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1. INTRODUCTION

Our main focus in this study is on variance estimation for sensitive variables in stratified
sampling. Many researchers have dealt with the problem of mean and variance estimation
under simple random sampling and stratified random sampling when the study variable is non-
sensitive and is directly observable. Zahid and Shabbir (2018) [17] and many other authors
have investigated the problem of mean estimation in stratified random sampling when the
study variable is non-sensitive. Important contributions in the area of variance estimation
in stratified random sampling for non-sensitive random variables have been made by Kadilar
and Cingi (2006) [8], Sidelel et al. (2014) [12], Ozel et al. (2014) [10], Clement (2018) [2],
Sanaullah et al. (2017) [11], Younis and Shabbir (2019) [16], and Asghar et al. (2019) [1].
In all of these studies, the study variable is directly observed and an auxiliary variable is used
to increase the efficiency of estimation.

In research involving sensitive survey questions, standard estimation techniques are
unreliable. Warner(1965) [14] introduced the Randomized Response Technique (RRT) as a
research method to reduce response Bias in estimation of a sensitive study variable and at
the same time improve the respondent cooperation. Many authors, including Kalucha et al.
(2017) [9] and Zhang et al. (2021) [18], have estimated the mean of a sensitive study variable
under stratified sampling. However, not much work exists for variance estimation under RRT.
Gupta et al. (2020) [5] introduced several variance estimators under RRT in simple random
sampling. The primary goal of this study is to re-examine the Gupta et al. (2020) [5] study
in the context of stratified random sampling.

Let us consider Y and X to be the observed and auxiliary variables defined on a finite
population U = {U1,Us,...,Uny}. We assume that Y is sensitive in nature and we observe a
scrambled version of it given by Z =TY + S, where T', S, Y and X are mutually uncorrelated.
Let the population be divided into L homogeneous strata with Ny unites (h = 1,2, ..., L) in the
hth stratum such that Zﬁle » = N. From A" stratum, a simple random sample of size ny, is
drawn without replacement such that Zﬁ:lnh = n. Let (Tn;, Yni, 2ni) be the observed values
on the variables X, Y, and Z in the A" stratum. Let Zy = Eﬁzlwhi'h, st = Zﬁzlwhgh,

Zst = Zﬁzlwhéh be the stratified sample means where g;, = % o Yhiy Th = % o This
~ _ 1\ > o 1 Np, S| Np, 7 _
Zh = 57D it1Zhi are the stratum sample means and Y}, = N—hzizlyhi, X, = mZizlxhiv Zy, =

N%injihﬁhi are corresponding population stratum means. Let W), = % (h=1,2,...,L) be
the known stratum weights.

The population variance of the study variable in stratified sampling is given by Kadilar
and Cingi (2006) [8] as

L L
(1.1) 0= > Waoo, + Y Wi(Ys —Y)?,
h=1 h=1

The combined ordinary and combined ratio estimators of population variance given by
Kadilar and Cingi (2006) [8] in stratified sampling are given, respectively, by

L L
(1.2) to = Wasoy + > Wi(gh — st),
h=1 h=1
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2 L L
o _
(1.3) te1 = teo (szw>’ where s2,, = Zthgh + ZWh(xh — Zg)?.
st h=1 h=1

Some authors including Ozel et al. (2014) [10] have suggested the separate ordinary
and separate ratio estimators of population variance in stratified sampling which are given
respectively by

L
(1.4) tso = Zth?th’
h=1

and
L 32h

(1.5) ta =Y Wy <y)a2h.
; Sih ¢

In this paper, we have considered the problem of estimating population variance using
auxiliary information by adapting Kadilar and Cingi (2006) [8], Ozel et al. (2014) [10], and
Gupta et al. (2020) [5] under RRT. We will discuss the proposed combined variance estimators
in detail in Section 2. Separate variance estimators will be discussed in detail in Section 3. We
also examine the effect of ignoring the term ﬁleh(yh —9s)? in (1.2) on the estimates of the
variance in stratified random sampling. Section 4 presents the results of a simulation study;
Section 5 presents a real data example; and Section 6 provides some concluding remarks.

2. SOME COMBINED VARIANCE ESTIMATORS IN STRATIFIED RAN-
DOM SAMPLING

In this study, the respondent is asked to provide a scrambled response for the sensitive
study Y by using the generalized RRT model given by Z =TY + S, as in Diana and Perri
(2011) [3], where S and T are uncorrelated scrambling variables such that E(S) =0 and
E(T) = 1. Gupta et al. (2020) [5] used this RRT model for estimating the population variance
in simple random sampling. They proposed the following estimators:

s2 — 0% — 02 % 72
2.1 to(R) =228 ‘T
(2.1) o(R) o211 ;
s
(22) ) =)+ (%),
and

)+ (G ﬁ>(iafl+@><aoz ¥ ﬁ))g’

where a and § are suitably chosen constants associated with the auxiliary variable X. With

(2.3) tp(R) = |to(R) + (07 — 57

g =1, one can obtain various ratio estimators, and with g = —1 one can obtain various
product estimators. w is an unknown whose optimal value will be used.

Motivated by Gupta et al. (2020) [5] and Kadilar and Cingi (2006) [8], we propose the
following combined variance estimators in the stratified random sampling.
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2.1. The Combined Basic Variance Estimator

Based on the RRT model Z =TY + S, we have ogh as

2 _ 2 /2 2 2 2
0on = orp(Oyn + typ) + 0y + 05,

Rearranging, we get

2 _Ugh_agh (UTh*Zh)

o =
yh
JTh—i—l

The population variance of the study variable in stratified sampling is given by

L 0'2 — 0’2 — 0'2 * 22 L — —
(2.4) o20(R) = Zm( h 5 —Ih h) +> WilZn—2)?
h=1 Tpn + h=1

Let

0%(R) = A1 + By,

where

L 02 — o2 — g2 % 72 L ) )
A = ZWh( Ho ok b h> and By = > Wi(Z — Z)°
h=1 h=1

aTh—l—l

We have our first proposed combined estimator given by

L 2 2
S — 0 O‘ * 2
(2.5) to(R) = Wh( zh __Sh 1Th h) § Wh(Zh — Zst)?
h=1 UTh T

Let

to(R) = Ay + By,

where

2 2, 22 L
— O — O * Z N
§ Wh( zh 52% n 1Th h) and By = E ”h(gh - Zst)Z

OTh =

To obtain the Bias and MSE expressions for the proposed estimators in the stratified random
sampling, we define the following error terms

2 2 - 5 - > - 5
S5, — Oy Zn — I, Zst — 4 Tgt — X
6 — — — —
zh — P) y €zh = = y Czst = = y Czst = v ’
o2, 7 Z X

such that
E((;zh) = E(ezh) = E(ezst) = E(ezst) =0,

E(62,) = 0, (Mon — 1), E(02,) = 0n(Moan — 1), E(6:n001) = On(Aa2n — 1),
E(S.ne:n) = O X30nCony  E(0znesn) = Onh2nCon, E(e2;) = 0,02,

L
E(628t62h) = ZWhaho—ghv E(egst QZWh thzhv E(eazcst QZWh ehasz
h=1 h=1 h=1

L
E(ezstezh) = ZWheho-Zl'ha E(exstezst ZWh 9h02$h7
h=1 =
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where ) p
h h
Ozxh = PzxhOzhOxhy Pzzh = y: 2 — Arsh = %,
\/1 UTh(Jthrguthas h P0nMo2h
Tuh
Ly 7 C o2
Horsh = ﬁZ(Zhi — Zp)" (Xpi — Xp)* and C2, = Cppofy, + (2)
h i—1 Yy,
Consider the first term
L 2 2 2 )
i Sih T~ OSh ~ On * 2
(2.6) A1:ZWh< z o >
h=1 ITh

Rewriting (2.6), we have

" UTh +1 '

Subtracting A1 on both sides, we obtain

L 2 2 72 2 722
. 05,0, — 205 Zi e, — Oy Zi€
(2.7) (A, — Ay) :ZW’Z< zhzh Th2 htz Th”h zh)‘
orp +1

Taking the expectation on both sides of (2.7), the Bias of Ay is obtained as

o Z202
2.8 Bias(A,) § 0 Th Zh>.
(28) tas( A1) " h( Th +1

By squaring both sides of (2.7) and using the first order approximation, the MSE is obtained
as

(2.9)

MSE(A;) Zehwh < ) ) <a§h(A40h— 1) + 403, ZrC? — 4o§ha%h2,3A30hczh>.

Consider the second term

L
(2.10) Bl = ZWh(zh — Est)g.
h=1
Rewriting (2.10), we have
(2.11) ZWh (14 en) = Z(1 + ezst)]*.

Expanding (2.11), and restricting to terms up to order 2, we have
2 12 ZWh Zh -7 (Zhezh — Zezst)2 + 2(2}%€zh — thezst — ZhZBZh + Ziezst)].

Subtracting B; on both sides, we obtain

(2.13)
L

(Bl — Bl) = Zzezst + ZWh[leeih — 2ZhZ€zh€zst + 2(leezh — thezst — thezh + Zzezst)]-
h=1
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Taking the expectation on both sides of (2.13), the Bias of B is obtained as

L L
(2.14) Bias(B1) ~ 22y WEZOLC2, + > Wiu[Z;C2, — 22, Z02,).
h=1 h=1

By squaring both sides of (2.13), using the first order approximation and simplifying, the
MSE is obtained as

L
MSE(By) ~ 42) W20,C2,
h=1
L L L
(2.15) + > W6, [42,30§h —8Zh2Y Wio2y(Zn—2)* + 42, 2% WiCh(Zy—2Z)|.
h=1 h=1 h=1

The expressions for Bias and MSE of t,o(R) are given by

~ A~

(2.16) Bias(t.o(R)) = Bias(A1) + Bias(B),
and
(2.17) MSE(t(R)) ~ MSE(A;) + MSE(B;).

In (2.17), we assume that Ay and By are uncorrelated. This is not an unreasonable assumption
since the sample mean and the sample variance are uncorrelated for normal data. This is
also confirmed by large number of simulated values of A; and B; that we generated.

2.2. The Combined Ratio Variance Estimator

L s2, — 0%, — 02, xz2 o2 L Zst < 2
(2.18) ter(R) = ZWh [( s 1Th h) * <2‘”h)] + ZWh (Zh - X) :
— GTh + Tst

h=1 Szh h=1
tcl(R) = AQ + EQ.
Consider the first term:
- L s% — ok — o2, %72 o2
(2.19) Ay = ZWhK sh —Sh Ih h> x <;‘h>}
e o 1 Szh

Rewriting (2.19), we have

L 2 2 2 72 2 72 2 2 72 2
Ay = W, [Uzh — 05, — 04y, T 207, Zjezh00h — 05,02000h — UThZhezh]
= E 3 5 .

Subtracting A; and taking the expectation on both sides, the Bias of A, is obtained as

L = _
(2.20) Bias(A) ~ 3 0, KZU%LZ%M%CM — 02, (Aoan — 1) — a%hzgcghﬂ |
h=1 oy +1
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For MSE, we have

L 2 2 2 2 72 2 72 2 522
_ ZW 0on + 0on0:h — 05y, — 0y Ly — 207, Zjesn — o2y,
O'Th +1

UTh +1

Simplifying and ignoring second and higher order terms,

L — —
-S> W 0% — Oan — OrnZi; " 020zh — 203y Zhezn — zh5 b+ 08p0an + UThZh5wh
o*%h +1 aTh +1

Squaring and taking the expectation on both sides, we have

L 2 2 72 2
A 0%, 0,n 204, Zieyp,
A2 = E [/[/f%E’< 2Zh z 1 — gh h 12 — Ush(smh .
hel orn t orn t

After some simplifications, the MSE of Aj is obtained as

L

. W26
MSE(A,) ~ hZh > {a;%h(mh—n — 202,00, (Aa2n—1)(0F,+1) +a§h(A04h—1)(a%h+ 1)2

— (c%,+1)
(2.21) + 4C%p <U%hZf§Czh — Ot Zi Ason + U%hashz}%)\12h(a%h+1)>] :
Consider the second term:

5 L Zst 2
(2.22) By = ;Wh( b — :cs,tX> .

Repeating the procedure outlined in steps (2.10)—(2.15) for the estimator (2.22), yields defi-
nitions of Bias and MSE for BQ as

Z}o?, — 2ZhZZWhazh
h=1

Bias(B;) ~ Z2ZWh0h (C%, +C%) +2Wh0h
h=1

-~ L
Z Z
(223) + 2(; E W}%szh + 5 Whath <X E W}%‘Izzh))],
h=1 h=1

L L
MSE(By) ~ 4Z*Y W204(C2, + Ch,) + Y W6, |422C2,(Zn — Z)°

h=1 h=1

L
_ .zh
+ 422727 WR(C2, + C2) + 8232 jWh<U a —a§h>
h=1 h=1

L L L
— = 2 1
— 87222 (ZXZ Whoah — Y _2Who?, + ZXZW,%GM>
h=1 h=1 h=1
B 1 L L 1 L L
#8707 g 3 Wiowan — SWACE + 77> Wi = 3 W)
h=1 h=1 h=1

(224) — 822 == ZWhath]
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The expressions for Bias and MSE of t.;(R) are given by

(2.25) Bias(t.1 (R)) = Bias(Asy) + Bias(Bs),
and
(2.26) MSE(tc1(R)) ~ MSE(Ay) + MSE(By).

2.3. A Combined Generalized Variance Estimator

We now propose the following class of generalized population variance estimators:

- 521, = 0%, — Oy * 2 2 2
R) = ZWh O-’_%h +1 + (Uxh - th)
h=1

. < (ac, + ) >g
w(0432h +8)+ (1 —w)(acgZ, +5)

— 2
_ (aX + B) g
@20+ ZWh [(Zh [t (X —”fst)]) ' <)\(awst +B)+ (1~ A)(aXJrﬂ)) ] ’

tcp(R) = A3 + Bg.

Consider the first term:

L 2 2 2 52 2 g
A 8% — 0% — 04y * Z (o2, + )
Ay = W;{( zh Sh Th h>+(02h_82h)]*< zh > '
}; 0%, +1 e w(as?, + B) + (1 —w)(ac?, + 3)
Using Taylor series approximation, we obtain the Bias in Ag as

(2.28)

g Z C O'2 ()\zgh—l) — 20‘2 22/\12110 h
Bi A W, 0 Th zh zh Th~h 2 A -1
ias(A3) hzl h h[ o2 +1 — (gwibn) o2 1 on(Aoan—1) ) |,

040'2

where 1), = Zh 1307 ziﬁ

The mean square error is given by

)\40h_ 1)—1—40‘ Z4CZQ 403 o2 ZzAgohCZh
MSE(43) th K T(’; +h1) btnth
Th
(2.29)

+ (0 + QudOom ~ 1)) —2(

where Qp, = gwi)y,.

02, (Aaon — 1) — 202, Z2N 12, Cspy
2
o7, + 1

)(Ugh + QhUZh)]a

Differentiate (2.29) w.r.t Qp:

02, (Moo, — 1) — 2U%hZ]?L)\12hCzh>
oy, +1 ’

0 XL: 1 [ (02, (Moon — 1) — 202, Z2A123.Cun 1 o
hopt — o2 O_%h +1 ()\04h — 1) zh |-

h=1yh

20,(05h + Quogy) (Noan — 1) = 205h<
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The MSE at this optimum value is given by

L

W26, _ _

MSE(A3)opt Z 2 h+ e Ka;*h(mh — 1) + 404, ZEC?, — 4a§ha%hz,3A30hczh)
-1 Th

1

2
_ m <Uzh()‘22h — ].) — QU%hZ}%AlghCZh> :|

(2.30)

Consider the second term:

_ 2
_ (aX + ) g
(231) By = ZWh [(Zh ~ [ (X - x“”) " (A@mt +6) + (1= N (aX + ﬂ)> ] '

Repeating the procedure outlined in steps (2.10)—(2.15) for the estimator (2.31), yields defi-
nitions of Bias and MSE for Bg as

L
Bias(B3) Z2ZWh9h(02h+D2 ) X22Wh 2+ S Wibn | Z3C3,

h=1

2Zh ZWthxh +2D (Zh ZWhgth - ZhXZWh C2h + 72Wh0zmh 2Z2Wh0th

h=1 h=1 h=1
(2:32) +ZXZWh h+ZWh%h> —2ZhZZWhazh 22Wham],
h=1 h=1 h=1 h=1

where D = (gA\¢) and ¢ =

aX—&-ﬂ;

L L L
MSE(B3)opt ~ e{ZQXQZW,%Cgh + 20 WRCE, — 27 Wi
h=1 h=1 h=1

L L -3 L
_ o - 73
Do [ Do XYW+ XS W, ~ X;Wgam]

h=1 h=1
L L L
YW 4((23 B2+ B (S W + B+ Y Whagh)>
h=1 h=1 h=1
L L
(B~ 22K S W2, — (B2 1 2 ZY) S Wad?,
h=1 h=1

L

Z WhJZ$h 2Zh Z Whath + ZhZ Z Wh Ozxh
h=1 h=1

(Z3X + 7, 72X)
ZX
L 3 2
27} — 2237
+ Dopt (Dopt 227y WiCE M > Whoan

h=1 X h=1

L > 759 L
o o o Z 72
(2.33) + (ZhXZ - 22, X 2% - ZyZ%) Y W, homh>] }
h=1 =1
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where

732 22)

. {( S Wihoean + Z2 (20X —2X2Z — Z2) Sk, WEC2, + ZhZ >r, Whamh]

Dopt: .
o{zist wien s i we [z sk wies | + (X wic - § T i)

The expressions for Bias and MSE of t.,(R) are given by

(2.34) Bias(te(R)) = Bias(A3) + Bias(Bs),
and
(2.35) MSE(tep(R))opt ~ MSE(A3)opt + MSE(B3)opt.-

3. SOME SEPARATE VARIANCE ESTIMATORS IN STRATIFIED RAN-
DOM SAMPLING

Some authors, including Ozel et al. (2014) [10], Clement (2018) [2] and Younis and
Shabbir (2019) [16], have presented separate variance estimators. In doing so, they have
ignored the Bj term introduced in (1.2). We examine the following separate variance es-
timators in stratified random sampling mainly to show that ignoring the B; term can give
misleadingly low MSE values.

3.1. The Separate Basic Variance Estimator

Following the authors listed above, the separate population variance of the study vari-
able in stratified sampling is given by

L 2 2 2 =2
0%, — 0% — 04y % J
(31) J?O(R) = E H/h( zh Szh 1Th h) .
Py oqy, +

This leads to the following estimator:

L 2, — 0% — o2, %72
(3.2) tso(R) = ZWh< b ton b h>.
h=1

UTh—i—l

The Bias and MSE of t¢(R) are given respectively as

UThZ szh
(3.3) Bias(t Zehw ( 2t )
and
(3.4)

MSE(t Z&hWh ( e ) <a§h(A40h — 1) + 403, Z2C%, — 4a§ha%hZ§A30hCzh).
Th
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3.2. The Separate Ratio Variance Estimator

3.5 ts1(R) = > W, £ 2 | =) .
59 =3l () (2)

The Bias and MSE of ¢4 (R) are given respectively as

262, 72X ion Cuty — 02 (Ngopy, — 1) — 02, 7202
(3.6) Bias(ts1(R ZGhWh OThZh 2R 2h UZQh( 2oh — 1) = 07, 25, O3, ’
oy +1
and
L
W2,
MSE(t Z 0, h+1 [3h()\40h1)203h05h()\22h1)(U%h+1)
Th

=1

+ O-yh(>‘04h — 1)(0’%% + 1)2

(3.7) + 4Cp (U%hzﬁczh — 0240 ZiAson + 0o Zi Man (07, + 1))]

3.3. A Separate Generalized Variance Estimator

The generalized separate population variance estimators can be written as

tor(R) = iW [(Sgh_agh_‘f%h*zi%)Jr( 2 2 )}

sp - £ h O_%h_i_l Ozh — Szh
. ( (ac2;, +B) )9

wlas?, +8) + (1 —w)(ao2, +3))

(3.8)

The Bias and MSE of t,,(R) are given respectively as

Z2C?
Bias(¢ Z W05 [UTh 2 (guiy)
Pt 1
Aaop — 1) — 202, Z2N\ 191 C,
(3.9) * Tonazn )2 OrnZi i Con — oz (Aoan — 1) ||,
o, +1

L

W26 - -
MSE(tsp(R))opt = Zﬁ [<0§h(>\40h —1) + 4074, Z,C3, — 4O'§ho'%hzi21)‘30hczh>
h=1""Th

1 3 2
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4. SIMULATION STUDY

We consider a sample of size N = 2000 from two bivariate normal populations for [‘;(]

determined by the following means and covariance matrices with Ny = 1200 and N, = 800:

Stratum 1: u = E], Y= [227 267], pyz = 0.80,

Stratum 2: pu = [2], Y= [222 252], pye = 0.70.

These 2000 observations are treated as our finite populations. For the 2000 values generated
from these distributions, the means, variances, and correlations are given by:

Stratum 1: g1 = 4.021, py1 = 2.010, 02) = 1.975, 02 = 5.987, pys1 = 0.797,
Stratum 2:  pzp = 6.070, py2 = 4.006, 02 = 1.982, 02y = 4.977, pya = 0.702.

Overall parameter values are given by
fiz = 4.8413, p, =2.8791, o2 =2.9671, o, =6.4644, py, =0.7596.

We consider a sample of size n = 600, where n; = 360 and no = 240. The stratum sample
size np, (h = 1,2) is based on the proportional allocation, that is, ny, = Wj x n. The scram-
bling variable S and 7' are assumed to have normal distributions with E(S) =0, E(T) =1,
Var(S) = 0.5 and different values for Var(7). In the combined and separate generalized
variance estimators, we choose o« =1, =0 and g = 1. Other choices of a and 3 in our
simulations had minimal impact.

The Percent Relative Efficiency (PRE) with respect to the stratified sampling is defined

* MSE(fo(R))

PR = N ISE(1(R))

x 100, where i = 0,1 and p.

Since we are developing the proposed estimators based on randomized data, it is im-
portant to consider the privacy level as well. Gupta et al. (2018) [6] introduced a unified
measure of estimator quality (0) given by

L

N where ADP = ZWhADPh
h=1

B Theoretical MSE

)
App

is the privacy level for the model Z=TY+S as given by Yan et al. (2009) [15].

Theoretical and empirical MSEs and PREs for both the separate variance estimators
and combined variance estimators are reported in Table 1. For either separate or combined
estimators, the generalized estimator is clearly more efficient than the basic estimator and the
ratio estimator. One can note that the MSEs increase as the variances of T" increase, which is
on expected lines due to extra noise in the data. However, this loss in efficiency is off-set by the
gain in privacy as shown by the d-column. For example, the MSEs of the combined generalized
variance estimator t.,(R) increases from 0.2842 to 0.5024 when Var(7') increases from 0.5 to 1,
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but ¢ value decreases from 0.0364 to 0.0323. In general, the proposed variance estimators
under the additive model (Z =Y + S) where Var(T') = 0 are more efficient compared to the
generalized model (Z =TY + S) where Var(T) > 0 by providing smaller MSEs. However,
the proposed variance estimators under the generalized model (Z = TY + S) are better by
providing smaller § values if we consider the efficiency and the privacy simultaneously.

Table 1: Theoretical (in bold) and empirical MSEs and PREs of the variance estimators
with 05 = 6.4644.

| Var(s) | Var(T) || Estimator| 62 | MSE | PRE | § | Estimator| o2 [MSE| PRE | & |
0.0857| 100 , 0.1119| 100

tso(R) [5.4368 | oocg 100 |0-1664]1  teo(R) | 641411 70 100 |0-2144

0 ta(R) | 5.4502 0.0752|113.9627| ' te1(R) |6.4322 0.0985 | 113.6040 | /| ..

0.0765 | 112.1568 0.1014 | 111.5384

0.0635 | 134.9606 0.0858 | 130.4195
tap(R) |5.4402| ;0 00| Tt 00 (041368 || tep(R) [ 6.4182| oo | e 0.1644

0.2142 100 0.2588 100
tso(R)  [5.5456 | % 100 | 00442 teo(R) |6.4434 1 00 100 |0-0530

0.1951|109.8923 0.2376 | 108.9225
0.3 ts1(R) 5.5547 0.1964 | 109.5213 0.0400 te1(R) 6.4534 0.2399 | 108.6285 0.0486

0.1757|122.0261 0.2169 [119.3176
tsp(R) | 55431 769 | Jo1.5941 |0037T4| tep(R) 644291 o1z | 119 8710 | 00444

0.2788| 100 0.3361| 100
tso(R)  [5.5357| 5o oo |0:0357|| teo(R) |6.4141|in (o | 0.0431

0.2579108.1039 0.3147 | 106.8001
0.5 05 ts1(R) 55446 | %20 - o6 [0-0330 | ter(R) {64239 | Ul |0 ] 0.0404

0.2351|118.5878 0.2842118.2617
tsp(R) [5.5344 | 00| T [0-0806 || tep(R) (64137 | 0 O L egy | 0-0364

0.3801| 100 0.4560| 100
tso(R) |5.5128 "o oo 100 0.0310 teo(R) [6.39311 " o] 100 0.0375

0.3621 | 104.9710 , 0.4355 | 104.7072
0.8 ts1(R) 155216 )aseq | 1oa.0317 |00294||  ter(R) 640411 5 agt | 04 5486 | 00308

0.3406 | 111.5971 0.4047 [ 112.6760
tsp(R) [55115 | o0l gy [0-0279 || tep(R) 63981 T 10,0333

0.4550 100 0.5431 100

tso(R) |5.4970| 0"/ 100 |0:029911 teco(R) |6.3897| "ooco 100 | 0-0360
0.4399 | 103.4325 0.5235 | 103.7440

1 ts1(R) |5:5057 1 haro | 103.2021 | 00287 || ter(R) 63929 ono | 103.4602 | 09347

v () |05y |0-4207[108.3530 | o T T |0-5024 108 1011 | o

0.4169 | 108.2273 0.4950 | 108.7272

Comparing the proposed separate variance estimators to the proposed combined vari-
ance estimators, it may appear that the separate estimators are better since they have smaller
MSE. However, one should note that these estimators degrade accuracy in comparison to the
combined estimators. For example, as the true variance of Y is 6.4644, the estimated vari-
ance of Y is 6.4137 for the combined variance estimator when Var(7T') = 0.5. However, the
estimated variance of Y is 5.5344 for the separate variance estimator when Var(7) = 0.5.
The same is true for the other cases. This indicates that the proposed combined variance
estimators are more accurate than the separate variance estimators.
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5. APPLICATION

In this section a real data set is used to compare the performances of the combined
variance estimators. The data is obtained from Eurostat (2008) [4], and the sampling details
are provided in Sousa et al. (2014) [13], a paper that was co-authored by one of the co-authors
of the current paper. There are 1698 records in the population. The volume of purchase orders
reported by the Information and Communication Technologies for 2010 is taken as the study
variable Y. Turnover for the individual enterprises is the auxiliary variable X. The study
variable Y is scrambled using the additive scrambling variable S assumed to be a normally
distributed random variable with mean 0 and variance 0.5, and the multiplicative scrambling
variable T' assumed to be a normally distributed random variable with mean 1 and four
different choices for its variance (0, 0.3, 0.5, and 1). Data summary is provided in Table 2.

Table 2: Population Characteristics and Sampling Information.
Stratum ‘ N ‘ Pyz ‘ Ly ‘ oy ‘ My ‘ Oz ‘ Population
1 979 0.7802 2.15 2.46 3.12 2.68 N =1698, pyz = 0.9368
362 0.7952 16.67 6.86 20.31 6.02 py = 14.44, 02 = 501.31
357 0.8408 45.88 30.21 56.33 30.18 Ue = 17.97, 02 = 640.59

Table 3: Theoretical (in bold) and empirical MSEs and PREs of the variance estimators.
| Var(s) | Var(T) | Estimator | o3 MSE PRE 5

teo(R) 502.1499 11222%537; igg 2485.8154

0 te1(R) 502.6576 11(())22;1624 1111?;.3’67?65 2180.9880

tep(R) 501.8341 %54?52237 11223‘?5301 1929.4389

teo(R) 500.7685 33%152:;)775 igg 15.8680

0.3 ter(R) 501.557 3;557'.857 11%?_)';?6506 15.2921

tep(R) 503.1153 2153?3591 111112';23703 14.2817

v o) | soasmns | 2989589 [ 100 T L
05 | ta(m | sovsers | 2092119 [105.8407T |

tep(R) 501.8327 3881?23716 1111%'.;1216 12.8596

o(B) | sovasey | OT9ROTO [ I00 T

[ [ | R e

(B | songmo | 0240276 [ 105081 [




Variance estimation in stratified sampling using RRT 291

Theoretical and empirical MSEs and PREs are provided in Table 3 for each of the
proposed combined estimators. We used only the combined estimators in this numerical
application because of the inherent drawback in the separate estimators as pointed out at the
beginning of Section 3. The combined generalized variance estimator is clearly more efficient
than both the combined basic variance estimator and the combined ratio variance estimator.
Furthermore, the MSE increases as the variance of T' is increased, meanwhile the unified
measure (0) value decreases. For example, for the combined generalized variance estimator,
theoretical MSE is 3353.681 for J% = 0.3 but increases to 9240.276 for J% = 1. In contrast,
the (J) value decreases from 14.2817 to 12.1863 indicating that using the multiplicative noise
T lowers the efficiency but the added privacy because of this more than compensates this
loss.

6. CONCLUSION

Separate and combined variance estimators are considered under RRT in stratified
random sampling. The simulation study shows that the generalized variance estimator is
more efficient than the other estimators. Also, the proposed combined variance estimators are
more accurate than the separate variance estimators. Furthermore, if one considers efficiency
and privacy simultaneously, the linear combination model Z =TY + S, where Var(T) > 0,
produces better variance estimators compared to the additive model Z =Y + S where Var(T')
= 0. This can be attributed to the fact that proposed variance estimators under Z =TY + S
have higher privacy level and hence smaller § values. The real data application in Section 5
shows the same improvement with the generalized estimator as was seen in the simulation
results of Section 4. We would like to mention that this work can be extended in several
directions in new studies. For example, one can work with the case when the mean of the
auxiliary variable is unknown. Also, the generalized estimator we suggest is not the only
option. One can use other forms of generalizations.
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