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Abstract:

e This paper describes the response surface methodology for mixed-level factors of the

N2

form s7* x s32 when experimental units experiences overlap effects from the adjacent
neighbouring units. Conditions have been derived for the near orthogonal estimation
of the parameters of the model and ensuring the constancy in the prediction variance.
A method of construction of designs satisfying derived conditions has been developed.
Some particular cases of s|* X s3? has also described. An R package named rsdNE
has also been developed for the generation of these designs.
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1. INTRODUCTION

The response surface methodology (RSM) is a widely used statistical method
for modelling and analyzing a process in which the response of interest is affected
by various input variables, and the objective of this method is to optimize the re-
sponse [3]. The main idea of RSM is to use a sequence of designed experiments to
obtain an optimal response. If x1,x2, ..., z, are v independent variables, y is the
response variable, and N is the total number of observations, then the response
function can be approximated in some region of the polynomial model given by

Yu = f(fElua T2us ~-~>$vu) + ey,

where u = 1,2,...,N, y, is the response from u!* treatment combination and x;,
is the level of the " (i = 1,2,...,v) factor in the u* combination. The function
f(.) describes the form in which the response and the input variables are related.
ey, is the random error associated with the uth observation that is independently
and normally distributed as e, ~ N(0,0?). For details on RSM, one can refer to
[4], [8], [10], [11].

In RSM, it is mainly assumed that the observations are independent and
that neighbouring units have no effect. But in agricultural field trials, the neigh-
bouring effect or overlap effect is very prominent ([1], [2], [5], [6], [12]). For
example, if a chemical treatment is sprayed on one plot, wind drift may allow
the spray to spread to adjacent/neighbouring plots, or preceding soil preparation
may allow sterilized soil from one plot to mingle with non-sterile soil from the
next plot. As a result, it is vital to assume that the response received from a
given plot is influenced not only by the treatment combinations used on that plot
but also by the treatment combinations used on the plots next to it. So, it gives
a great scope to take into account the neighbouring effects in RSM. Because of
these neighbouring effects, the variation of treatment differences arises. If the
neighbour effect is present and is included in the model, there is a considerable
reduction in the residual sum of squares, and the response is predicted with more
precision [7]. Over the years, work on different aspects of RSM with neighbour
effects from immediate adjacent neighbours has been done for factors with same
levels ([13], [14], [15], [16], [17], [18]). The response surface model with neighbour
effects up to distance 2 has also available in the literature [9]. Some attempts
were also made to develop asymmetrical response surface designs of the form
2" x 3 and 2" x 3" in the presence of neighbour effects [19].

Here, a general methodology for constructing response surface designs of
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the form s]* x sy? has been developed, incorporating neighbour effects and an
R package named rsdNE has also been developed for the generation of these
designs.

2. Response Surface Model with Neighbour Effects

Consider a response surface with nq factors at s1 levels each and ng factors
at so levels each resulting in s} x s5? combinations. The form f(x,,) of considered
here is as follows:

ni1+ng n1+n2

= Bo+ Z Bix; + Z Bix; + Z ﬂuxz + Z ﬁuxz + ..+

i=ni1+1 i=ni1+1

n1 n1+n2

(2.1) Zﬁii‘.iﬁﬂisl_l*’ Z Bii..iwi*™ !

=1 i=ni+1

where [y, 8;’s [associated with linear terms of n +nq factors], 5;; [associated with
quadratic term of nq +mns factors| and 3. ; [associated with (s; — 1) order term of
ngh factor] are parameters to be estimated. Thus, the total number of parameters
to be estimated in above model is p = ni(s; — 1) + na(s2 — 1) + 1. The response
model incorporating the effects from immediate left and right neighbouring units
is defined as follows:

N
(22) Yu' :Zguu’f(xu)_'_eu’vu/: 1,2,...,]\7
u=1

where,

Guw = 1,if u=1'
= a,|al < 1,if [u —u'| =1 i.e. units are physically adjacent

= 0, otherwise

Here, a represents the neighbour effect from left and right neighbouring units
and ranges from 0 to 1([6], [13]). f(zy) is as given in 2.1.

It is to be mentioned that the design layout of the experiment for estimating
this model will consist of two extra units as border units at each end. Observations
are not taken from border units and thus are not modelled.

Model 2.2 can be rewritten as

(2.3) Y = GXY +e,

where G=gy, is the N x (N +2) symmetric neighbour matrix, X is a (N +2) x
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matrix of N points (runs) with two extra border units (treatment combinations
applied on these units are the treatment combinations from the N points), p is
the number of parameters, 8 is a p X 1 vector of parameters to be estimated and
e is N x 1 vector of errors which follows N(0, o2 I)

The ordinary least squares estimate of 3, in the presence of neighbour

effects with known G is
B=(Z7)'Z'Y

where, Z=BX and D(8) = 02(Z'Z)!

2.1. Response Surface Methodology for 3% x 42 with Neighbour Effects

Consider n1 = ny = 2,81 = 3,89 = 4 i.e. 2 factors at levels two and 2
factors at levels four. The form of f(x,) is as follows:

f(@y) = Bo + Brx1 + Bowa + B33 + Baxs + fr177 + Posas+

(2.4) B335 + Baay + B335 + Baaaw]
The matrix X in 2.3 is here as follows of order (N + 2) x 11 with two border
units:

X(N+2)><11: 1 X7 Xo .. XZ Xg Xi

where, Xf = [x?l fo xi-’N]/;X% =X;,t=1,23,4and b = 1, 2, 3; and
1y = [1 1 .. 1]/ The structure of G matrix is

alaO 0 O 00

Oala 0 O 00

0 0al a O 00

Grrnsz = [000a 1 a 00

0000+ o 1 aO

0000 0 1 al

Further, Z = GX =
r11 + a(r1y + 212) e 23y + a(x3y + 23,) x3) + ozl + 15,)
r12 + a(r11 + 713) e 23y + a(x3) + x33) T3y + oz} + xl3)
713 + o212 + T14) 235 + a(x3y + x34) why + ozl + xy)
' B P 2 3 3 3
TyN—1) T (TN + Ty (N—2)) Tyn_py T afzgy + xg(N_z)) Ty T a(zyy + x4(N—2))

wiy +alen o) o @iy Faled + x%(Nq)) e aiy talzh + xi(}\pﬂ)
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where, 6/ =1 + 2a.

Nel ‘91 Zu 1 L1u T 61 Zu 1 xgu 91 Zu 1 xiu
02 Zuzl z3, + A - Oy Zu:l T1ut, + D1 02 Zu:l T1uty, + Do

02 21]:[:1 xgu +G1 Oy Z =1 $3u‘r4u + G2
I O3 1 75, +Gs |

where, 01 = (1 + 2a)? and 63 = (1 + 2a?)

N N
A = 20 Z Liulij(u4-2)mod(N) + 4o Z LiuTi(u4-1)mod(N)

u=1 u=1

2
B; =2« Z $zuxz (u+2)mod(N) +4a Z Liui U+1)m0d(N)

u=1 u=1

N
5.2 3.3 E :
Gg =2« E LiuTi(u+2)mod(N + da LiuTi( u+1 mod(N)
u=1

N N N
= a2(2 wiuxj(u+2)mod(N)+Z Ti(ut2)mod(N) Tju) +200 (Z mwwj(uﬂ)mod(zvfrz Tiu® j(u—1)mod(N))
= u=1 u=1 u=1
N N N N
2 2 2 2 2
Cy=a (Z ﬂfiuivj(u+2)mod(N)+Z $i(u+2)mod(N)93ju)+2a(Z $iu$j(u+1)mod(1v)+z ffiul‘j(u—mmod(zv))
u=1 u=1 u=1 u=1
N
2 2 .2 2,2
F =2a Z LiuT j(u42)mod(N) + 4o Z LiuT j(ut1)mod(N)
u=1 u=1
N
2
E,, = szu g (u+2 mod(N)+Z xi(u+2)mod ju +2a szu j (u+1)mod(N +Z Liy L ] u—1 mod(N))
u=1

N
D = 0®(), in o 2ymod(3)+ D it Dmod(N)Z3u) 20D Tiut 1) mod()F D i 1)mod())
= u=1

u=1 u=1
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where, 1 =1,2,3,4;5j=1,2,3,4;1 # j
1,2.

and k£=1,2,3,4,5,6m=1,2,...8;¢g

The following conditions are required for near orthogonal estimation of
parameters:

N 4
a. ZHx?izoforwi:O,l,Q,i% or

U

4 and Zw¢<6

u=1i=1
N
u=1
N
c. fou =, where i=1,2,3and4
u=1

N
>,
u=1

N
€. Z :L‘?u
u=1

Therefore, Z’'Z matrix can now be written as follows:

N
A1 and wa’uxg’u =Xy where, i#j
u=1

=B [ =3,4.

where,

0 0 0 6161 0162 0163 0164
0 0 0 0 0 0 0
0209 + As 0 0 0 0 0 0
0203 + Az 0 0 0 0 0
0964 + Ay 0 0 0 0
O2v1 + By 021 + Fy O2A1 + Fo 4 021 + F3 0
O2v2 + Ba Oo X1 + Fy Oa 1 + F5
0oy3 + B3 Oo A1 + Fps
0274 + By

-1

and it’s inverse, (Z’'Z)” matrix can now be written as follows:

_NLGI + 911 0 0 0 0 —fi1 —fi2 —fiz  —fua 0 0
1
ez 0 0 0 0 0 0 0 o0
. 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0
i 0 00 0 0 0
EY E2 EB _C0K;p 000
E?2 E2 —C11K19 0 0
B33 —C11 K13 0 0
—Cq1 0 0
Caa —C3
L C33_

OO O OO

[an}

0
0
0283 + G1 022 + G2
0282 + G |

(s B e B en i en e Mo oo e
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where,
g11 = f110101 + f120102 + f130103 + f146104
fi1 = EM60161 + E0,65 + E0,635 — C11K116104
fi2 = E¥260,61 + E?20,65 + E320,03 — C11K 126164
fi3 = E¥0161 + E?0,65 + E330,03 — C11K 136164
fia = —C11K110161 — C11K120102 — C11K1360103 — C110104
Ey1 = 096, + B 0161
11 = 6201 1= N
01090
Eiy = 02X + F1 — 1]\27 L= Ep
01030
Ei3 = 0xM1 + Fy — 1]\?; L= By
526
Eoy = 03772 + By — 3\,1
02030
Eo3 = O\ + Fy — 2]\?; L= By
526
Es3 = 0203 + Bs — 3\[1
Es5 = 0283 + Gy
Esg = 020 + Go
Egg = 0232 + G3
By —(E1uKi1 + EouKio + E34K3) 0 0 En Eio Eis
E = Es5 Ese | Ky = Esy Ea3
Ege Es3
O = (Es5E66 — FesEse)
1=
| B
Ca2 = EgsV
C33 = E55V
Ca3 = Eg5V
_ (Ex1(ExnEs3 — E33) + Ego(E13E33 — Er2E3) + EssM(E3))
K1 =
| K |
Ky = (Esn M (Er3) + Ego M (E22) + Eq3M(Es2))
| Ky |
Kis = (Ey1 M (Eh3) + EsoM (Ea3) + Eqz M (Es3))
| Ky |
where, V = [E44*(E14K11+|§21TK12+E34K13)D and M(Ezg) = minor of Ej;

The expressions of the variance and covariance terms of the estimates are given
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below

. 1 .
Var(Bo) = No, + 911 Var(pi) = B!
VaT(BA ) ! VaT(BA ) = E?*?
YT 0500 + Ay >
. 1 .
— E33
Var(p2) 60s 1 s Var(fss)
. 1 .
Var(5s) 6o5s T A Var(By) = —Chi
. 1 .
Var(Bs) 6o61 1 A Var(fs33) = Cao
Var(Bass) = C3
Cov(fo, b11) = — fi1 Cov(Baz, Ba33) = —C K13
Cov(fo, Paz) = —fr2 Cov(fBa3, fua) = E®
Cov(fo, B33) = — f13 Cov(Ba3, B333) = —C11 K12
Cov(Bo, Baa) = — fia Cov(Baa, B333) = —C11 K13
Cov(Bag, fB33) = E*? Cov(Baa, Baas) = —Caa

000(3227844) =B
EY = (Fy1E33 — F3y) + CnuK?,  EY™= M(Ey)+ 011 K11 K19 = E*!

E = M(Elg) + C11 K11 K13 = E3! E? = M(EQQ) + 011K122
E* = M(Bs3) + C1iKiy E? = M(Eg3) + C11 K12K13 = E*

The estimated response at any point xg is given below

4 4 4
Yo = Po + Z Bixio + Z Bixip + Z Biiitiy
i=1 i=1 i=3

with the variance of estimated response as

Vo + $%0‘/i + fE%QVé + 1’52;0‘/3 + l’i()VAL + Vvlliféll() + VQQI%O + VBS$§0 + ‘/445610 + V333€E§0
V(o) = 02 | +Vaaaz8, + 2Co 1122 + 2C 9902 + 200 3322, + 2C0 4412, + 2C 2 2+ 920! 2 12
(Jo) = 07 | +Vaaawyy + 2Co, 1127 + 2Co,2275) + 2C0,3375) + 2C0,4477 + 2C22, 3375075 + 2C22,4475,T7

2 4 4 1 4 1
+2C2 33375025 + 2033, 4473050 + 2C33 333730 + 2Cua 3337525 + 2Ca4 4422}

where, V; = V(Bi), Vij = V(Bij) and so on. Similarly, C;; = Cov(Bi,Bi),C’i,jk =
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C’ov(&, ng) and so on.

It can be seen that the variance of the estimated response at any point xq de-
pends on the distance of that point from the design centre. The design obtained
for fitting this model with mixed levels of factors will be called here as Mixed
Level Response Surface Design with Neighbour Effects. From this one can check,
at any point xg, the variance of the estimated response from the centre. If this is
equal, then the design obtained is called as Mixed Level Rotatable Design with
Neighbour Effects (MLRDNE) and if different, then partially rotatable. Simi-
larly, this can be extended for s]' x s5?.

The above discussions lead to the following theorem:
Theorem 1: A s' x s5? mixed-level factorial arranged in reverse lexicographic
order along with the circular borders at each end will lead to MLRDNE under the
model defined in 2.2 with f(z,) as defined in 2.1, provided either s; or sy should
be an odd number. The proof of theorem 1 has been given in the subsequent

section with the help of examples.

3. Method of Constructing MLRDNE for si* x s52

Consider n; factors having s; levels and no factors having so levels. The
n1 +ng columns of X corresponding to X1, X, ..., Xy, Xpy41 eees Xng+ny 0f ML-
RDNE in N = maz(ni,na) x s7* X sy? points are developed as follows:

X = [Oanl Qang]

O] 02 -+ Op q1 942 " Ay,

Op; O1 -+ Opy—1 qng q - qngfl
o=|. . . Q= . . :

02 03 --- 01 q2 43 -+ d;

o; and q; are the vectors of order N’ x 1 (where, N' = s} x 55?)

0; = 15{Xs§2 ® (column vector of s; levels) ®15?1_¢;p =i—1,i=1,2,...,n1(>
1)

q; = 15?1X83®(001umn vector of  s9 levels)®1s§2_j;q =j—1,7=1,2,....n2(>
1)

If ny =1, then O =[01 o01] and if ng =1, then Q = [q1  q1]

The other columns of X are generated as per the model and values of s; and
59.
D-efficiency of the design can be calculated using the formula,

VAR
N
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where, p is number of parameters considered in a model and N is total number
of runs[19].

Example 3.1: Let ny = ng = 2,51 = 2 (levels: 1, -1) and s2 = 5 (levels:
2,1,0,-1, -2) i.e. 22 x 52. The first four columns of X corresponding to X1, Xa,
X3 and X4 and 2(22 x 52) = 200 points are as follows:

X = [O200x2 Qapox2)

The other columns of X are generated as per model with 11 columns (1, X1, Xg, X3,
Xy, X2,X2, X3, X3, X3 X3). For a = 0.5,

800 0, 0, 16001, 0, 54401}]
10012 02 02 02 02
930, O 2910I, O

/ —
27 = A (02} B
10074I; O
C

where, A = 14701 + 3200J2, B = 64381 + 10880J5, C = 2868615 + 36992J5; I
is identity matrix order 2 x 2, Jo is matrix of 1’s of order 2 x 2, is column vector
of 1’s of order 2 x 1, is a column vector of 0’s of order 2 x 1 and is matrix of 0’s
of order 2 x 2.

[0.02 0, 0, —0021, 0,  0.0041},
00112 02 02 02 02
0.0111y 0O, —0.003I, (02

Ip\—1 __
(Z'Z2)" = 0.004I, Oy  —0.0091,
0.0011I, (O2)
0.002I, |

The variance of estimated response, V (fjp) = 0.04202 for all points in X and so
design is rotatable.

The method discussed in Section 3 leads to the following proposition:
Proposition 1: As the V() is the same for all points in X which are equidis-
tant from the design centre for sj* x s;? mixed-level factorial constructed as per

the method given in 3, the design satisfies theorem 1 and hence rotatable.

For o = 0.5, the eigen values of (Z'Z)~! are 0.06, 0.042,0.012, 0.012,0.01,0.01, 0.003,
9.1x107°,9.1x107°,3.3x107°, 9 x 1075 and D-efficiency of this design is 2.979.
At a = 0.1, D-efficiency of this design is 1.958.

Remark 3.1: If s; and so both are even, the design is partially rotatable.
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3.1. Particular Cases of s]* X s5?

3.1.1. For ng = 1, i.e. s]* X s9

Consider n; factors having s; levels and one factor having so levels. The
n1 +1 columns of X corresponding to Xi,Xa, ..., Xy,, Xp,+1 of MLRDNE in
N =ny(s]" x s2) points are developed as follows:

X = [ONXM QNXI]

Example 3.1.1: Let ny = 2 with s; = 3 (levels: 1, 0, -1) and so= 4 (levels: 3,
1, -1, -3) i.e. 32 x 4. The first three columns of X corresponding to Xy, Xz and
X3 with 2(3% x 4 ) = 72 points are as follows:

X = [O72x2 Qrax1)

0 =13p54®[1 0 —1)®@1pi,p=1i—1,i=1,2.
Q=133 1 -1 —3]/

Qrox1 =41 aqif

The other columns of X are generated as per model with 8 columns (1, X1, Xg, X3,
X1, X3, X3, X3)
For a = 0.5,

288 0 0 1921, 1440 0
6612 02 02 02 02
1296 0 0 10512

/ —_
27 = A 96015 09
11424 0
92304 |

where A = 2215 + 128J5.

[0.05 0 0 -0.031, —0.001 0
0.002I, 02 0 02 02
0.01 0 0 —0.001
/ -1 _ 2
(ZzZ)" = 0.04I5 02 02
0.002 0
L 0.0001 |
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Thus,

V(Bo) = 0.050%,V(B1) = V(Bs) = 0.0202
V(Bs3) = 0.016%, V(B11) = V(Ba2) = 0.040°
V(Bs3) = 0.000202andV (Bs33) = 0.000152
Cov(Bo, f11) = Cov(By, Ba2) = —0.0362, Cov(fo, B33) = —0.00102

The variance of estimated response,V (§g) = 0.05602 for all points in X. Hence,
the design is rotatable.

The method discussed in Section 3.1.1 leads to the following proposition:
Proposition 2: As the V(gg) is the same for all points in X which are equidis-
tant from the design centre for s|! x so mixed-level factorial constructed as per
the method given in 3.1.1, the design satisfies theorem 1 and hence rotatable.

For a = 0.5, the eigen values of (Z'Z)~! are 0.09,0.04,0.02,0.02,0.01,0.005, 8.4 x
107°, 1 x 10~ and D-efficiency of this design is 3.663. For o = 0.1, D-efficiency
of this design is 1.94.

3.1.2. For ng =0 i.e, si*

Consider ny factors having s; levels. The n; columns of X corresponding
to X1, Xa, ..., Xy, of MLRDNE in N = n;s]* points are developed as follows:

X - [ONan]

The other columns of X are generated as per the model and values of s;.

Example 3.1.2: Let nj= 4 with s; = 3 (levels: 1, 0, -1) d.e. 3% The first
four columns of X corresponding to X1, X, X3 and X4 and 4 x 3% = 324 points
are as follows:

X = [O324x4]

The other columns of X are generated as per the model with nine columns
(1,X1, X2, X3, Xy, X2, X3, X2 X2?). For a= 0.3,

8294 0,  552.961)
7'7 = 380.341, Oy
B

where, B = 368.64J4 + 126.7814, 1, is identity matrix order 4 x 4, J4 is matrix of
1’s of order 4 x 4, 14 is column vector of 1’s of order 4 x 1, 04 is a column vector
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of 0’s of order 4 x 1 and O, is matrix of 0’s of order 4 x 4.

0.015 0, —0.0051
(Z2'2)7' = 0.0031, Oy
0.00814

The variance of estimated response,V (fjo) = 0.015202 for all points in X. Hence,
the design is rotatable.

The method discussed in Section 3.1.2 leads to the following proposition:
Proposition 3: As the V(o) is the same for all points in X which are equidis-
tant from the design centre for s|' mixed-level factorial constructed as per the
method given in 3.1.2, the design satisfies theorem 1 and hence rotatable.

When a = 0.3, the eigen values of (Z'Z)~! are 0.02, 0.008, 0.008, 0.008, 0.003,
0.003,0.003, 0.003, 0.0004 and D-efficiency for this design is 0.785. If @ = 0.8,
then D-efficiency of this design is 1.831.

4. si' x s MLRDNE in Smaller Runs

The MLRDNE for s} X s5 in a smaller number of runs can be obtained by
taking nj + 1 columns of X corresponding to X1, Xa, ..., Xy, 41 in N = s?l X 89
points are as follows:

X = [Cnxn, d]

where, d = (column vector of sy levels)®1 K

Chxni = [€1 €2 -+ €]
Ci ZIS{XSQ
i — 1. Fach vector c; is of order N x 1. The other columns of X are generated as
per the model and values of s; and ss.

® (column vector of s levels)@lsnlfi where, i = 1,...,n; and j =
1

Example 4.1: For n; = 2 with s; = 3 (levels: 1, 0, -1) and sy = 4 (levels:
3,1,-1,-3) d.e. 32 x 4, the first three columns of X corresponding to Xy, X5 and
X3 and 32 x 4 = 36 points are as follows:

X = [Cspx2 d]

where,d=[3 1 -1 —=3]'®1y
¢, =13, [1 0 —1) @15



14 Dalal et al.

The other columns of X are generated as per the model with eight columns
(1,X1, X2, X3, X2,X3,X3,X3) and for o = 0.7,

20736 0 0 0 138.24 138.24 103.68 0
8112 0 0 0 0 0 0
216 0 0 0 0 0

— 922.56 0 0 0 74736
119.2 92.16 691.2 0
92.88  691.2 0
8197.12 0

I 65519.04
064 0 0 0 —0.025 —0.93 —0.002 0
001 0 0 0 0 0 0
0.46 0 0 0 0 0

o1 0014 0 0 0 —0.002
(22)"" = 004 0 0 0
139 0 0
0.0003 0

I 0.0002 |

Variance of the estimated response, V (fjp) = 0.65502 for all points in X and thus
the design is rotatable. However, it can be seen that the variances of a particular
order of estimates are not same unlike Example 3.1.1.

For o = 0.7, the eigen values of (Z'Z)~! are 2.015, 0.463, 0.051, 0.014, 0.012,
0.007, 0.0001, 0.00001 and this design having the D-efficiency 2.77. When o =
0.2, D-efficiency of this design is 2.192.

A list of MLRDNE is given in Appendix 2 containing ni,ns, s1, So and the vari-
ance of estimated response at « = 0, 0.3, 0.5, 0.7 and 0.9. It is seen that in the
presence of the neighbour effect and when the value of « increases, the variance
of estimated response is in decreasing order.

5. R package for the Generation of MLRDNE

An R package named rsdNE has been developed for the generation of ML-
RDNE. It also computes the variance of parameter estimates and variance of the
predicted response. The package is made available at https://cran.r-project.
org/package=rsdNE. This package includes sym(), asym1(), asym2() functions
that generates response surface designs which are rotatable under a polynomial
model of a given order without interaction term incorporating neighbour effects.
A few Snapshots of the package has been given in the Appendix 1.


https://cran.r-project.org/package=rsdNE
https://cran.r-project.org/package=rsdNE
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6. Discussion

This article attempts to provide a series of rotatable response surface de-
signs when immediate (left and right at distance 1) neighbour effects are suspected
in an experiment. A general procedure for the construction of Mixed Level Ro-
tatable Design with Neighbour Effects (MLRDNE) of the form s} x sj? is given.
For these designs it is seen that as the value of « increases the variance of the
estimated response decreases and on the other hand, D-efficiency increases. The
R package rsdNE develoved would help the experimenter to generate MLRDNE
design along with the variance of the parameter estimates as well as the variance
of predicted response.

ACKNOWLEDGMENTS

We are grateful to the editor and anonymous reviewers for the constructive
comments that have led to considerable improvement in the article. We also ac-
knowledge the facilities provided by ICAR-IASRI, New Delhi, P.G. School, IARI,
New Delhi, ICAR-CMFRI, Kochi for conducting the research. Financial assis-
tance received in the form of Junior Research Fellowship (AD) and Lal Bahadur
Shashtri Young Scientist Award Project (EV) from Indian Council of Agricultural
Research, Govt. of India is also duly acknowledged.

REFERENCES

[1]  BARTLETT, M.S. (1938). The approximate recovery of information from repli-
cated field experiments with large blocks, Journal of Agricultural Science, 28,
418-427.

[2] BARTLETT, M.S. (1978). Nearest Neighbour Models in the Analysis of Field
Experiments, Journal of the Royal Statistical Society: Series B, 40(2), 147-158.

8] Box, G.E. AND WiLsoN, K.B. (1951). On the experimental attainment of opti-
mum conditions, Journal of the Royal Statistical Society: Series B (Methodolog-
ical), 13(1), 1-38.

[4] Box, G.E. AND DRAPER, N.R. (1987). Empirical model-building and response
surfaces, New York, Wiley.

[5) DaraL, A., Jacal, S., VARGHESE, E., BHOWMIK, A., VARGH-
ESE, C. AND DarTa, A. (2022). NBBDesigns and rsdNE: R packages
for the generation of designs and analysis of data incorporating neigh-
bour effects. Paper presented in the useR virtual conference, VUMC,



16

[12]

[13]

[16]

[17]

[18]

[19]

Dalal et al.

Nashville, 23" June, 2022. https://user2022.r-project.org/program/
talks/#session-37-unique-applications-and-methods.

DRAPER, N.R. AND GuUTTMAN, I. (1980). Incorporating overlap effects from
neighbouring units into response surface models, Applied Statistics, 29(2), 128—
134.

JAGGI, S., SARIKA AND SHARMA, V.K. (2010). Response surface analysis in-
corporating neighbour effects from adjacent units, Indian Journal of Agricultural
Sciences, 80(8), 719-723.

KHURI, A.I. AND CORNELL, J.A. (1996). Response surface designs and analyses,
Mercel Dekker, New York.

KumMmAR, J., JAGGI, S., VARGHESE, E., BHOWMIK, A. AND VARGHESE, C.
(2020). First order rotatable designs incorporating differential neighbour effects
from experimental units up to distance 2, Metrika, 83, 923-935.

MvYERS, R.H. (1995). Response surface methodology: Process and product opti-
mization using designed experiments, John Wiley and Sons, New York.

MyERs, R.H., MONTGOMERY, D.C. AND ANDERSSON-COOK, C.M. (2009).
Response surface methodology-process and product optimization using designed
experiments, New York, John Wiley Publication.

PAPADAKIS J.S. (1937). Mithode statistique pour des expiriences sur champ, Bul-

letin Scientifique, Institut d’Amelioration des Plantes a Thessaloniki, (Greece)
23, 12-28.

SARIKA, JAGGI, S. AND SHARMA, V.K. (2009). Second-order response surface
model with neighbour effects, Communications in Statistics- Theory and Methods,
38(9), 1393-1403.

SARIKA, JAGGI, S. AND SHARMA, V.K. (2013). First order rotatable designs
incorporating neighbour effects, ArsCombinatoria, 112, 145-159.

VARGHESE, E., JAcal, S. AND SARIKA (2013). Response surface model with
neighbour effects and correlated observations, Model Assisted Statistics and Ap-
plications, 8(1), 41-49.

VARGHESE, E.,; JAGGI, S. AND SHARMA, V.K. (2016). Rotatable response sur-
face designs in the presence of differential neighbour effects from adjoining exper-
imental units, Calcutta Statist. Association Bulletin, 67(3-4), 163-186.

VARGHESE, E., BHOWMIK, A., JAGGI, S., VARGHESE, C. AND LALL, S. (2019).
On the construction of response surface designs with minimum level changes,
Utilitas Mathematica, 110, 293-303.

VARGHESE, E., KUMAR, J., JAGGI, S., VARGHESE, C. AND BHOWMIK, A.
(2020). A note on constructing small rotatable designs under first order response
surface interference model, Utilitas Mathematica, 115, 171-180.

VERMA A., JAGGI S., VARGHESE, E., VARGHESE, C., BHOWMIK, A.,
DatTA, A. AND HEMAVATHI M. (2021). On the construction of mixed level
rotatable response surface designs when experimental unit experiences over-
lap effects, Communication in Statistics — Simulation and Computation, DOI:
10.1080/03610918.2021.1890123.


https://user2022.r-project.org/program/talks/#session-37-unique-applications-and-methods
https://user2022.r-project.org/program/talks/#session-37-unique-applications-and-methods

MLRDNE

Appendix 1

X matrix"
[.1]1 [.2]1 [.3] [.4]
1 e -1
1 1
1 0
1 -1
-1 1
e 0
-1 -1
1 1 1
"Z_prime_zZ matrix”
[.11 [.2] [,3] [.4]
[1.] 24 0 0 16
[2.] 0 12 0 0
[3.] ] 0 1 0
[4.] 16 0 0 11
[1] ™inv(Z_prime_z)} matrix”
[.1] [.2] [.31 [.4]
[1.] 1.375 0.00000000 0 -2
[2,] 0.000 0.08333333 (] 0
[3,] 0.000 0.00000000 1
[4,] -2.000 O.00000000 0
[1] "total number of runs™ "g"
[1] "wariance of estimated response” "1.4583"
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Figure 1: 2 factors having 2 and 3 levels i.e. 2 x 3 when a = 0.5
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Figure 2: X matrix for 32 x 42 MLRDNE
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[.1]1 [.2]
[1,] 1152 0
[2.] 264
[3.]
[4.]
[5.]1
[6.]
[7.1
[8.]
[9.]1
[10.]
[11,]

[1] "z_prime_matrix"
[.3]
0

0
264

]
=]
[=]

(== =N === = R = = =

=
un

600
512
3840
3840

3840
3840
38592
28800

Figure 3: Z'Z matrix for 32
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nv(z_prime_z)
[.1]

. 0160752748

. 0000000000

. 0000000000

. 0000000000

. 0000000000

. 0075757576

. 0075757576

209
. 0000000000

. 0000000000

[.7]

. 007575758
0. 000000000

. 000000000
0. 000000000
0. 000000000
0. 000000000
0.011363636
0. 000000000
0. 000000000
0. 000000000
0. 000000000

matr
[.2]
0. 000000000
0.003787879
0. 000000000
0. 000000000
0. 000000000
0. 000000000
0. 000000000
0. 000000000
0. 000000000
0. 000000000
0. 000000000
[.8]

-5.106209e-04

000000e+00
000000e+00
000000e+00
000000e+00
000000e+00
000000e+00
021242e-04
834515e-20
000000e+00
000000e+00

cComNHOOOOOO

[1] "total number of runs” "288"
[1] "variance of estimated response” "0.0231"

»
. 000000000
. 000000000
. 003787879
. 000000000
. 000000000
. 000000000
. 000000000
. 000000000
. 000000000
. 000000000
. 000000000

[.3]

[,9]

.0005106209
. 0000000000
. 0000000000
- 0000000000
. 0000000000
. 0000000000
- 0000000000
- 0000000000
-0001021242
. 0000000000
. 0000000000

0.
0.
0.
0.
0.
0.
0.
0.
0.
-0.
0.

[,4]
0000000000
0000000000
0000000000
0056985294
0000000000
0000000000
0000000000
0000000000
0000000000
0006876362

[,10]
0.000000e+00
0.000000e+00
0.000000e+00

-6.876362e-04
0. 000000e+00
0.000000e+00
0. 000000e+00
0.000000e+00
0.000000e+00
8.850763e-05
0.000000e+00

[,5]

. 0000000000
. 0000000000
. 0000000000
. 0000000000
. 0056985294
. 0000000000
. 0000000000
. 0000000000
. 0000000000
. 0000000000
0000000000 -0.

0006876362

[,11]
. 000000e+00
. 000000e+00
. 000000e+00
. 000000e+00
. 876362e-04
. 000000e+00
. 000000e+00
. 000000e+00
. 000000e+00
. 000000e+00
. 850763e-05

[,6]

. 007575758
. 000000000
. 000000000
. 000000000
. 000000000
. 011363636
. 000000000
. 000000000
. 000000000
. 000000000
. 000000000

Figure 4: Z'Z)~! matrix, N and V() for 32 x 42 MLRDNE
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Appendix 2
Table 3.1: MLRDNE
V(9o)
ny | ng | s1| S| a= a=03]|a=05|a=07|a=0.9
2 10| 4| - 02188 | 0.1555 | 0.1166 | 0.0856 | 0.0638
2 1 0|5 |- 101800 | 0.1212 | 0.0894 | 0.0653 | 0.0484
2 1 0|6 |- 01528 | 0.0994 | 0.0723 | 0.0525 | 0.0390
2 | 1|2 | 402083 01663 | 0.1645 | 0.1361 | 0.0975
2 | 1|2 |5 01750 | 0.1448 | 0.1395 | 0.1145 | 0.0822
2 | 1|26 01667 | 0.1304 | 0.1229 | 0.1002 | 0.0720
2 | 1|3 | 401111 ] 0.0723 | 0.0556 | 0.0427 | 0.0330
2 | 1|3 |5 |0.1000 | 0.0625 | 0.0475 | 0.0363 | 0.0280
2 | 1|3 |6 |0.0926 | 0.0560 | 0.0422 | 0.0320 | 0.0246
2 |1 |4 | 201250 | 0.0844 | 0.0626 | 0.0458 | 0.0341
2 | 1|4 | 3 |0.0937 | 0.0605 | 0.0445 | 0.0325 | 0.0241
2 | 1|4 |5 |0.0688 | 0.0414 | 0.0300 | 0.0218 | 0.0162
2 | 1|4 |6 |0.0625 | 0.0366 | 0.0263 | 0.0191 | 0.0142
2 | 1|5 | 2 |0.1000 | 0.0647 | 0.0474 | 0.0345 | 0.0256
2 | 1|5 |3 |0.0733 | 0.0458 | 0.0333 | 0.0242 | 0.0179
2 | 1|5 | 40.0600 | 0.0364 | 0.0263 | 0.0190 | 0.0141
2| 1|5 |6 |0.0467 | 0.0269 | 0.0192 | 0.0139 | 0.0103
2|16 | 2|0.0833]| 0.0525 | 0.0379 | 0.0275 | 0.0205
2116 |3 |0.0602]| 0.0369 | 0.0265 | 0.0192 | 0.0142
2 | 1|6 |4 0.048 | 0.0290 | 0.0207 | 0.0150 | 0.0111
2 | 1|6 |5 |0.0417 | 0.0243 | 0.0173 | 0.0125 | 00093
2 1 2|25 |0.0550 | 0.0476 | 0.0424 | 0.0336 | 0.0243
2 | 2|3 |4 0.0382 | 0.0295 | 0.0231 | 0.0175 | 0.0134
2 123 |50.0289 | 0.0213 | 0.0164 | 0.0124 | 0.0094
2 | 2|4 |5 |0.018 | 0.0133 | 0.0099 | 0.0073 | 0.0054
2 12| 5|6 |0.0106 | 0.0071 | 0.0052 | 0.0038 | 0.0028
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