
2 + ...+

(2.1)

n1∑
i=1

βii..ixi
s1−1 +

n1+n2∑
i=n1+1

βii..ixi
s2−1

where β0, βi’s [associated with linear terms of n1+n2 factors], βii [associated with
quadratic term of n1+n2 factors] and βi...i [associated with (si−1)thorder term of
nth
i factor] are parameters to be estimated. Thus, the total number of parameters

to be estimated in above model is p = n1(s1 − 1) + n2(s2 − 1) + 1. The response
model incorporating the effects from immediate left and right neighbouring units
is defined as follows:

(2.2) yu′ =

N∑
u=1

guu′f(xu) + eu′ , u′ = 1, 2, ..., N

where,

guu′ = 1, if u = u′

= α, |α| < 1, if |u− u′| = 1 i.e. units are physically adjacent

= 0, otherwise

Here, α represents the neighbour effect from left and right neighbouring units
and ranges from 0 to 1([6], [13]). f(xu) is as given in 2.1.

It is to be mentioned that the design layout of the experiment for estimating
this model will consist of two extra units as border units at each end. Observations
are not taken from border units and thus are not modelled.

Model 2.2 can be rewritten as

(2.3) Y = GXY + e,

where G=guu′ is the N× (N+2) symmetric neighbour matrix, X is a (N+2)×p
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matrix of N points (runs) with two extra border units (treatment combinations
applied on these units are the treatment combinations from the N points), p is
the number of parameters, β is a p× 1 vector of parameters to be estimated and
e is N × 1 vector of errors which follows N(0, σ2 I)

The ordinary least squares estimate of β, in the presence of neighbour
effects with known G is

β̂ = (Z′Z)−1Z′Y

where, Z=BX and D(β̂) = σ2(Z′Z)−1

2.1. Response Surface Methodology for 32×42 with Neighbour Effects

Consider n1 = n2 = 2, s1 = 3, s2 = 4 i.e. 2 factors at levels two and 2
factors at levels four. The form of f(xu) is as follows:

f(xu) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β11x
2
1 + β22x

2
2+

β33x
2
3 + β44x

2
4 + β333x

3
3 + β444x

3
4(2.4)

The matrix X in 2.3 is here as follows of order (N + 2) × 11 with two border
units:

X(N+2)×11 =


1 x1N x2N ... x24N x33N x34N

1 X1 X2 ... X2
4 X3

3 X3
4

1 x11 x21 ... x241 x331 x341


where, Xb

i =
[
xbi1 xbi2 ... xbiN

]′
;X1

i = Xi, i = 1, 2, 3, 4 and b = 1, 2, 3; and

1N =
[
1 1 ... 1

]′
The structure of G matrix is

GN×(N+2) =



α 1 α 0 0 0 · · · 0 0
0 α 1 α 0 0 · · · 0 0
0 0 α 1 α 0 · · · 0 0
0 0 0 α 1 α · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 · · · α 1 α 0
0 0 0 0 0 · · · α 1 α


Further, Z = GX =

θ′ x11 + α(x1N + x12) · · · x231 + α(x23N + x232) · · · x341 + α(x34N + x342)
θ′ x12 + α(x11 + x13) · · · x232 + α(x231 + x233) · · · x342 + α(x341 + x343)
θ′ x13 + α(x12 + x14) · · · x233 + α(x232 + x234) · · · x343 + α(x342 + x344)
...

...
...

...
...

...
θ′ x1(N−1) + α(x1N + x1(N−2)) · · · x23(N−1) + α(x23N + x23(N−2)) · · · x34(N−1) + α(x34N + x34(N−2))

θ′ x1N + α(x11 + x1(N−1)) · · · x23N + α(x231 + x23(N−1)) · · · x34N + α(x341 + x34(N−1))
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where, θ′ = 1 + 2α.

Z′Z =



Nθ1 θ1
∑N

u=1 x1u · · · θ1
∑N

u=1 x
3
3u θ1

∑N
u=1 x

3
4u

θ2
∑N

u=1 x
2
1u +A1 · · · θ2

∑N
u=1 x1ux

3
3u +D1 θ2

∑N
u=1 x1ux

3
4u +D2

. . .
...

...

θ2
∑N

u=1 x
6
3u +G1 θ2

∑N
u=1 x

3
3ux

3
4u +G2

θ2
∑N

u=1 x
6
4u +G3


where, θ1 = (1 + 2α)2 and θ2 = (1 + 2α2)

Ai = 2α2
N∑

u=1

xiuxi(u+2)mod(N) + 4α

N∑
u=1

xiuxi(u+1)mod(N)

Bi = 2α2
N∑

u=1

x2iux
2
i(u+2)mod(N) + 4α

N∑
u=1

x2iux
2
i(u+1)mod(N)

Gg = 2α2
N∑

u=1

x3iux
3
i(u+2)mod(N) + 4α

N∑
u=1

x3iux
3
i(u+1)mod(N)

Ok = α2(
N∑

u=1

xiuxj(u+2)mod(N)+
N∑

u=1

xi(u+2)mod(N)xju)+2α(
N∑

u=1

xiuxj(u+1)mod(N)+
N∑

u=1

xiuxj(u−1)mod(N))

Ck = α2(
N∑

u=1

xiux
2
j(u+2)mod(N)+

N∑
u=1

xi(u+2)mod(N)x
2
ju)+2α(

N∑
u=1

xiux
2
j(u+1)mod(N)+

N∑
u=1

xiux
2
j(u−1)mod(N))

Fk = 2α2
N∑

u=1

x2iux
2
j(u+2)mod(N) + 4α

N∑
u=1

x2iux
2
j(u+1)mod(N)

Em = α2(

N∑
u=1

x2iux
3
j(u+2)mod(N)+

N∑
u=1

x2i(u+2)mod(N)x
3
ju)+2α(

N∑
u=1

x2iux
3
j(u+1)mod(N)+

N∑
u=1

x2iux
3
j(u−1)mod(N))

Dm = α2(

N∑
u=1

xiux
3
j(u+2)mod(N)+

N∑
u=1

xi(u+2)mod(N)x
3
ju)+2α(

N∑
u=1

xiux
3
j(u+1)mod(N)+

N∑
u=1

xiux
3
j(u−1)mod(N))
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where, i = 1, 2, 3, 4; j = 1, 2, 3, 4; i ̸= j and k = 1, 2, 3, 4, 5, 6;m = 1, 2, ..., 8; g =
1, 2.

The following conditions are required for near orthogonal estimation of
parameters:

a.
N∑

u=1

4∏
i=1

xwi
iu = 0 for wi = 0, 1, 2, 3 or 4 and

∑
wi < 6

b.

N∑
u=1

x2iu = δi

c.
N∑

u=1

x4iu = γi, where i = 1, 2, 3 and 4

d.

N∑
u=1

x2iux
2
ju = λ1 and

N∑
u=1

x3iux
3
ju = λ2 where, i ̸= j

e.
N∑

u=1

x6lu = β1 where, l = 3, 4.

Therefore, Z′Z matrix can now be written as follows:

Nθ1 0 0 0 0 θ1δ1 θ1δ2 θ1δ3 θ1δ4 0 0
θ2δ1 +A1 0 0 0 0 0 0 0 0 0

θ2δ2 +A2 0 0 0 0 0 0 0 0
θ2δ3 +A3 0 0 0 0 0 0 0

θ2δ4 +A4 0 0 0 0 0 0
θ2γ1 +B1 θ2λ1 + F1 θ2λ1 + F2 + θ2λ1 + F3 0 0

θ2γ2 +B2 θ2λ1 + F4 θ2λ1 + F5 0 0
θ2γ3 +B3 θ2λ1 + F6 0 0

θ2γ4 +B4 0 0
θ2β3 +G1 θ2λ2 +G2

θ2β2 +G3


and it’s inverse, (Z′Z)−1matrix can now be written as follows:

1
Nθ1

+ g11 0 0 0 0 −f11 −f12 −f13 −f14 0 0
1

θ2δ1+A1
0 0 0 0 0 0 0 0 0
1

θ2δ2+A2
0 0 0 0 0 0 0 0
1

θ2δ3+A3
0 0 0 0 0 0 0
1

θ2δ4+A4
0 0 0 0 0 0

E11 E12 E13 −C11K11 0 0
E22 E23 −C11K12 0 0

E33 −C11K13 0 0
−C11 0 0

C22 −C32

C33
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where,

g11 = f11θ1δ1 + f12θ1δ2 + f13θ1δ3 + f14θ1δ4

f11 = E11θ1δ1 + E12θ1δ2 + E13θ1δ3 − C11K11θ1δ4

f12 = E12θ1δ1 + E22θ1δ2 + E32θ1δ3 − C11K12θ1δ4

f13 = E13θ1δ1 + E23θ1δ2 + E33θ1δ3 − C11K13θ1δ4

f14 = −C11K11θ1δ1 − C11K12θ1δ2 − C11K13θ1δ3 − C11θ1δ4

E11 = θ2δ1 +B1 −
δ21θ1
N

E12 = θ2λ1 + F1 −
δ1δ2θ1
N

= E12

E13 = θ2λ1 + F2 −
δ1δ3θ1
N

= E31

E22 = θ2γ2 +B2 −
δ22θ1
N

E23 = θ2λ1 + F4 −
δ2δ3θ1
N

= E32

E33 = θ2δ3 +B3 −
δ23θ1
N

E55 = θ2β3 +G1

E56 = θ2λ2 +G2

E66 = θ2β2 +G3

E1 =

E44 −(E14K11 + E24K12 + E34K13) 0 0
E55 E56

E66

K1 =

E11 E12 E13

E22 E23

E33



C11 =
(E55E66 − E65E56)

|E1|
C22 = E66∇
C33 = E55∇
C23 = E65∇

K11 =
(E41(E21E33 − E2

23) + E42(E13E33 − E12E23) + E43M(E13))

|K1|

K12 =
(E41M(E13) + E42M(E22) + E43M(E32))

|K1|

K13 =
(E41M(E13) + E42M(E23) + E43M(E33))

|K1|

where, ∇ = [E44−(E14K11+E24K12+E34K13)])
|E1| and M(Eij) = minor of Eij

The expressions of the variance and covariance terms of the estimates are given
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below

V ar(β̂0) =
1

Nθ1
+ g11 V ar(β̂11) = E11

V ar(β̂1) =
1

θ2δ1 +A1
V ar(β̂22) = E22

V ar(β̂2) =
1

θ2δ2 +A2
V ar(β̂33) = E33

V ar(β̂3) =
1

θ2δ3 +A3
V ar(β̂44) = −C11

V ar(β̂4) =
1

θ2δ4 +A4
V ar(β̂333) = C22

V ar(β̂444) = C33

Cov(β̂0, β̂11) = −f11 Cov(β̂22, β̂333) = −C11K11

Cov(β̂0, β̂22) = −f12 Cov(β̂33, β̂44) = E23

Cov(β̂0, β̂33) = −f13 Cov(β̂33, β̂333) = −C11K12

Cov(β̂0, β̂44) = −f14 Cov(β̂44, β̂333) = −C11K13

Cov(β̂22, β̂33) = E12 Cov(β̂44, β̂444) = −C32

Cov(β̂22, β̂44) = E13

E11 = (E21E33 − E2
23) + C11K

2
11 E12 = M(E21) + C11K11K12 = E21

E13 = M(E13) + C11K11K13 = E31 E22 = M(E22) + C11K
2
12

E33 = M(E33) + C11K
2
13 E23 = M(E23) + C11K12K13 = E32

The estimated response at any point x0 is given below

ŷ0 = β̂0 +

4∑
i=1

β̂ixi0 +

4∑
i=1

β̂iix
2
i0 +

4∑
i=3

β̂iiix
3
i0

with the variance of estimated response as

V (ŷ0) = σ2


V0 + x210V1 + x220V2 + x230V3 + x240V4 + V11x

4
10 + V22x

4
20 + V33x

4
30 + V44x

4
40 + V333x

6
30

+V444x
6
40 + 2C0,11x

2
10 + 2C0,22x

2
20 + 2C0,33x

2
30 + 2C0,44x

2
40 + 2C22,33x

2
20x

2
30 + 2C22,44x

2
20x

2
40

+2C22,333x
2
20x

6
30 + 2C33,44x

4
30x

4
40 + 2C33,333x

10
30 + 2C44,333x

4
40x

6
30 + 2C44,444x

10
40



where, Vi = V (β̂i), Vij = V (β̂ij) and so on. Similarly, Ci,j = Cov(β̂i, β̂i), Ci,jk =
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Cov(β̂i, β̂jk) and so on.

It can be seen that the variance of the estimated response at any point x0 de-
pends on the distance of that point from the design centre. The design obtained
for fitting this model with mixed levels of factors will be called here as Mixed
Level Response Surface Design with Neighbour Effects. From this one can check,
at any point x0, the variance of the estimated response from the centre. If this is
equal, then the design obtained is called as Mixed Level Rotatable Design with
Neighbour Effects (MLRDNE) and if different, then partially rotatable. Simi-
larly, this can be extended for sn1

1 × sn2
2 .

The above discussions lead to the following theorem:
Theorem 1: A sn1

1 × sn2
2 mixed-level factorial arranged in reverse lexicographic

order along with the circular borders at each end will lead to MLRDNE under the
model defined in 2.2 with f(xu) as defined in 2.1, provided either s1 or s2 should
be an odd number. The proof of theorem 1 has been given in the subsequent
section with the help of examples.

3. Method of Constructing MLRDNE for sn1
1 × sn2

2

Consider n1 factors having s1 levels and n2 factors having s2 levels. The
n1+n2 columns of X corresponding to X1,X2, ...,Xn1 ,Xn1+1, ...,Xn1+n2 of ML-
RDNE in N = max(n1, n2)× sn1

1 × sn2
2 points are developed as follows:

X =
[
ON×n1 QN×n2

]

O =


o1 o2 · · · on1

on1 o1 · · · on1−1
...

...
. . .

...
o2 o3 · · · o1

 Q =


q1 q2 · · · qn2

qn2
q1 · · · qn2−1

...
...

. . .
...

q2 q3 · · · q1


oi and qj are the vectors of order N ′ × 1 (where, N ′ = sn1

1 × sn2
2 )

oi = 1sp1×s
n2
2

⊗ (column vector of s1 levels)⊗1
s
n1−i
1

; p = i−1, i = 1, 2, ..., n1(>

1)
qj = 1sn1

1 ×sq2
⊗(column vector of s2 levels)⊗1

s
n2−j
2

; q = j−1, j = 1, 2, ..., n2(>

1)
If n1 = 1, then O = [o1 o1]

′ and if n2 = 1, then Q = [q1 q1]
′

The other columns of X are generated as per the model and values of s1 and
s2.
D-efficiency of the design can be calculated using the formula,

|Z′Z|
1
p

N
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where, p is number of parameters considered in a model and N is total number
of runs[19].

Example 3.1: Let n1 = n2 = 2, s1 = 2 (levels: 1, -1) and s2 = 5 (levels:
2, 1, 0, -1, -2) i.e. 22× 52. The first four columns of X corresponding to X1, X2,
X3 and X4 and 2(22 × 52) = 200 points are as follows:

X =
[
O200×2 Q200×2

]
The other columns of X are generated as per model with 11 columns (1,X1,X2,X3,
X4,X

2
3,X

2
4,X

3
3,X

3
4,X

4
3,X

4
4). For α = 0.5,

Z′Z =



800 0′2 0′2 16001′2 0′2 54401′2
100I2 O2 O2 O2 O2

930I2 O2 2910I2 O2

A O2 B
10074I2 O2

C


where, A = 1470I2 + 3200J2, B = 6438I2 + 10880J2, C = 28686I2 + 36992J2; I2
is identity matrix order 2× 2, J2 is matrix of 1’s of order 2× 2, is column vector
of 1’s of order 2× 1 , is a column vector of 0’s of order 2× 1 and is matrix of 0’s
of order 2× 2.

(Z′Z)−1 =



0.02 0′2 0′2 −0.021′2 0′2 0.0041′2
0.01I2 O2 O2 O2 O2

0.011I2 O2 −0.003I2 O2

0.004I2 O2 −0.009I2
0.001I2 O2

0.002I2


The variance of estimated response, V (ŷ0) = 0.042σ2 for all points in X and so
design is rotatable.

The method discussed in Section 3 leads to the following proposition:
Proposition 1: As the V (ŷ0) is the same for all points in X which are equidis-
tant from the design centre for sn1

1 × sn2
2 mixed-level factorial constructed as per

the method given in 3, the design satisfies theorem 1 and hence rotatable.

For α= 0.5, the eigen values of (Z′Z)−1 are 0.06, 0.042, 0.012, 0.012, 0.01, 0.01, 0.003,
9.1×10−5, 9.1×10−5, 3.3×10−5, 9×10−6 and D-efficiency of this design is 2.979.
At α = 0.1, D-efficiency of this design is 1.958.

Remark 3.1: If s1 and s2 both are even, the design is partially rotatable.
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3.1. Particular Cases of sn1
1 × sn2

2

3.1.1. For n2 = 1, i.e. sn1
1 × s2

Consider n1 factors having s1 levels and one factor having s2 levels. The
n1 +1 columns of X corresponding to X1,X2, ...,Xn1 ,Xn1+1 of MLRDNE in
N = n1(s

n1
1 × s2) points are developed as follows:

X =
[
ON×n1 QN×1

]
Example 3.1.1: Let n1 = 2 with s1 = 3 (levels: 1, 0, -1) and s2= 4 (levels: 3,
1, -1, -3) i.e. 32 × 4. The first three columns of X corresponding to X1, X2 and
X3 with 2(32 × 4 ) = 72 points are as follows:

X =
[
O72×2 Q72×1

]
oi = 13p×4 ⊗ [1 0 − 1]′ ⊗ 132−i , p = i− 1, i = 1, 2.

q1 = 132 ⊗ [3 1 − 1 − 3]′

Q72×1 = [q1 q1]
′

The other columns of X are generated as per model with 8 columns (1,X1,X2,X3,
X2

1,X
2
2,X

2
3,X

3
3)

For α = 0.5,

Z′Z =



288 0′2 0 1921′2 1440 0
66I2 02 O2 02 02

1296 0′2 0 10512
A 96012 02

11424 0
92304


where A = 22I2 + 128J2.

(Z′Z)−1 =



0.05 0′2 0 −0.031′2 −0.001 0
0.002I2 02 O2 02 02

0.01 0′2 0 −0.001
0.04I2 02 02

0.002 0
0.0001
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Thus,

V (β̂0) = 0.05σ2, V (β̂1) = V (β̂2) = 0.02σ2

V (β̂3) = 0.01σ2, V (β̂11) = V (β̂22) = 0.04σ2

V (β̂33) = 0.0002σ2andV (β̂333) = 0.0001σ2

Cov(β̂0, β̂11) = Cov(β̂0, β̂22) = −0.03σ2, Cov(β̂0, β̂33) = −0.001σ2

The variance of estimated response,V (ŷ0) = 0.056σ2 for all points in X. Hence,
the design is rotatable.

The method discussed in Section 3.1.1 leads to the following proposition:
Proposition 2: As the V (ŷ0) is the same for all points in X which are equidis-
tant from the design centre for sn1

1 × s2 mixed-level factorial constructed as per
the method given in 3.1.1, the design satisfies theorem 1 and hence rotatable.

For α = 0.5, the eigen values of (Z′Z)−1 are 0.09, 0.04, 0.02, 0.02, 0.01, 0.005, 8.4×
10−5, 1× 10−5 and D-efficiency of this design is 3.663. For α = 0.1, D-efficiency
of this design is 1.94.

3.1.2. For n2 = 0 i.e., sn1
1

Consider n1 factors having s1 levels. The n1 columns of X corresponding
to X1,X2, ...,Xn1 of MLRDNE in N = n1s

n1
1 points are developed as follows:

X =
[
ON×n1

]
The other columns of X are generated as per the model and values of s1.

Example 3.1.2: Let n1= 4 with s1 = 3 (levels: 1, 0, -1) i.e. 34. The first
four columns of X corresponding to X1, X2, X3 and X4 and 4× 34 = 324 points
are as follows:

X =
[
O324×4

]
The other columns of X are generated as per the model with nine columns
(1,X1,X2,X3,X4,X

2
1,X

2
2,X

2
3,X

2
4). For α= 0.3,

Z′Z =

8.294 0′4 552.961′4
380.341′4 O4

B


where, B = 368.64J4+126.78I4, I4 is identity matrix order 4× 4, J4 is matrix of
1’s of order 4× 4, 14 is column vector of 1’s of order 4× 1, 04 is a column vector
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of 0’s of order 4× 1 and O4 is matrix of 0’s of order 4× 4.

(Z′Z)−1 =

0.015 0′4 −0.0051′4
0.0031′4 O4

0.008I4


The variance of estimated response,V (ŷ0) = 0.0152σ2 for all points in X. Hence,
the design is rotatable.

The method discussed in Section 3.1.2 leads to the following proposition:
Proposition 3: As the V (ŷ0) is the same for all points in X which are equidis-
tant from the design centre for sn1

1 mixed-level factorial constructed as per the
method given in 3.1.2, the design satisfies theorem 1 and hence rotatable.

When α = 0.3, the eigen values of (Z′Z)−1 are 0.02, 0.008, 0.008, 0.008, 0.003,
0.003,0.003, 0.003, 0.0004 and D-efficiency for this design is 0.785. If α = 0.8,
then D-efficiency of this design is 1.831.

4. sn1
1 × s2 MLRDNE in Smaller Runs

The MLRDNE for sn1
1 × s2 in a smaller number of runs can be obtained by

taking n1 + 1 columns of X corresponding to X1,X2, ...,Xn1+1 in N = sn1
1 × s2

points are as follows:

X =
[
CN×n1 d

]
where, d = (column vector of s2 levels)⊗1sn1

1

CN×n1 =
[
c1 c2 · · · cn1

]
ci =1

sj1×s2
⊗ (column vector of s1 levels)⊗1

s
n1−i
1

where, i = 1, ..., n1 and j =

i− 1. Each vector ci is of order N × 1. The other columns of X are generated as
per the model and values of s1 and s2.

Example 4.1: For n1 = 2 with s1 = 3 (levels: 1, 0, -1) and s2 = 4 (levels:
3, 1, -1, -3) i.e. 32 × 4, the first three columns of X corresponding to X1,X2 and
X3 and 32 × 4 = 36 points are as follows:

X =
[
C36×2 d

]
where, d = [3 1 − 1 − 3]′ ⊗ 19
ci =13j×4⊗ [1 0 − 1]′ ⊗132−i
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The other columns of X are generated as per the model with eight columns
(1,X1,X2,X3,X

2
1,X

2
2,X

2
3,X

3
3) and for α = 0.7,

Z′Z =



207.36 0 0 0 138.24 138.24 103.68 0
81.12 0 0 0 0 0 0

2.16 0 0 0 0 0
922.56 0 0 0 7473.6

119.2 92.16 691.2 0
92.88 691.2 0

8197.12 0
65519.04



(Z′Z)−1 =



0.64 0 0 0 −0.025 −0.93 −0.002 0
0.01 0 0 0 0 0 0

0.46 0 0 0 0 0
0.014 0 0 0 −0.002

0.04 0 0 0
1.39 0 0

0.0003 0
0.0002


Variance of the estimated response, V (ŷ0) = 0.655σ2 for all points in X and thus
the design is rotatable. However, it can be seen that the variances of a particular
order of estimates are not same unlike Example 3.1.1.
For α = 0.7, the eigen values of (Z′Z)−1 are 2.015, 0.463, 0.051, 0.014, 0.012,
0.007, 0.0001, 0.00001 and this design having the D-efficiency 2.77. When α =
0.2, D-efficiency of this design is 2.192.

A list of MLRDNE is given in Appendix 2 containing n1, n2, s1, s2 and the vari-
ance of estimated response at α = 0, 0.3, 0.5, 0.7 and 0.9. It is seen that in the
presence of the neighbour effect and when the value of α increases, the variance
of estimated response is in decreasing order.

5. R package for the Generation of MLRDNE

An R package named rsdNE has been developed for the generation of ML-
RDNE. It also computes the variance of parameter estimates and variance of the
predicted response. The package is made available at https://cran.r-project.
org/package=rsdNE. This package includes sym(), asym1(), asym2() functions
that generates response surface designs which are rotatable under a polynomial
model of a given order without interaction term incorporating neighbour effects.
A few Snapshots of the package has been given in the Appendix 1.

https://cran.r-project.org/package=rsdNE
https://cran.r-project.org/package=rsdNE
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6. Discussion

This article attempts to provide a series of rotatable response surface de-
signs when immediate (left and right at distance 1) neighbour effects are suspected
in an experiment. A general procedure for the construction of Mixed Level Ro-
tatable Design with Neighbour Effects (MLRDNE) of the form sn1

1 ×sn2
2 is given.

For these designs it is seen that as the value of α increases the variance of the
estimated response decreases and on the other hand, D-efficiency increases. The
R package rsdNE develoved would help the experimenter to generate MLRDNE
design along with the variance of the parameter estimates as well as the variance
of predicted response.
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Appendix 1

Figure 1: 2 factors having 2 and 3 levels i.e. 2× 3 when α = 0.5

Figure 2: X matrix for 32 × 42 MLRDNE
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Figure 3: Z′Z matrix for 32 × 42 MLRDNE

Figure 4: Z′Z)−1 matrix, N and V (ŷ0) for 3
2 × 42 MLRDNE
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Appendix 2

Table 3.1: MLRDNE

V (ŷ0)

n1 n2 s1 s2 α = 0 α = 0.3 α = 0.5 α = 0.7 α = 0.9

2 0 4 - 0.2188 0.1555 0.1166 0.0856 0.0638

2 0 5 - 0.1800 0.1212 0.0894 0.0653 0.0484

2 0 6 - 0.1528 0.0994 0.0723 0.0525 0.0390

2 1 2 4 0.2083 0.1663 0.1645 0.1361 0.0975

2 1 2 5 0.1750 0.1448 0.1395 0.1145 0.0822

2 1 2 6 0.1667 0.1304 0.1229 0.1002 0.0720

2 1 3 4 0.1111 0.0723 0.0556 0.0427 0.0330

2 1 3 5 0.1000 0.0625 0.0475 0.0363 0.0280

2 1 3 6 0.0926 0.0560 0.0422 0.0320 0.0246

2 1 4 2 0.1250 0.0844 0.0626 0.0458 0.0341

2 1 4 3 0.0937 0.0605 0.0445 0.0325 0.0241

2 1 4 5 0.0688 0.0414 0.0300 0.0218 0.0162

2 1 4 6 0.0625 0.0366 0.0263 0.0191 0.0142

2 1 5 2 0.1000 0.0647 0.0474 0.0345 0.0256

2 1 5 3 0.0733 0.0458 0.0333 0.0242 0.0179

2 1 5 4 0.0600 0.0364 0.0263 0.0190 0.0141

2 1 5 6 0.0467 0.0269 0.0192 0.0139 0.0103

2 1 6 2 0.0833 0.0525 0.0379 0.0275 0.0205

2 1 6 3 0.0602 0.0369 0.0265 0.0192 0.0142

2 1 6 4 0.0486 0.0290 0.0207 0.0150 0.0111

2 1 6 5 0.0417 0.0243 0.0173 0.0125 00093

2 2 2 5 0.0550 0.0476 0.0424 0.0336 0.0243

2 2 3 4 0.0382 0.0295 0.0231 0.0175 0.0134

2 2 3 5 0.0289 0.0213 0.0164 0.0124 0.0094

2 2 4 5 0.0188 0.0133 0.0099 0.0073 0.0054

2 2 5 6 0.0106 0.0071 0.0052 0.0038 0.0028
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