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1. INTRODUCTION

Our main focus in this study is on variance estimation for sensitive variables in stratified
sampling. Many researchers have dealt with the problem of mean and variance estimation
under simple random sampling and stratified random sampling when the study variable is non-
sensitive and is directly observable. Zahid and Shabbir (2018) [17] and many other authors
have investigated the problem of mean estimation in stratified random sampling when the
study variable is non-sensitive. Important contributions in the area of variance estimation
in stratified random sampling for non-sensitive random variables have been made by Kadilar
and Cingi (2006) [8], Sidelel et al. (2014) [12], Özel et al. (2014) [10], Clement (2018) [2],
Sanaullah et al. (2017) [11], Younis and Shabbir (2019) [16], and Asghar et al. (2019) [1].
In all of these studies, the study variable is directly observed and an auxiliary variable is used
to increase the efficiency of estimation.

In research involving sensitive survey questions, standard estimation techniques are
unreliable. Warner(1965) [14] introduced the Randomized Response Technique (RRT) as a
research method to reduce response Bias in estimation of a sensitive study variable and at
the same time improve the respondent cooperation. Many authors, including Kalucha et al.

(2017) [9] and Zhang et al. (2021) [18], have estimated the mean of a sensitive study variable
under stratified sampling. However, not much work exists for variance estimation under RRT.
Gupta et al. (2020) [5] introduced several variance estimators under RRT in simple random
sampling. The primary goal of this study is to re-examine the Gupta et al. (2020) [5] study
in the context of stratified random sampling.

Let us consider Y and X to be the observed and auxiliary variables defined on a finite
population U = {U1, U2, ..., UN}. We assume that Y is sensitive in nature and we observe a
scrambled version of it given by Z = TY +S, where T , S, Y andX are mutually uncorrelated.
Let the population be divided into L homogeneous strata withNh unites (h = 1, 2, ..., L) in the
hth stratum such that

∑L
h=1Nh = N . From hth stratum, a simple random sample of size nh is

drawn without replacement such that
∑L

h=1nh = n. Let (xhi, yhi, zhi) be the observed values
on the variables X, Y , and Z in the hth stratum. Let x̄st =

∑L
h=1Whx̄h, ȳst =

∑L
h=1Whȳh,

z̄st =
∑L

h=1Whz̄h be the stratified sample means where ȳh = 1
nh

∑nh
i=1yhi, x̄h = 1

nh

∑nh
i=1xhi,

z̄h = 1
nh

∑nh
i=1zhi are the stratum sample means and Ȳh = 1

Nh

∑Nh
i=1yhi, X̄h = 1

Nh

∑Nh
i=1xhi, Z̄h =

1
Nh

∑Nh
i=1zhi are corresponding population stratum means. Let Wh = Nh

N (h = 1, 2, ..., L) be
the known stratum weights.

The population variance of the study variable in stratified sampling is given by Kadilar
and Cingi (2006) [8] as

(1.1) σ2
c0 =

L∑
h=1

Whσ
2
yh +

L∑
h=1

Wh(Ȳh − Ȳ )2.

The combined ordinary and combined ratio estimators of population variance given by
Kadilar and Cingi (2006) [8] in stratified sampling are given, respectively, by

(1.2) tc0 =
L∑

h=1

Whs
2
yh +

L∑
h=1

Wh(ȳh − ȳst)2,
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and

(1.3) tc1 = tc0

(
σ2

x

s2xst

)
, where s2xst =

L∑
h=1

Whs
2
xh +

L∑
h=1

Wh(x̄h − x̄st)2.

Some authors including Özel et al. (2014) [10] have suggested the separate ordinary
and separate ratio estimators of population variance in stratified sampling which are given
respectively by

(1.4) ts0 =
L∑

h=1

Whs
2
yh,

and

(1.5) ts1 =
L∑

h=1

Wh

(
s2yh

s2xh

)
σ2

xh.

In this paper, we have considered the problem of estimating population variance using
auxiliary information by adapting Kadilar and Cingi (2006) [8], Özel et al. (2014) [10], and
Gupta et al. (2020) [5] under RRT. We will discuss the proposed combined variance estimators
in detail in Section 2. Separate variance estimators will be discussed in detail in Section 3. We
also examine the effect of ignoring the term

∑L
h=1Wh(ȳh− ȳst)2 in (1.2) on the estimates of the

variance in stratified random sampling. Section 4 presents the results of a simulation study;
Section 5 presents a real data example; and Section 6 provides some concluding remarks.

2. SOME COMBINED VARIANCE ESTIMATORS IN STRATIFIED RAN-
DOM SAMPLING

In this study, the respondent is asked to provide a scrambled response for the sensitive
study Y by using the generalized RRT model given by Z = TY + S, as in Diana and Perri
(2011) [3], where S and T are uncorrelated scrambling variables such that E(S) = 0 and
E(T ) = 1. Gupta et al. (2020) [5] used this RRT model for estimating the population variance
in simple random sampling. They proposed the following estimators:

(2.1) t0(R) =
s2z − σ2

S − σ2
T ∗ z̄2

σ2
T + 1

,

(2.2) t1(R) = t0(R) ∗
(
σ2

x

s2x

)
,

and

(2.3) tp(R) =
[
t0(R) + (σ2

x − s2x)
]
∗
(

(ασ2
x + β)

ω(αs2x + β) + (1− ω)(ασ2
x + β)

)g

,

where α and β are suitably chosen constants associated with the auxiliary variable X. With
g = 1, one can obtain various ratio estimators, and with g = −1 one can obtain various
product estimators. ω is an unknown whose optimal value will be used.

Motivated by Gupta et al. (2020) [5] and Kadilar and Cingi (2006) [8], we propose the
following combined variance estimators in the stratified random sampling.
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2.1. The Combined Basic Variance Estimator

Based on the RRT model Z = TY + S, we have σ2
zh as

σ2
zh = σ2

Th(σ2
yh + µ2

yh) + σ2
yh + σ2

Sh.

Rearranging, we get

σ2
yh =

σ2
zh − σ2

Sh − (σ2
Th ∗ Z̄2

h)
σ2

Th + 1
.

The population variance of the study variable in stratified sampling is given by

(2.4) σ2
c0(R) =

L∑
h=1

Wh

(
σ2

zh − σ2
Sh − σ2

Th ∗ Z̄2
h

σ2
Th + 1

)
+

L∑
h=1

Wh(Z̄h − Z̄)2.

Let
σ2

c0(R) = A1 +B1,

where

A1 =
L∑

h=1

Wh

(
σ2

zh − σ2
Sh − σ2

Th ∗ Z̄2
h

σ2
Th + 1

)
and B1 =

L∑
h=1

Wh(Z̄h − Z̄)2.

We have our first proposed combined estimator given by

(2.5) tc0(R) =
L∑

h=1

Wh

(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+

L∑
h=1

Wh(z̄h − z̄st)2.

Let
tc0(R) = Â1 + B̂1,

where

Â1 =
L∑

h=1

Wh

(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
and B̂1 =

L∑
h=1

Wh(z̄h − z̄st)2.

To obtain the Bias and MSE expressions for the proposed estimators in the stratified random
sampling, we define the following error terms

δzh =
s2zh − σ2

zh

σ2
zh

, ezh =
z̄h − Z̄h

Z̄h
, ezst =

z̄st − Z̄

Z̄
, exst =

x̄st − X̄

X̄
,

such that
E(δzh) = E(ezh) = E(ezst) = E(exst) = 0,

E(δ2zh) = θh(λ40h − 1), E(δ2xh) = θh(λ04h − 1), E(δzhδxh) = θh(λ22h − 1),

E(δzhezh) = θhλ30hCzh, E(δxhezh) = θhλ12hCzh, E(e2zh) = θhC
2
zh,

E(ezstezh) =
L∑

h=1

Whθhσ
2
zh, E(e2zst) =

1
Z̄2

L∑
h=1

W 2
hθhσ

2
zh, E(e2xst) =

1
X̄2

L∑
h=1

W 2
hθhσ

2
xh,

E(exstezh) =
L∑

h=1

Whθhσzxh, E(exstezst) =
1
Z̄X̄

L∑
h=1

W 2
hθhσzxh,
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where
σzxh = ρzxhσzhσxh, ρzxh =

ρyxh√
1 +

σ2
Th(σ2

yh+µ2
yh)+σ2

Sh

σ2
yh

, λrsh =
µrsh

µ
r
2
20hµ

s
2
02h

,

µrsh =
1

Nh − 1

Nh∑
i=1

(Zhi − Z̄h)r(Xhi − X̄h)s and C2
zh = C2

yhσ
2
Th +

(
σ2

Sh

Ȳh
2

)
.

Consider the first term

(2.6) Â1 =
L∑

h=1

Wh

(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
.

Rewriting (2.6), we have

Â1 =
L∑

h=1

Wh

(
σ2

zh(1 + δzh)− σ2
Sh − σ2

Th[Z̄h(1 + ezh)]2

σ2
Th + 1

)
.

Subtracting A1 on both sides, we obtain

(2.7) (Â1 −A1) =
L∑

h=1

Wh

(
σ2

zhδzh − 2σ2
ThZ̄

2
hezh − σ2

ThZ̄
2
he

2
zh

σ2
Th + 1

)
.

Taking the expectation on both sides of (2.7), the Bias of Â1 is obtained as

(2.8) Bias(Â1) ≈ −
L∑

h=1

θhWh

(
σ2

ThZ̄
2
hC

2
zh

σ2
Th + 1

)
.

By squaring both sides of (2.7) and using the first order approximation, the MSE is obtained
as
(2.9)

MSE(Â1) ≈
L∑

h=1

θhW
2
h

(
1

(σ2
Th+1)2

)(
σ4

zh(λ40h−1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)
.

Consider the second term

(2.10) B̂1 =
L∑

h=1

Wh(z̄h − z̄st)2.

Rewriting (2.10), we have

(2.11) B̂1 =
L∑

h=1

Wh[Z̄h(1 + ezh)− Z̄(1 + ezst)]2.

Expanding (2.11), and restricting to terms up to order 2, we have

(2.12) B̂1 =
L∑

h=1

Wh[(Z̄h − Z̄)2 + (Z̄hezh − Z̄ezst)2 + 2(Z̄2
hezh − Z̄hZ̄ezst − Z̄hZ̄ezh + Z̄2

hezst)].

Subtracting B1 on both sides, we obtain
(2.13)

(B̂1 −B1) = Z̄2e2zst +
L∑

h=1

Wh[Z̄2
he

2
zh − 2Z̄hZ̄ezhezst + 2(Z̄2

hezh − Z̄hZ̄ezst − Z̄hZ̄ezh + Z̄2
hezst)].
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Taking the expectation on both sides of (2.13), the Bias of B̂1 is obtained as

(2.14) Bias(B̂1) ≈ Z̄2
L∑

h=1

W 2
hθhC

2
zh +

L∑
h=1

Whθh[Z̄2
hC

2
zh − 2Z̄hZ̄σ

2
zh].

By squaring both sides of (2.13), using the first order approximation and simplifying, the
MSE is obtained as

MSE(B̂1) ≈ 4Z̄4
L∑

h=1

W 2
hθhC

2
zh

+
L∑

h=1

W 2
hθh

[
4Z̄2

hC
2
zh − 8Z̄hZ̄

L∑
h=1

Whσ
2
zh(Z̄h−Z̄)2 + 4Z̄hZ̄

2
L∑

h=1

W 2
hC

2
zh(Z̄h−2Z̄)

]
.(2.15)

The expressions for Bias and MSE of tc0(R) are given by

(2.16) Bias(tc0(R)) = Bias(Â1) + Bias(B̂1),

and

(2.17) MSE(tc0(R)) ≈ MSE(Â1) + MSE(B̂1).

In (2.17), we assume that Â1 and B̂1 are uncorrelated. This is not an unreasonable assumption
since the sample mean and the sample variance are uncorrelated for normal data. This is
also confirmed by large number of simulated values of Â1 and B̂1 that we generated.

2.2. The Combined Ratio Variance Estimator

(2.18) tc1(R) =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
∗
(
σ2

xh

s2xh

)]
+

L∑
h=1

Wh

(
z̄h −

z̄st
x̄st

X̄

)2

,

tc1(R) = Â2 + B̂2.

Consider the first term:

(2.19) Â2 =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
∗
(
σ2

xh

s2xh

)]
.

Rewriting (2.19), we have

Â2 =
L∑

h=1

Wh

[
σ2

zh − σ2
Sh − σ2

ThZ̄
2
h

σ2
Th + 1

+
2σ2

ThZ̄
2
hezhδxh − σ2

zhδzhδxh − σ2
ThZ̄

2
he

2
zh

σ2
Th + 1

]
.

Subtracting A1 and taking the expectation on both sides, the Bias of Â2 is obtained as

(2.20) Bias(Â2) ≈
L∑

h=1

θhWh

[(
2σ2

ThZ̄
2
hλ12hCzh − σ2

zh(λ22h − 1)− σ2
ThZ̄

2
hC

2
zh

σ2
Th + 1

)]
.
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For MSE, we have

Â2 =
L∑

h=1

Wh

[
σ2

zh + σ2
zhδzh − σ2

Sh − σ2
ThZ̄

2
h − 2σ2

ThZ̄
2
hezh − σ2

ThZ̄
2
he

2
zh

σ2
Th + 1

−σ2
zhδxh − σ2

zhδzhδxh + σ2
Shδxh + σ2

ThZ̄
2
hδxh + 2σ2

ThZ̄
2
hezhδxh + σ2

ThZ̄
2
he

2
zhδxh

σ2
Th + 1

]
.

Simplifying and ignoring second and higher order terms,

Â2 =
L∑

h=1

Wh

[
σ2

zh − σ2
Sh − σ2

ThZ̄
2
h

σ2
Th + 1

+
σ2

zhδzh − 2σ2
ThZ̄

2
hezh − σ2

zhδxh + σ2
Shδxh + σ2

ThZ̄
2
hδxh

σ2
Th + 1

]
.

Squaring and taking the expectation on both sides, we have

Â2 =
L∑

h=1

W 2
hE

(
σ2

zhδzh

σ2
Th + 1

−
2σ2

ThZ̄
2
hezh

σ2
Th + 1

− σ2
yhδxh

)2

.

After some simplifications, the MSE of Â2 is obtained as

MSE(Â2) ≈
L∑

h=1

W 2
hθh

(σ2
Th+1)2

[
σ4

zh(λ40h−1)− 2σ2
zhσ

2
yh(λ22h−1)(σ2

Th+1) + σ4
yh(λ04h−1)(σ2

Th+1)2

+ 4Czh

(
σ4

ThZ̄
4
hCzh − σ2

zhσ
2
ThZ̄

2
hλ30h + σ2

Thσ
2
yhZ̄

2
hλ12h(σ2

Th+1)
)]
.(2.21)

Consider the second term:

(2.22) B̂2 =
L∑

h=1

Wh

(
z̄h −

z̄st
x̄st

X̄

)2

.

Repeating the procedure outlined in steps (2.10)–(2.15) for the estimator (2.22), yields defi-
nitions of Bias and MSE for B̂2 as

Bias(B̂2) ≈ Z̄2
L∑

h=1

W 2
hθh(C2

zh + C2
xh) +

L∑
h=1

Whθh

[
Z̄2

hC
2
zh − 2Z̄hZ̄

L∑
h=1

Whσ
2
zh

+ 2

(
Z̄h

X̄

L∑
h=1

W 2
hσzxh +

Z̄h

X̄

L∑
h=1

Whσzxh − 2
(
Z̄

X̄

L∑
h=1

W 2
hσzxh

))]
,(2.23)

MSE(B̂2) ≈ 4Z̄4
L∑

h=1

W 2
hθh(C2

zh + C2
xh) +

L∑
h=1

W 2
hθh

[
4Z̄2

hC
2
zh(Z̄h − Z̄)2

+ 4Z̄2
hZ̄

2
L∑

h=1

W 2
h (C2

zh + C2
xh) + 8Z̄3

hZ̄
L∑

h=1

Wh

(
σzxh

Z̄X̄
− σ2

zh

)

− 8Z̄2
hZ̄

2

(
2
Z̄X̄

L∑
h=1

Whσzxh −
L∑

h=1

2Whσ
2
zh +

1
Z̄X̄

L∑
h=1

W 2
hσzxh

)

+ 8Z̄hZ̄3

(
1
Z̄X̄

L∑
h=1

W 2
hσzxh −

L∑
h=1

W 2
hC

2
zh +

1
Z̄X̄

L∑
h=1

Whσzxh −
L∑

h=1

Whσ
2
zh

)

− 8Z̄2
1
Z̄X̄

L∑
h=1

W 2
hσzxh

]
.(2.24)
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The expressions for Bias and MSE of tc1(R) are given by

(2.25) Bias(tc1(R)) = Bias(Â2) + Bias(B̂2),

and

(2.26) MSE(tc1(R)) ≈ MSE(Â2) + MSE(B̂2).

2.3. A Combined Generalized Variance Estimator

We now propose the following class of generalized population variance estimators:

tcp(R) =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+ (σ2

xh − s2xh)
]

∗
(

(ασ2
xh + β)

ω(αs2xh + β) + (1− ω)(ασ2
xh + β)

)g

+
L∑

h=1

Wh

[(
z̄h −

[
z̄st + (X̄ − x̄st)

])
∗
(

(αX̄ + β)
λ(αx̄st + β) + (1− λ)(αX̄ + β)

)g
]2

,(2.27)

tcp(R) = Â3 + B̂3.

Consider the first term:

Â3 =
L∑

h=1

Wh

[(
s2zh − σ2

Sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+(σ2

xh−s2xh)
]
∗
(

(ασ2
xh + β)

ω(αs2xh + β) + (1− ω)(ασ2
xh + β)

)g

.

Using Taylor series approximation, we obtain the Bias in Â3 as
(2.28)

Bias(Â3) =
L∑

h=1

−Whθh

[
σ2

ThZ̄
2
hC

2
zh

σ2
Th+1

−(gωψh)
(
σ2

zh(λ22h−1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th+1

−σ2
xh(λ04h−1)

)]
,

where ψh =
∑L

h=1
ασ2

xh

ασ2
xh+β

.

The mean square error is given by

MSE(Â3) =
L∑

h=1

W 2
hθh

[(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

(σ2
Th + 1)2

)

+
(

(σ2
xh +Qhσ

2
yh)2(λ04h − 1)

)
− 2
(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

)
(σ2

xh +Qhσ
2
yh)
]
,

(2.29)

where Qh = gωψh.

Differentiate (2.29) w.r.t Qh:

2σ2
yh(σ2

xh +Qhσ
2
yh)(λ04h − 1) = 2σ2

yh

(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

)
,

Qhopt =
L∑

h=1

1
σ2

yh

[(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

)(
1

(λ04h − 1)

)
− σ2

xh

]
.
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The MSE at this optimum value is given by

MSE(Â3)opt =
L∑

h=1

W 2
hθh

(σ2
Th + 1)2

[(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)

− 1
(λ04h − 1)

(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

)2]
.(2.30)

Consider the second term:

(2.31) B̂3 =
L∑

h=1

Wh

[(
z̄h −

[
z̄st + (X̄ − x̄st)

])
∗
(

(αX̄ + β)
λ(αx̄st + β) + (1− λ)(αX̄ + β)

)g
]2

.

Repeating the procedure outlined in steps (2.10)–(2.15) for the estimator (2.31), yields defi-
nitions of Bias and MSE for B̂3 as

Bias(B̂3) ≈ Z̄2
L∑

h=1

W 2
hθh

(
C2

zh +D2C2
xh

)
+ X̄2

L∑
h=1

W 2
hC

2
xh +

L∑
h=1

Whθh

[
Z̄2

hC
2
zh

+
2Z̄h

Z̄

L∑
h=1

Whσzxh + 2D

(
Z̄h

X̄

L∑
h=1

W 2
hσzxh − Z̄hX̄

L∑
h=1

W 2
hC

2
xh +

Z̄h

X̄

L∑
h=1

Whσzxh −
2Z̄
X̄

L∑
h=1

W 2
hσzxh

(2.32) + Z̄X̄

L∑
h=1

W 2
hC

2
xh +

L∑
h=1

W 2
hσzxh

)
−2Z̄hZ̄

L∑
h=1

Whσ
2
zh−2

L∑
h=1

W 2
hσzxh

]
,

where D = (gλφ) and φ = αX̄
αX̄+β

;

MSE(B̂3)opt ≈ θ

{
Z̄2X̄2

L∑
h=1

W 2
hC

2
xh + Z̄4

L∑
h=1

W 2
hC

2
zh − Z̄2

L∑
h=1

W 2
hσzxh

+ Dopt

[
DoptZ̄

4
L∑

h=1

W 2
hC

2
xh + Z̄3X̄

L∑
h=1

W 2
hC

2
xh −

Z̄3

X̄

L∑
h=1

W 2
hσzxh

]

+
L∑

h=1

W 2
h

[
4
((
Z̄4

h − Z̄3
hZ̄
)
C2

zh + Z̄2
hZ̄

2
( L∑

h=1

W 2
hC

2
zh + C2

zh +
L∑

h=1

Whσ
2
zh

))

+
(
Z̄2

hX̄
2 − Z̄hZ̄X̄

2
) L∑

h=1

W 2
hC

2
xh −

(
Z̄3

hZ̄
2 + Z̄hZ̄

3
) L∑

h=1

Whσ
2
zh

+

(
Z̄3

hX̄ + Z̄hZ̄
2X̄
)

Z̄X̄

L∑
h=1

Whσzxh − 2Z̄2
h

L∑
h=1

Whσzxh + Z̄hZ̄

L∑
h=1

W 2
hσzxh

+ Dopt

(
DoptZ̄

2
hZ̄

2
L∑

h=1

W 2
hC

2
xh +

(
2Z̄3

h − 2Z̄2
hZ̄
)

X̄

L∑
h=1

Whσzxh

+
(
Z̄2

hX̄Z̄ − 2Z̄hX̄Z̄
2 − Z̄hZ̄

3
) L∑

h=1

W 2
hC

2
xh +

Z̄hZ̄
2

X̄

L∑
h=1

W 2
hσzxh

)]}
(2.33)
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where

Dopt =

−
PL

h=1

��
2Z̄3

h−2Z̄2
hZ̄
�

X̄

PL
h=1 Whσzxh + Z̄2

�
Z̄hX̄ − 2X̄Z̄ − Z̄2

�PL
h=1 W 2

hC2
xh + Z̄hZ̄2

X̄

PL
h=1 W 2

hσzxh

�

2

(
Z̄4

h

PL
h=1 W 2

hC2
xh +

PL
h=1 W 2

h

�
Z̄2

hZ̄2
PL

h=1 W 2
hC2

xh

�
+

�
Z̄3X̄

PL
h=1 W 2

hC2
xh −

Z̄4

X̄

PL
h=1 W 2

hσzxh

�) .

The expressions for Bias and MSE of tcp(R) are given by

(2.34) Bias(tcp(R)) = Bias(Â3) + Bias(B̂3),

and

(2.35) MSE(tcp(R))opt ≈ MSE(Â3)opt + MSE(B̂3)opt.

3. SOME SEPARATE VARIANCE ESTIMATORS IN STRATIFIED RAN-
DOM SAMPLING

Some authors, including Özel et al. (2014) [10], Clement (2018) [2] and Younis and
Shabbir (2019) [16], have presented separate variance estimators. In doing so, they have
ignored the B1 term introduced in (1.2). We examine the following separate variance es-
timators in stratified random sampling mainly to show that ignoring the B1 term can give
misleadingly low MSE values.

3.1. The Separate Basic Variance Estimator

Following the authors listed above, the separate population variance of the study vari-
able in stratified sampling is given by

(3.1) σ2
s0(R) =

L∑
h=1

Wh

(
σ2

zh − σ2
sh − σ2

Th ∗ Z̄2
h

σ2
Th + 1

)
.

This leads to the following estimator:

(3.2) ts0(R) =
L∑

h=1

Wh

(
s2zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
.

The Bias and MSE of ts0(R) are given respectively as

(3.3) Bias(ts0(R)) ≈ −
L∑

h=1

θhWh

(
σ2

ThZ̄
2
hC

2
zh

σ2
Th + 1

)
,

and
(3.4)

MSE(ts0(R)) ≈
L∑

h=1

θhW
2
h

(
1

(σ2
Th + 1)2

)(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)
.
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3.2. The Separate Ratio Variance Estimator

(3.5) ts1(R) =
L∑

h=1

Wh

[(
s2zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
∗
(
σ2

xh

s2xh

)]
.

The Bias and MSE of ts1(R) are given respectively as

(3.6) Bias(ts1(R)) ≈
L∑

h=1

θhWh

[(
2σ2

ThZ̄
2
hλ12hCzh − σ2

zh(λ22h − 1)− σ2
ThZ̄

2
hC

2
zh

σ2
Th + 1

)]
,

and

MSE(ts1(R)) ≈
L∑

h=1

W 2
hθh

(σ2
Th + 1)2

[
σ4

zh(λ40h − 1)− 2σ2
zhσ

2
yh(λ22h − 1)(σ2

Th + 1)

+ σ4
yh(λ04h − 1)(σ2

Th + 1)2

+ 4Czh

(
σ4

ThZ̄
4
hCzh − σ2

zhσ
2
ThZ̄

2
hλ30h + σ2

Thσ
2
yhZ̄

2
hλ12h(σ2

Th + 1)
)]

(3.7)

3.3. A Separate Generalized Variance Estimator

The generalized separate population variance estimators can be written as

tsp(R) =
L∑

h=1

Wh

[(
s2zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+ (σ2

xh − s2xh)
]

∗
(

(ασ2
xh + β)

ω(αs2xh + β) + (1− ω)(ασ2
xh + β)

)g

.(3.8)

The Bias and MSE of tsp(R) are given respectively as

Bias(tsp(R)) =
L∑

h=1

−Whθh

[
σ2

ThZ̄
2
hC

2
zh

σ2
Th + 1

− (gωψh)

∗
(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

σ2
Th + 1

− σ2
xh(λ04h − 1)

)]
,(3.9)

and

MSE(tsp(R))opt =
L∑

h=1

W 2
hθh

(σ2
Th + 1)2

[(
σ4

zh(λ40h − 1) + 4σ4
ThZ̄

4
hC

2
zh − 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)

− 1
(λ04h − 1)

(
σ2

zh(λ22h − 1)− 2σ2
ThZ̄

2
hλ12hCzh

)2]
.(3.10)
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4. SIMULATION STUDY

We consider a sample of size N = 2000 from two bivariate normal populations for
[
X
Y

]
determined by the following means and covariance matrices with N1 = 1200 and N2 = 800:

Stratum 1: µ =
[
4
2

]
, Σ =

[
2 2.7

2.7 6

]
, ρyx = 0.80,

Stratum 2: µ =
[
6
4

]
, Σ =

[
2 2.2

2.2 5

]
, ρyx = 0.70.

These 2000 observations are treated as our finite populations. For the 2000 values generated
from these distributions, the means, variances, and correlations are given by:

Stratum 1: µx1 = 4.021, µy1 = 2.010, σ2
x1 = 1.975, σ2

y1 = 5.987, ρyx1 = 0.797,

Stratum 2: µx2 = 6.070, µy2 = 4.006, σ2
x2 = 1.982, σ2

y2 = 4.977, ρyx2 = 0.702.

Overall parameter values are given by

µx = 4.8413, µy = 2.8791, σ2
x = 2.9671, σ2

y = 6.4644, ρyx = 0.7596.

We consider a sample of size n = 600, where n1 = 360 and n2 = 240. The stratum sample
size nh (h = 1, 2) is based on the proportional allocation, that is, nh = Wh × n. The scram-
bling variable S and T are assumed to have normal distributions with E(S) = 0, E(T ) = 1,
Var(S) = 0.5 and different values for Var(T ). In the combined and separate generalized
variance estimators, we choose α = 1, β = 0 and g = 1. Other choices of α and β in our
simulations had minimal impact.

The Percent Relative Efficiency (PRE) with respect to the stratified sampling is defined
as

PRE =
MSE(tc0(R))
MSE(tci(R))

× 100, where i = 0, 1 and p.

Since we are developing the proposed estimators based on randomized data, it is im-
portant to consider the privacy level as well. Gupta et al. (2018) [6] introduced a unified
measure of estimator quality (δ) given by

δ =
TheoreticalMSE

∆DP
, where ∆DP =

L∑
h=1

Wh∆DPh

is the privacy level for the model Z=TY+S as given by Yan et al. (2009) [15].

Theoretical and empirical MSEs and PREs for both the separate variance estimators
and combined variance estimators are reported in Table 1. For either separate or combined
estimators, the generalized estimator is clearly more efficient than the basic estimator and the
ratio estimator. One can note that the MSEs increase as the variances of T increase, which is
on expected lines due to extra noise in the data. However, this loss in efficiency is off-set by the
gain in privacy as shown by the δ-column. For example, the MSEs of the combined generalized
variance estimator tcp(R) increases from 0.2842 to 0.5024 when Var(T ) increases from 0.5 to 1,
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but δ value decreases from 0.0364 to 0.0323. In general, the proposed variance estimators
under the additive model (Z = Y + S) where Var(T ) = 0 are more efficient compared to the
generalized model (Z = TY + S) where Var(T ) > 0 by providing smaller MSEs. However,
the proposed variance estimators under the generalized model (Z = TY + S) are better by
providing smaller δ values if we consider the efficiency and the privacy simultaneously.

Table 1: Theoretical (in bold) and empirical MSEs and PREs of the variance estimators
with σ2

y = 6.4644.

Var(S) Var(T) Estimator σ̂2
yσ̂2
yσ̂2
y MSE PRE δδδ Estimator σ̂2

yσ̂2
yσ̂2
y MSE PRE δδδ

0.5

0

ts0(R) 5.4368
0.0857 100

0.1664 tc0(R) 6.4141
0.1119 100

0.2144
0.0858 100 0.1131 100

ts1(R) 5.4542
0.0752 113.9627

0.1441 tc1(R) 6.4322
0.0985 113.6040

0.1887
0.0765 112.1568 0.1014 111.5384

tsp(R) 5.4402
0.0635 134.9606

0.1368 tcp(R) 6.4182
0.0858 130.4195

0.1644
0.0647 132.6120 0.0863 131.0544

0.3

ts0(R) 5.5456
0.2142 100

0.0442 tc0(R) 6.4434
0.2588 100

0.0530
0.2151 100 0.2606 100

ts1(R) 5.5547
0.1951 109.8923

0.0400 tc1(R) 6.4534
0.2376 108.9225

0.0486
0.1964 109.5213 0.2399 108.6285

tsp(R) 5.5443
0.1757 122.0261

0.0374 tcp(R) 6.4429
0.2169 119.3176

0.0444
0.1769 121.5941 0.2174 119.8712

0.5

ts0(R) 5.5357
0.2788 100

0.0357 tc0(R) 6.4141
0.3361 100

0.0431
0.2781 100 0.3370 100

ts1(R) 5.5446
0.2579 108.1039

0.0330 tc1(R) 6.4239
0.3147 106.8001

0.0404
0.2596 107.1263 0.3158 106.7131

tsp(R) 5.5344
0.2351 118.5878

0.0306 tcp(R) 6.4137
0.2842 118.2617

0.0364
0.2491 111.6419 0.2922 114.9897

0.8

ts0(R) 5.5128
0.3801 100

0.0310 tc0(R) 6.3931
0.4560 100

0.0375
0.3766 100 0.4528 100

ts1(R) 5.5216
0.3621 104.9710

0.0294 tc1(R) 6.4041
0.4355 104.7072

0.0358
0.3589 104.9317 0.4331 104.5486

tsp(R) 5.5115
0.3406 111.5971

0.0279 tcp(R) 6.3981
0.4047 112.6760

0.0333
0.3399 110.7972 0.4141 109.3455

1

ts0(R) 5.4970
0.4550 100

0.0299 tc0(R) 6.3897
0.5431 100

0.0360
0.4512 100 0.5382 100

ts1(R) 5.5057
0.4399 103.4325

0.0287 tc1(R) 6.3929
0.5235 103.7440

0.0347
0.4372 103.2021 0.5202 103.4602

tsp(R) 5.4957
0.4207 108.1530

0.0262 tcp(R) 6.3928
0.5024 108.1011

0.0323
0.4169 108.2273 0.4950 108.7272

Comparing the proposed separate variance estimators to the proposed combined vari-
ance estimators, it may appear that the separate estimators are better since they have smaller
MSE. However, one should note that these estimators degrade accuracy in comparison to the
combined estimators. For example, as the true variance of Y is 6.4644, the estimated vari-
ance of Y is 6.4137 for the combined variance estimator when Var(T ) = 0.5. However, the
estimated variance of Y is 5.5344 for the separate variance estimator when Var(T ) = 0.5.
The same is true for the other cases. This indicates that the proposed combined variance
estimators are more accurate than the separate variance estimators.
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5. APPLICATION

In this section a real data set is used to compare the performances of the combined
variance estimators. The data is obtained from Eurostat (2008) [4], and the sampling details
are provided in Sousa et al. (2014) [13], a paper that was co-authored by one of the co-authors
of the current paper. There are 1698 records in the population. The volume of purchase orders
reported by the Information and Communication Technologies for 2010 is taken as the study
variable Y . Turnover for the individual enterprises is the auxiliary variable X. The study
variable Y is scrambled using the additive scrambling variable S assumed to be a normally
distributed random variable with mean 0 and variance 0.5, and the multiplicative scrambling
variable T assumed to be a normally distributed random variable with mean 1 and four
different choices for its variance (0, 0.3, 0.5, and 1). Data summary is provided in Table 2.

Table 2: Population Characteristics and Sampling Information.

Stratum NNN ρyxρyxρyx µyµyµy σyσyσy µyµyµy σxσxσx Population

1 979 0.7802 2.15 2.46 3.12 2.68 N = 1698, ρyx = 0.9368

2 362 0.7952 16.67 6.86 20.31 6.02 µy = 14.44, σ2
y = 501.31

3 357 0.8408 45.88 30.21 56.33 30.18 µx = 17.97, σ2
x = 640.59

Table 3: Theoretical (in bold) and empirical MSEs and PREs of the variance estimators.

Var(S) Var(T) Estimator σ̂2
yσ̂2
ŷσ2
y MSE PRE δδδ

0.5

0

tc0(R) 502.1499
1230.678 100

2485.8154
1228.833 100

tc1(R) 502.6576
1079.764 113.9765

2180.9880
1086.812 113.0676

tcp(R) 501.8341
955.227 128.8361

1929.4389
947.223 129.7300

0.3

tc0(R) 500.7685
3615.078 100

15.8680
3656.872 100

tc1(R) 501.557
3483.887 103.7656

15.2921
3457.51 105.7660

tcp(R) 503.1153
3353.681 111.1073

14.2817
3337.229 112.9630

0.5

tc0(R) 503.8318
5389.539 100

14.2064
5353.592 100

tc1(R) 501.3672
5092.119 105.8407

13.4224
5004.276 106.9803

tcp(R) 501.8327
4878.576 110.4736

12.8596
4841.631 110.5741

1

tc0(R) 501.3862
9792.979 100

12.9152
9719.734 100

tc1(R) 503.1442
9540.721 102.6440

12.5825
9574.217 101.5198

tcp(R) 500.9520
9240.276 105.9814

12.1863
9209.5 105.5403
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Theoretical and empirical MSEs and PREs are provided in Table 3 for each of the
proposed combined estimators. We used only the combined estimators in this numerical
application because of the inherent drawback in the separate estimators as pointed out at the
beginning of Section 3. The combined generalized variance estimator is clearly more efficient
than both the combined basic variance estimator and the combined ratio variance estimator.
Furthermore, the MSE increases as the variance of T is increased, meanwhile the unified
measure (δ) value decreases. For example, for the combined generalized variance estimator,
theoretical MSE is 3353.681 for σ2

T = 0.3 but increases to 9240.276 for σ2
T = 1. In contrast,

the (δ) value decreases from 14.2817 to 12.1863 indicating that using the multiplicative noise
T lowers the efficiency but the added privacy because of this more than compensates this
loss.

6. CONCLUSION

Separate and combined variance estimators are considered under RRT in stratified
random sampling. The simulation study shows that the generalized variance estimator is
more efficient than the other estimators. Also, the proposed combined variance estimators are
more accurate than the separate variance estimators. Furthermore, if one considers efficiency
and privacy simultaneously, the linear combination model Z = TY + S, where Var(T ) > 0,
produces better variance estimators compared to the additive model Z = Y +S where Var(T )
= 0. This can be attributed to the fact that proposed variance estimators under Z = TY +S

have higher privacy level and hence smaller δ values. The real data application in Section 5
shows the same improvement with the generalized estimator as was seen in the simulation
results of Section 4. We would like to mention that this work can be extended in several
directions in new studies. For example, one can work with the case when the mean of the
auxiliary variable is unknown. Also, the generalized estimator we suggest is not the only
option. One can use other forms of generalizations.
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