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1. INTRODUCTION

There are situations in which the observed data would not be modeled by a proper
stochastic model. In these cases, some general models leading to weighted distributions may
be used. The concept of weighted distributions has been introduced by Fisher [17] and Rao
[35] in connection with modeling statistical data in situation that the standard distribution
was not appropriate for their purposes. A formal definition of a weighted distribution for
random variable X with density (mass) function f(x) and non-negative weight w(x) is ob-
tained by g(x) = w(x)f(x)

E(w(X)) , where E(w(X)) > 0. The corresponding weighted random variable
is denoted by Xw in this paper. For more details about the statistical applications of weighted
distributions, we refer the readers to Patil and Rao [31, 32] and Rao [38]. From Gupta and
Keating [20] to Bartoszewicz [12] and the references therein, the idea of the weighted distri-
butions is developed to various applications and properties. Saghir et al. [44] carried out a
brief review of weighted distributions, and investigated the implications of the differing weight
models as well as characterizations of these distributions based on a simple relationship be-
tween two truncated moments. In recent years, this concept has been applied in many areas of
statistics such as biomedical, human study, wildlife populations, electronic, etc. For example,
Jiang [21] used the weight function distribution to analyze measurement errors of an electro-
magnetic flowmeter. It is of great importance to note that the models of ordered data are
special cases of weighted distributions, for example the i-th order statistic in sample of size n,
denoted by Xi:n 1 ≤ i ≤ n, from a population with probability density function (pdf) f(·) and
cumulative distribution function (cdf) F (·) is a weighted random variable with weight func-
tion w(x) = (F (x))i−1(F̄ (x))n−i. The n-th upper k-record and the n-th lower k-record are
also weighted random variables with weight functions w(x) =

[
− log F̄ (x)

]n−1(F̄ (x))k−1 and
w(x) = [− logF (x)]n−1F (x)k−1, respectively. For more details and literature on order statis-
tics and record values, see for example, Arnold et al. [6, 7] and David and Nagaraja [14]. The
skew distributions are also another kind of weighted distributions. Recently, Gómez-Déniz
et al. [19] investigated the properties and applications of a new family of skew distributions.
Azzalini [8] has done an overview on the progeny of the skew-normal family.

It is known that the theory of estimation is a fundamental discipline dealing with the
specification of probabilistic model in terms of observed data. There are many measures
to evaluate the performance of an estimator like mean squared error (MSE), mean absolute
deviation, etc. The Pitman’s measure of closeness (PMC) introduced by Pitman [33] is
another criterion which has been used by several authors to compare the performance of the
estimators. Let us first recall the formal definition:

Definition 1.1. Let θ̂1 and θ̂2 be two estimators of a common parameter θ. The
Pitman’s measure of closeness of θ̂1 relative to θ̂2 is denoted by π(θ̂1, θ̂2|θ) and defined as

(1.1) π(θ̂1, θ̂2|θ) = Pr(|θ̂1 − θ| < |θ̂2 − θ|), ∀ θ ∈ Θ,

where Θ is the parameter space. If Pr(θ̂1 = θ̂2) = 0 and π(θ̂1, θ̂2|θ) ≥ 1/2 for all θ ∈ Θ, with
strict inequality holding for at least one θ, then θ̂1 is said to be a Pitman closer estimator
than θ̂2 with respect to θ.
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It is obvious that π(θ̂1, θ̂2|θ) determines the relative frequency that the estimator θ̂1 is
closer than θ̂2 to the true but unknown value of the parameter θ. Note that the absolute
difference in (1.1) may be replaced by any other loss function, in this case the associated
probability is called generalized PMC. Several developments in estimation theory via PMC
arguments have been written by Efron [16]. Also, Rao [36, 37] concluded noticeable comments
about the necessity of inference based on PMC. Keating [23] derived various aspects of PMC.
Keating and Mason [24] provided many practical examples in which the PMC may be more
useful than MSE. Sen [45] presented the condition on variance for an estimator being closer
than another. Ghosh and Sen [18] have shown under certain conditions a median unbiased
estimator of parameter is the Pitman closest within a certain class of estimators. Some
characterization results in statistical inference and decision theory with examples have been
explained by Lee [27] in view of the PMC for location and scale families. Nayak [30] used
the PMC to find best estimators of a location or scale parameter. Many relevant references
can be found for example in the monograph by Keating et al. [25]. A useful discussion to the
question “Is Pitman closeness a reasonable criterion?” with comments and rejoinder about
this measure can be found in Robert et al. [43]. Kourouklis [26] used the PMC to get an
improved estimation.

It is of great importance to note that two various statistics in estimating a common
parameter would be considered as two weighted random variables. This motivated us to
study the PMC in view of the weighted distributions. Toward this end, the PMC of weighted
random variables with respect to any unknown parameter is first investigated. A new general
weighted model is also introduced and some properties are investigated. Then, the concept
of PMC is used to measure the nearness of some weighted random variables with respect to
each other.

The rest of the paper is organized as follows: In Section 2, some general results are
given to compute the PMC of the weighted random variables to the parameter of interest.
In Section 3, a new general weighted model is introduced and some numerical results and
conclusions are presented. A real data set is used in this section to illustrate the proposed
procedure. In Section 4, the PMC of two weighted random variables with respect to another
one is investigated. Moreover, the results are applied to another real data set. Finally, some
conclusions are presented in Section 5.

2. GENERAL RESULTS

Let X be a random variable with pdf f(·) and cdf F (·) which is defined on finite interval
[a, b]. Assume Xw1 and Xw2 are two independent weighted random variables of X with weight
functions w1(·) and w2(·), respectively. Again, it is pointed out that these random variables
may be considered as two various estimators for a common parameter θ. Based on (1.1), the
PMC of Xw1 and Xw2 with respect to θ is given by

π(Xw1 , Xw2 |θ) = P (|Xw1 − θ| < |Xw2 − θ|).(2.1)



154 M. Ahmadi, G.R.M. Borzadaran and M. Razmkhah

A general expression for the probability in (2.1) can be written as follows:

π(Xw1 , Xw2 |θ) = P (Xw1 < Xw2 , Xw1 +Xw2 > 2θ) + P (Xw1 > Xw2 , Xw1 +Xw2 < 2θ)

=
∫ θ

max{a,2θ−b}

∫ b

2θ−x
g1(x)g2(y)dydx+

∫ b

θ

∫ b

x
g1(x)g2(y)dydx

+
∫ θ

a

∫ x

a
g1(x)g2(y)dydx+

∫ min{b,2θ−a}

θ

∫ 2θ−x

a
g1(x)g2(y)dydx

=
∫ θ

max{a,2θ−b}
Ḡ2(2θ − x)g1(x)dx+

∫ b

θ
Ḡ2(x)g1(x)dx

+
∫ θ

a
G2(x)g1(x)dx+

∫ min{b,2θ−a}

θ
G2(2θ − x)g1(x)dx,(2.2)

where for i = 1, 2, the functions gi(x) and Gi(x) are respectively the pdf and cdf of Xwi .
It can be shown that Ḡi(x) = 1−Gi(x) = Bi(x)

E(wi(X)) , where

Bi(x) = F̄ (x)E(wi(X)|X > x) =
∫ ∞

x
wi(t)f(t)dt.

Therefore, we have

π(Xw1 , Xw2 |θ) =
∫ θ

max{a,2θ−b}

B2(2θ − x)
E(w2(X)

w1(x)f(x)
E(w1(X))

dx+
∫ b

θ

B2(x)
E(w2(X))

w1(x)f(x)
E(w1(X))

dx

+
∫ θ

a

(
1− B2(x)

E(w2(X))

)
w1(x)f(x)
E(w1(X))

dx

+
∫ min{b,2θ−a}

θ

(
1− B2(2θ − x)

E(w2(X))

)
w1(x)f(x)
E(w1(X))

dx.(2.3)

In special case of wi(x) = ϕi

(
F (x)

)
(i = 1, 2), by transforming u = F (x), we get

π(Xw1 , Xw2 |θ) =
1

γ1γ2

{ ∫ F (θ)

F (max{a,2θ−b})
B2(2θ−F−1(u))ϕ1(u)du+

∫ 1

F (θ)
B2(F−1(u))ϕ1(u)du

}

− 1
γ1γ2

{ ∫ F (θ)

0
B2(F−1(u))ϕ1(u)du

+
∫ F (min{b,2θ−a})

F (θ)
B2(2θ − F−1(u))ϕ1(u)du

}
+

1
γ1

{ ∫ F (θ)

0
ϕ1(u)du+

∫ F (min{b,2θ−a})

F (θ)
ϕ1(u)du

}
,(2.4)

where γi = E[ϕi(U)] (i= 1, 2), such that U is a Uniform(0, 1) random variable. Table 1 shows
some special cases of ϕi(u) (i= 1, 2), which have been previously studied by several authors.

The definition of the weighted random variables may be extended to a random sample
of size n. Let X1, X2, ..., Xn be independent and identically distributed (iid) random vari-
ables with cdf F (·) and pdf f(·), then a weighted version of this sample can be defined by
(X∗

1 , X
∗
2 , ..., X

∗
n), which have the joint pdf

(2.5) hX∗
1 ,X∗

2 ,...,X∗
n
(x∗1, x

∗
2, ...x

∗
n) =

w(x∗1, x
∗
2, ...x

∗
n)

E[w(X∗
1 , X

∗
2 , ..., X

∗
n)]

n∏
i=1

f(x∗i ).
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Table 1: Some special cases of ϕi(u) related to PMC.

References ϕ1(u) ϕ2(u) Descriptions

Ahmadi and Raqab [4] ui−1(1 − u)m−i+1 uj−1(1 − u)n−j+1 Order statistics in
two samples

Raqab and Ahmadi [39] [− log(1 − u)]i [− log(1 − u)]j
Record values from

two sequences

Volterman et al. [47]
Pi

l=1 aR
l (i)(1 − u)γR

l −1 Pj
l=1 aS

l (j)(1 − u)γS
l −1 Two-sample progressive

type-II censoring

Ahmadi and
[− log(1 − u)]m ui−1(1 − u)n−i+1 Record values

Mohtashami Borzadaran [5] and order statistics

Notice that the joint pdf in (2.5) is a weighted version of
∏n

i=1 f(x∗i ). Now, for the special
case of n = 2, this joint distribution can be expressed as

(2.6) hX∗
1 ,X∗

2
(x, y) =

w(x, y)
E[w(X∗

1 , X
∗
2 )]
f(x)f(y),

where include the joint distribution of two order statistics in a finite random sample or two
k-records in a sequence of iid random variables. By assuming w(x,y) =ϕ(u,v), where u=F (x)
and v = F (y), the PMC of X∗

1 and X∗
2 with respect to parameter θ can be determined as

follows:

π(X∗
1 , X

∗
2 |θ) =

1
A

{ ∫ F (θ)

F (max(a,2θ−b))

∫ 1

F (2θ−F−1(u))
ϕ(u, v)dvdu

+
∫ 1

F (θ)

∫ 1

u
ϕ(u, v)dvdu+

∫ F (θ)

0

∫ u

0
ϕ(u, v)dvdu

+
∫ F (min(b,2θ−a))

F (θ)

∫ F (2θ−F−1(u))

0
ϕ(u, v)dvdu

}
,(2.7)

where A = E[ϕ(F (X∗
1 ), F (X∗

2 ))]. Some special cases of the weighted model in (2.6) have been
previously studied in view of PMC by some authors which are summarized in Table 2.

Table 2: Some special cases of ϕ(u, v) related to PMC.

References ϕ(u, v) Descriptions

Balakrishnan et al. [11] um−1(v − u)i−m−1(1 − v)n−i Sample median and
the i-th order statistic

Balakrishnan et al. [9] ui−1(v − u)j−i−1(1 − v)n−i Two order statistics
in one sample

Ahmadi and Balakrishnan [1] [− log(1−u)]i

1−u

h
− log( 1−v

1−u
)
ij−i−1 Two upper records

in one sequence

Ahmadi and Balakrishnan [3] [− log(u + 1 − v)]i−1 The i-th lower and upper
records in one sequence

Ahmadi and Balakrishnan [2] [− log(1 − u)]i
h
− log( 1−v

1−u
)
ij−i−1

(1−v)k−1

1−u

Two k-records
in one sequence
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Remark 2.1. It is worthwhile to note that not only for the special cases presented in
Tables 1 and 2, but also the PMC of the general versions of weighted random variables with
respect to the parameter of interest can be derived by the use of (2.4) and (2.7).

3. A GENERAL WEIGHTED MODEL

In Section 2, a weighted random variable whose weight function was a function of the
baseline cdf was considered in some special cases. Here, we introduce a more general model
contains all previous ones. Let X be a continuous random variable with pdf f(·) and cdf
F (·). For positive real constants α, β, γ and δ, one may consider a general weighted random
variable with the following pdf

gF (x;λ) =
1

M(λ)
[F (x)]α−1[F̄ (x)]γ−1[− logF (x)]β−1[− log F̄ (x)]δ−1f(x),(3.1)

where λ = (α, γ, β, δ) and M(λ) is the normalizing constant which is given by

M(λ) = M(α, γ, β, δ)

=
∫ 1

0
uα−1(1− u)γ−1(− log u)β−1[− log(1− u)]δ−1du.(3.2)

The model defined in (3.1) includes many famous families of distributions, such as distribution
of order statistics (see David and Nagaraja, [14]), distributions of upper and lower k-records
(see, Arnold et al., [6]), Jones model (see Jones, [22]) and proportional (reversed) hazard rate
model. This model can be also considered as the pdf of a weighted k-record statistic and also
weighted order statistics. In the next two subsection we consider two famous member of the
proposed model.

3.1. Results based on records

Let us recall the sequences of upper k-record times, Tn,k, and upper k-record values,
Rn,k, which are defined as follows: T1,k = k with probability one, R1,k = X1:k and for n ≥ 2

Tn,k = min{j : j > Tn−1,k, Xj > XTn−1,k−k+1:Tn−1,k
},

and the n-th upper k-record value is defined by Rn,k = XTn,k−k+1:Tn,k
, for n ≥ 1. For k = 1,

the ordinary records are recovered. Then, the pdf of Rn,k is given by

fn,k(x) =
kn

Γ(n)
[
− log F̄ (x)

]n−1(F̄ (x))k−1f(x),

where Γ(n) =
∫∞
0 xn−1e−xdx stands for the complete gamma function; see Arnold et al. [6] for

more details. It is obvious that by taking γ = k and δ = n, the pdf in (3.1) can be interpreted
as the pdf of a weighted the n-th upper k-record statistic, which is denoted by Rw

n,k. Similarly,
the weighted lower k-records may be defined. The first question arises here is that whether
k-records or the weighted version ones are closer to the parameter of interest. By using (2.4)
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and performing some algebraic calculations, it can be shown that the PMC of Rw
n,k and Rn,k

with respect to θ is

πα,β(Rw
n,k, Rn,k|θ) =

1
M(α, β, k, n)

∞∑
j=β−1

α−1∑
r=0

(
α− 1
r

)
(−1)rCj(β − 1)

×
{

Γ
(
n,−(r + j + k) log F̄ (max(a, 2θ − b))

)
(r + j + k)n

+
∞∑

i=n

ki

i!

(
Γ(n)− 2Γ

(
n,−(r + j + 2k) log F̄ (θ)

)
(n+ j + 2k)n+i

+
∫ − log F̄ (min(b,2θ−a))

− log F̄ (θ)
ψ(y; i, j, r)dy

−
∫ − log F̄ (θ)

− log F̄ (max(a,2θ−b))
ψ(y; i, j, r)dy

)}
,(3.3)

where Γ(n, a) =
∫∞
a xn−1e−xdx stands for the incomplete gamma function, the function

M(α, β, k, n) is as defined in (3.2), Cj(n) is the coefficient of wj in the expansion of (
∑∞

i=1
wi

i )n,
and

ψ(y; i, j, r) =
(
− log F̄ (2θ − F−1(1− e−y))

)i(
F̄ (2θ − F−1(1− e−y))

)k
yn−1e−(r+j+k)y.

Remark 3.1. It is clear that for other different versions of weight functions, we can
express the PMC via similar arguments in (3.3), for which they can be interpreted as appli-
cations and specifications of several forms.

In the rest of this section, the population quantile is considered as the parameter of
interest θ. We recall that the population quantile ξp of order p (0 < p < 1) of the cdf F (·) is
defined by ξp = inf{x : F (x) ≥ p}. Balakrishnan et al. [11, 10] determined the closest order
statistic in a random sample of size n to a specific population quantile and specially studied
the PMC of sample median to population median. Ahmadi and Balakrishnan [1] examined the
PMC of record statistics to the population quantiles of location-scale family of distributions.
Moreover, Ahmadi and Balakrishnan [2] investigated the PMC of k-records and Ahmadi and
Balakrishnan [3] obtained the PMC of current records for location-scale families. Similar
work was done by Razmkhah and Ahmadi [41] regarding the current k-records. The PMC
of upper (lower) records in two independent sequences of iid continuous random variables to
population quantiles was studied by Raqab and Ahmadi [39]. Similarly, the PMC of order
statistics in a two-sample problem was investigated by Ahmadi and Raqab [4]. Moreover,
a comparison study for order statistics and records was performed with some remarks by
Ahmadi and Mohtashami Borzadaran [5]. Davies [15] studied some PMC results for type-I
hybrid censored data from exponential distribution. Morabbi and Razmkhah [29] used the
PMC to get the quantile estimation based on modified ranked set sampling schemes. The
weighted versions of the aforementioned papers, for example, weighted order statistics and
weighted k-records may be of great interest which are discussed in this paper.

From (3.3), it is seen that the PMC is not distribution-free. So, the baseline distribution
has to be specified. Therefore, for as an example, the standard exponential distribution has
been considered and the PMC investigated for the population quantiles. With this in mind,
let {Xi, i ≥ 1} be a sequence of iid random variables from standard exponential distribution.
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The PMC of Rw
n,k and Rn,k with respect to the p-th quantile of this distribution, can be

simplified as follows:

πα,β(Rw
n,k, Rn,k|ξp) =

1
M(α, β, k, n)

∞∑
j=β−1

α−1∑
r=0

(
α− 1
r

)
(−1)rCj(β − 1)

×
{

Γ(n)
(r + j + k)n

+
∞∑

i=n

ki

i!

(
Γ(n)− 2Γ(n,−(r + j + 2k) log q)

(r + j + 2k)n+i

+q2k

∫ − log q2

− log q
h(y; i, j, r)dy − q2k

∫ − log q

0
h(y; i, j, r)dy

)}
,(3.4)

where
h(y; i, j, r) =

(
− log(q2ey)

)i
yn−1e−(r+j)y.

Using (3.4), the numerical values of πα,β(Rw
n,k, Rn,k|ξp) have been computed for n = 3, 4,

k = 3, 4 and some selected values of α, β and p. The results are presented in Table 3.

Table 3: Values of πα,β(Rw,U
n,k , R

U
n,k|ξp) for standard exponential distribution.

p
n k β α

0.10 0.25 0.5 0.60 0.75 0.80 0.90 0.95 0.99

3 3

1

2 0.4036 0.4044 0.4439 0.4899 0.5654 0.5819 0.5955 0.5964 0.5964
3 0.3310 0.3315 0.3805 0.4540 0.5989 0.6347 0.6667 0.6689 0.6690
4 0.2754 0.2757 0.3213 0.4077 0.6099 0.6664 0.7204 0.7244 0.7246
5 0.2321 0.2322 0.2702 0.3591 0.6056 0.6827 0.7613 0.7676 0.7679

2

1 0.6789 0.6745 0.5730 0.4839 0.3626 0.3397 0.3222 0.3212 0.3211
2 0.5748 0.5759 0.5727 0.5437 0.4675 0.4463 0.4267 0.4253 0.4252
3 0.4888 0.4902 0.5363 0.5613 0.5467 0.5319 0.5130 0.5113 0.5112
4 0.4184 0.4194 0.4838 0.5497 0.6030 0.5985 0.5838 0.5816 0.5815
5 0.3609 0.3614 0.4273 0.5201 0.6400 0.6491 0.6414 0.6392 0.6391

4

3

1

2 0.4291 0.4292 0.4371 0.4560 0.5166 0.5392 0.5674 0.5706 0.5709
3 0.3720 0.3720 0.3812 0.4088 0.5149 0.5596 0.6200 0.6275 0.6280
4 0.3254 0.3254 0.3335 0.3633 0.5012 0.5663 0.6609 0.6737 0.6746
5 0.2869 0.2870 0.2933 0.3219 0.4800 0.5631 0.6928 0.7116 0.7130

2

1 0.6884 0.6881 0.6554 0.5937 0.4321 0.3790 0.3183 0.3120 0.3116
2 0.6123 0.6123 0.6099 0.5914 0.4988 0.4559 0.3959 0.3883 0.3877
3 0.5461 0.5462 0.5566 0.5678 0.5440 0.5163 0.4632 0.4546 0.4539
4 0.4890 0.4890 0.5032 0.5325 0.5711 0.5618 0.5211 0.5118 0.5110
5 0.4397 0.4397 0.4535 0.4921 0.5835 0.5943 0.5708 0.5613 0.5603

4

1

2 0.4167 0.4169 0.4456 0.4889 0.5612 0.5745 0.5830 0.5833 0.5833
3 0.3498 0.3500 0.3871 0.4577 0.5992 0.6291 0.6495 0.6501 0.6502
4 0.2959 0.2960 0.3318 0.4166 0.6189 0.6674 0.7028 0.7040 0.7041
5 0.2522 0.2523 0.2830 0.3722 0.6246 0.6927 0.7456 0.7477 0.7477

2

1 0.6601 0.6589 0.5828 0.4942 0.3715 0.3518 0.3402 0.3399 0.3399
2 0.5715 0.5718 0.5667 0.5370 0.4599 0.4417 0.4289 0.4285 0.4285
3 0.4949 0.4953 0.5269 0.5485 0.5310 0.5179 0.5056 0.5051 0.5050
4 0.4297 0.4299 0.4763 0.5371 0.5855 0.5809 0.5710 0.5703 0.5703
5 0.3743 0.3744 0.4232 0.5103 0.6250 0.6317 0.6264 0.6257 0.6257

3

1 0.7803 0.7753 0.5810 0.4165 0.2483 0.2289 0.2198 0.2197 0.2197
2 0.6988 0.6983 0.6137 0.4973 0.3368 0.3136 0.3015 0.3012 0.3012
3 0.6226 0.6231 0.6117 0.5510 0.4180 0.3926 0.3778 0.3774 0.3774
4 0.5537 0.5542 0.5856 0.5789 0.4892 0.4639 0.4468 0.4463 0.4463
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The bold numbers in Table 3 are referring to the fact that the weighted k-records are
Pitman closer than the usual k-records to the specific population quantile. From this table,
it is intuitively observed that for given α and β, there exist real values α0 and p0 ∈ (0, 1) such
that for α ≤ α0 and p ≤ p0, π(RU,w

n,k , R
U
n,k|ξp) > 0.5. Similarly for α > α0, there exist a real

value p∗ ∈ (0, 1), so that for p ≥ p∗, π(RU,w
n,k , R

U
n,k|ξp) > 0.5.

3.2. Results based on order statistics

We recall that the pdf of the r-th order statistic from an iid sample of size n from cdf
F (·) and pdf f(·) is given by

(3.5) fr:n(x) = k

(
n

r

)
F r−1(x)F̄n−r(x)f(x).

Let us denote the weighted order statistic by Xw
r:n. Here, the PMC of Xw

r:n and Xr:n with
respect to the p-th quantile ξp is studied when the baseline distribution is standard exponential
distribution. From (2.4) and (3.5), we find

πβ,δ(Xw
r:n, Xr:n|ξp) =

1
M(r, n− r + 1, β, δ)

{ r−1∑
j=0

∞∑
k=1

(−1)j

(
r − 1
j

)
Ck(β − 1)

×
(

Γ(δ)
(j + n− r + k + 1)

− 1
M(r, n− r + 1, 1, 1)

×
n−r∑
i=0

r+i∑
l=0

(
(−1)i+l

(
n−r

i

)(
r+i

l

)
(1− p)2l

r + i

×
Γ(δ)− Γ

(
δ,−(j + n− r + k − l + 1) ln(1− p)

)
(j + n− r + k − l + 1)δ

))
+

1
M(r, n− r + 1, 1, 1)

n−r∑
i=0

2r+i−1∑
j=0

∞∑
k=1

((−1)i+j
(
n−r

i

)(
2r+i−1

j

)
r + i

×Ck(β − 1)
Γ(δ)− 2Γ

(
δ,−(j + n− r + k + 1) ln(1− p)

)
(j + n− r + k + 1)δ

)}
.(3.6)

For extreme order statistics X1:n and Xn:n we have

πβ,δ(Xw
1:n, X1:n|ξp) =

1
M(1, n, β, δ)

∞∑
k=1

Ck(β − 1)
{

Γ(δ)
(n+ k)

+n
n−1∑
i=0

i+1∑
j=0

(−1)i+j
(
n−1

i

)(
i+1
j

)
i+ 1

×
(

Γ(δ)− 2Γ
(
δ,−(n+ k + j) ln(1− p)

)
(n+ k + j)δ

−
Γ(δ)− Γ

(
δ,−(n+ k − j) ln(1− p)

)
(n+ k − j)δ

(1− p)2j

)}
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and

πβ,δ(Xw
n:n, Xn:n|ξp) =

1
M(n, 1, β, δ)

∞∑
k=1

Ck(β − 1)
{ n−1∑

j=0

(−1)j

(
n− 1
j

)
Γ(δ)

(j + k + 1)

+
2n−1∑
j=0

(−1)j

(
2n− 1
j

)
Γ(δ)− 2Γ

(
δ,−(j + k + 1) ln(1− p)

)
(j + k + 1)δ

−n
n−r∑
i=0

n−1∑
j=0

n∑
l=0

((−1)j+l
(
n−1

j

)(
n
l

)
(1− p)2l

n+ i

×
Γ(δ)− Γ

(
δ,−(j + k − l + 1) ln(1− p)

)
(j + k − l + 1)δ

)}
,

respectively. Using (3.6), the numerical values of πβ,δ(Xw
r:n, Xr:n|ξp) have been computed for

some selected values of n, r, β, δ and p. The results are presented in Table 4. The bold
numbers in this table are referring to the fact that the weighted order statistics are Pitman
closer than the usual order statistics to the specific population quantile.

Table 4: Values of πβ,δ(Xw
r:n, Xr:n|ξp) for standard exponential distribution.

p
n r β δ

0.10 0.25 0.5 0.75 0.90

5

1
2 3 0.2326 0.5067 0.7858 0.8018 0.8019
3 2 0.5243 0.5585 0.5299 0.5276 0.5275

3
2 3 0.3628 0.3658 0.4716 0.6292 0.6372
3 2 0.6371 0.6360 0.5349 0.3758 0.3629

4
2 3 0.4301 0.4302 0.4447 0.5515 0.5751
3 2 0.7064 0.7063 0.6731 0.4180 0.3005

8

1
2 3 0.2361 0.6905 0.8162 0.8169 0.8169
3 2 0.5307 0.5699 0.5636 0.5635 0.5635

7
2 3 0.4833 0.4834 0.4839 0.5180 0.5341
3 2 0.7338 0.7337 0.7313 0.5615 0.2974

10

2
2 3 0.2741 0.5501 0.7414 0.7429 0.7434
3 2 0.5131 0.5259 0.5170 0.5024 0.5000

5
2 3 0.3758 0.3777 0.5190 0.6237 0.6241
3 2 0.5966 0.5958 0.4858 0.4038 0.4033

7
2 3 0.4216 0.4307 0.4415 0.5573 0.5693
3 2 0.6758 0.6547 0.6320 0.3869 0.3454

From Table 4 we observe that, if β ≤ δ (or β > δ), there exist p0 ∈ (0, 1) such that for
p ≥ p0 (or p ≤ p0), we get πβ,δ(Xw

n:n, Xn:n|ξp) ≥ 0.5.
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4. PITMAN CLOSENESS AND WEIGHTED RANDOM VARIABLES

Note that in the field of PMC, there is no necessity to restrict our attention to param-
eters and their estimators. There are situations in which the problem of closeness of some
random variables with respect to each others may be of great importance. For instance, if Z is
a random variable and X and Y are two other random variables, then for an appropriate mea-
sure of distance d(·, ·), we may define GPN(X,Y, Z) = P (d(X,Z) < d(Y, Z)) to determine
the closer random variable between X and Y to Z; see for example, Mendes and Merkle [28].
Here, we focus on the PMC by using the distance d(X,Z) = |X − Z|.

Now, consider the situation in which the cdf of a distribution varies in some steps when
the time proceeds. Let us show the corresponding random variable to the baseline (initial)
distribution by X. Then, the transformed distribution at the i-th temporal step can be
characterized by a weighted random variable, such as Xwi (i ≥ 1) with pdf gi(·). So, the
PMC of any two transformed distribution to the baseline distribution is discussed in what
follows.

Let Xw1 , Xw2 and Xw3 be independent weighted random variables which are considered
to describe the transformations on a baseline distribution by pdf f(·) and cdf F (·). Therefore,
the pdf of Xwi is given by

(4.1) gi(x) =
wi(x)f(x)
E(wi(X))

, E(wi(X)) > 0, i = 1, 2, 3.

Here, we generally focus our attention to compute the probability of closeness of Xw1 and
Xw2 with respect to Xw3 . Note that in the special case of w3(x) = 1, in fact the closeness
of two transformed distributions with respect to the baseline distribution is studied. Using
(1.1), we get

π(Xw1 , Xw2 |Xw3) = P (|Xw1 −Xw3 | < |Xw2 −Xw3 |)
= P (−|Xw2 −Xw3 | < Xw1 −Xw3 < |Xw2 −Xw3 |)
= P (Xw2 < Xw1 < 2Xw3 −Xw2 , Xw2 < Xw3)

+P (2Xw3 −Xw2 < Xw1 < Xw2 , Xw2 > Xw3).

Assuming the random variables are defined on [a, b], we have

π(Xw1 , Xw2 |Xw3) =
∫ b

a

∫ z

a

∫ 2z−y

y
g1(x)g2(y)g3(z)dxdydz

+
∫ b

a

∫ b

z

∫ y

2z−y
g1(x)g2(y)g3(z)dxdydz

=
1
Λ

{ ∫ b

a

∫ z

a
A1(y)F̄ (y)w2(y)f(y)w3(z)f(z)dydz

−
∫ b

a

∫ z

a
A1(2z − y)F̄ (2z − y)w2(y)f(y)w3(z)f(z)dydz

+
∫ b

a

∫ b

z
A1(2z − y)F̄ (2z − y)w2(y)f(y)w3(z)f(z)dydz

−
∫ b

a

∫ b

z
A1(y)F̄ (y)w2(y)f(y)w3(z)f(z)dydz

}
,(4.2)
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where
Λ = E(w1(X))E(w2(X))E(w3(X))

and

A1(x) = E(w1(X)|X > x) =
1

F̄ (x)

∫ b

x
w1(t)f(t)dt.

Let us now suppose that wi(x) = ϕi(F (x)), for i = 1, 2, 3, then by using transformations
u = F (y) and v = F (z), the PMC in (4.2) can be rewritten as follows:

π(Xw1 , Xw2 |Xw3) =
1
Λ

{ ∫ 1

0

∫ v

0
[C1(u, v)− C2(u, v)]dudv −

∫ 1

0

∫ 1

v
[C1(u, v)− C2(u, v)]dudv

}
,

where
C1(u, v) = A1(F−1(u))(1− u)ϕ2(u)ϕ3(v)

and
C2(u, v) = A1(2F−1(v)− F−1(u))F̄ (2F−1(v)− F−1(u))ϕ2(u)ϕ3(v).

By selecting various choices of wi(x), specially those of presented in the previous sec-
tions, the above probability of closeness can be derived via tedious calculations.

It is worth to mention that formula (4.2) can also be used to assess the relationship
among different statistics. Suppose we have three independent sample from the same distri-
bution. It is known that in the context of nonparametric X[np]:n used as an estimator for
ξp. Denote the the sample mean of a standard exponential population by X̄, and consider
the sample quantiles of two independent standard exponential populations by Xr:n and Xs:n,
respectively. Then by using (4.2) we have

π(Xr:n, Xs:n|X) = nnrs

(
n

r

)(
n

s

) r−1∑
i=1

s−1∑
j=1

(−1)i+j

(
r − 1
i

)(
s− 1
j

)

×
{

(n− r + i+ j)−1

(2n− r − s+ i+ j + 2)

(
1
nn

− 1
(3n− r − s+ i+ j + 3)n

− 1
(3n− 2r + 2i+ 2)n

+
1

(4n− 3r − s+ 3i+ j + 4)n

)
+

(3n− r − s+ i+ j + 2)−n

(r − s− i+ j)(2n− r − s+ i+ j + 2)

}
.

5. APPLICATIONS

To illustrate the performance of the proposed procedure in Sections 4 and 5, we use
two real data sets in the following examples.

Example 1 (Telephone calls). Table 5 contains the data concerning the times (in min-
utes) between 48 consecutive telephone calls to a company’s switchboard which is presented
by Castillo et al. [13]. They assumed that the data come from the exponential distribution.
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Table 5: Times (in minutes) between 48 consecutive calls.

1.34 0.14 0.33 1.68 1.86 1.31 0.83 0.33 2.20 0.62 3.20 1.38
0.96 0.28 0.44 0.59 0.25 0.51 1.61 1.85 0.47 0.41 1.46 0.09
2.18 0.07 0.02 0.64 0.28 0.68 1.07 3.25 0.59 2.39 0.27 0.34
2.18 0.41 1.08 0.57 0.35 0.69 0.25 0.57 1.90 0.56 0.09 0.28

By using the definition of k-records, as presented in subsection 3.1, from this data set,
the second upper 2-records (values of R2,2) have been extracted which are 0.33, 1.86, 1.38,
0.44, 0.51, 1.85, 0.07, 0.68, 2.39, 0.34, 0.57 and 0.57. Note that these data are indeed the
second largest observations in the partial samples. Moreover, after observing each data point,
the procedure of collecting the next second upper 2-record has been restarted. Moreover, the
initial sample maxima to attain the second upper 2-records are observed as

1.34, 2.2, 3.2, 0.96, 0.59, 2.18, 0.64, 1.07, 3.25, 2.18, 1.08, 0.69.

The null hypothesis that the above data are coming from a weighted distribution with
pdf (3.1) and the parameters λ = (α, β, 2, 2) (distribution of the second upper 2-record), is
checked by using the Kolmogorov–Smirnov (K-S) distances between the empirical distribution
functions and the fitted distribution function. The observed MLEs of α and β are 3.5 and 0.8,
respectively. Also, the observed value of K-S statistic is 0.2158 and the associated p-value is
0.6311. So, based on these observations, the weighted distribution is adequate for the data
regarding the sample maxima to attain the second upper 2-records. That is, one may accept
that these data are some observed values of Rw

2,2.

Using (3.4), the values of π3.5,0.8(Rw
2,2, R2,2|ξp) have been numerically obtained and

presented in Table 6 for some choices of p. It is observed that for upper quantiles (p ≥ 0.75),
Rw

2,2 is Pitman closer to ξp than R2,2.

Table 6: Values of π3.5,0.8(Rw
2,2, R2,2|ξp) for standard exponential distribution.

p 0.10 0.25 0.5 0.60 0.75 0.80 0.90 0.95 0.99

π3.5,0.8(R
w
2,2, R2,2|ξp) 0.2378 0.2389 0.2935 0.3727 0.5616 0.6341 0.7366 0.7581 0.7621

Example 2 (Air conditioning system). In this example we use the data set which
consist of the intervals between failures (in hours) of the air conditioning system in three
Boeing 720 jet aircrafts. The data are reported in Table 7. See Proschan [34] for a detailed
description of the data set. He tested and accepted the hypothesis that the successive failure
times were iid exponential for each plane, but with different failure rates.

Table 7: Intervals between failures of the air conditioning system in three Boeing 720 jet aircraft.

Plane 7909 90,10,60,186,61,49,14,24,56,20,79,84,44,59,29,118,25,156,310,76,26,44,23,62,130,208,70,101,208

Plane 7912 23,261,87,7,120,14,62,47,225,71,246,21,42,20,5,12,120,11,3,14,71,11,14,11,16,90,1,16,52,95

Plane 7913 97,51,11,4,141,18,142,68,77,80,1,16,106,206,82,54,31,216,46,111,39,63,18,191,18,163,24
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Let us denote the intervals between failures of the air conditioning system of Planes
7913, 7912 and 7909 by X, Xw1 and Xw2 , respectively. As well as assumed by Proschan [34],
the observed values of X come from exponential distribution. Moreover, it can be deduced
that Xw1 and Xw2 are two different weighted versions of X. More precisely, according to
the general weighted pdf presented in (3.1) with baseline exponential distribution, the null
hypotheses that the associated data for Planes 7912 and 7909 are coming from

gF (x; 1, 1.75, 1, 1) = 1.75[F̄ (x)]0.75f(x)

and
gF (x; 1, 1, 1, 1.15) =

1
Γ(1.15)

[− log F̄ (x)]0.15f(x),

respectively, are checked by using the K-S distances. The observed p-values are 0.6455 and
0.9123, respectively. So, based on these observations, the mentioned weighted versions of the
exponential distribution are adequate for the data. By using (4.2) and doing some algebraic
calculations and numerical computations, we get π(Xw1 , Xw2 |X) = 0.0452. That is, the in-
tervals between failures of the air conditioning system of Plane 7909 are Pitman closer than
those of Plane 7912 with respect to Plane 7913.

6. CONCLUSION

In this paper, the weighted random variables were considered and their closeness to a
common parameter was investigated in the sense of PMC. Some general results were derived
and a new general weighted model was introduced which subsumes most of the previous
works as special cases. Some numerical results and conclusions were presented for exponential
distribution in details. It was seen that the weighted upper k-records are Pitman closer than
the usual ones to certain population quantiles. To illustrate the proposed procedure, a real
data set was used. Furthermore, the concept of PMC was applied for measuring the nearness
of some weighted random variables with respect to each other. This procedure was also
explained via application to a real data set.
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