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1. INTRODUCTION

Our main focus in this study is on variance estimation for sensitive variables
in stratified sampling. Many researchers have dealt with the problem of mean
and variance estimation under simple random sampling and stratified random
sampling when the study variable is non-sensitive and is directly observable.
Zahid and Shabbir (2018)E| and many other authors have investigated the problem
of mean estimation in stratified random sampling when the study variable is non-
sensitive. Important contributions in the area of variance estimation in stratified
random sampling for non-sensitive random variables have been made by Kadilar
and Cingi (20062 Sidelel et al., (2014} Ozel et al., (2014 Clement (2018)f]
Sanaullah et al., (2017)E|, Younis and Shabbir (2019)|Z|7 and Asghar et al., (2019)7
In all of these studies, the study variable is directly observed and an auxiliary
variable is used to increase the efficiency of estimation.

In research involving sensitive survey questions, standard estimation tech-
niques are unreliable. Warner(1965)|§| introduced the Randomized Response Tech-
nique (RRT) as a research method to reduce response bias in estimation of a
sensitive study variable and at the same time improve the respondent coopera-
tion. Many authors including Kalucha et al., (2017)@, and Zhang et al., (2021)E|
have estimated the mean of a sensitive study variable under stratified sampling.
However, not much work exists for variance estimation under RRT. Gupta et
al., (2020)E| introduced several variance estimators under RRT in simple ran-
dom sampling. The primary goal of this study is to re-examine the Gupta et al.,
(2020)|E| study in the context of stratified random sampling.

Let us consider Y and X to be the observed and auxiliary variables defined
on a finite population U = {U;,Us,...,Ux}. We assume that Y is sensitive in
nature and we observe a scrambled version of it given by Z = TY + S, where
T,S,Y and X are mutually uncorrelated. Let the population be divided into L
homogeneous strata with Nj, unites (b = 1,2,..., L) in the h* stratum such that
Zﬁleh = N. From A" stratum, a simple random sample of size ny, is drawn
without replacement such that Zﬁzlnh = n. Let (ni, Yni, 2ni) be the observed
values on the variables X, Y, and Z in the ht" stratum. Let Zg = ZﬁZIWhi“h,

!See Zahid and Shabbir ([I7]).
2See Kadilar and Cingi ([8]).
3See Sidelel et al., ([12]).
*See Ozel et al., ([10]).
®See Clement ([2]).
fSee Sanaullah et al., ([IT]).
"See Younis and Shabbir ([I6]).
8See Asghar et al., ([1]).
9See Warner([14]).

([91)-
HSee Zhang et al., ([I8]).
12See Gupta et al., ([5])
13See Gupta et al., (J5])
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st = Zﬁ Wrln, Zet = Zﬁ 1WhZp, be the stratified sample means where y;, =
L i1 Yhis Th = % i1 T, zh = % Zhlzhz are the stratum sample means

1 N, .
and Y, = mZizlyhl7 X, = N ZZ \Thi, Lp = N—hzijlzhi are corresponding

population stratum means. Let W), = ]]Vvh (h =1,2,..., L) be the known stratum
weights.

The population variance of the study variable in stratified sampling is given
by Kadilar and Cingi (2006)|E| as

L L
(1.1) 0= > Wi+ Wa(Ys —Y)?,

The combined ordinary and combined ratio estimators of population vari-
ance given by Kadilar and Cingi (2006)E| in stratified sampling are given, respec-
tively, by

L L
(1.2) teo =Y Wasgn + > Wallh — 9st)?,
h=1 h=1
and
o2
(1.3) ter = tco<8 >, where stt = ZWhSlh + ZWh Ty — :cst)Z.
xst h=1

Some authors including Ozel et al., (2014 have suggested the separate or-
dinary and separate ratio estimators of population variance in stratified sampling
which are given respectively by

L
(1.4) tso = Zthzh,
h=1

and

L s,
1.5 ta =Y Wi 2L )o?
(1.5) 1 hzl h(sih)%h

In this paper, we have considered the problem of estimating population
variance using aux1hary information by adapting Kadilar and Cingi ( 2006)|Z|,
Ozel et al. (2014) and Gupta et al., (2020)'%| under RRT. We will discuss the
proposed combined variance estimators in detail in Section [2 Separate variance
estimators will be discussed in detail in Section Bl We also examine the effect of
ignoring the term ZﬁZIWh (Un — Tst)? in on the estimates of the variance in
stratified random sampling.

1Gee Kadilar and Cingi ([§]).
15See Kadilar and Cingi ([8]).
16See Ozel et al., ([10]).
1"See Kadilar and Cingi ([8]).
188ee Ozel et al., ([10]).
9See Gupta et al., ([5]).
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2. Some Combined Variance Estimators in Stratified Random Sam-
pling

In this study, the respondent is asked to provide a scrambled response for
the sensitive study Y by using the generalized RRT model given by Z =TY + S,
as in Diana and Perri (2011)@, where S and T are uncorrelated scrambling
variables such that E(S) = 0 and E(T) = 1. Gupta et al., (20207 used this
RRT model for estimating the population variance in simple random sampling.
They proposed the following estimators:

2 2 2 2

S, — 0o —O0h*xZ
2.1 to(R) = 2—5 T
(2.1) o) e
&
and

ao? g
(23)  tp(R) = |to(R) + (07 — Si)] * <w(a52 + 5)(+ (le—k—ﬁuz)(aUQ + 5)) 7

where o and  are suitably chosen constants associated with the auxiliary variable
X. With g = 1, one can obtain various ratio estimators, and with ¢ = —1 one can
obtain various product estimators. w is an unknown whose optimal value will be
used.

Motivated by Gupta et al., (2020)??] and Kadilar and Cingi (2006 )3 we
propose the following combined variance estimators in the stratified random sam-

pling:

2.1. The Combined Basic Variance Estimator

Based on the RRT model Z =TY + 5, we have th as,

2 _ 2 /2 2 2 2
0o = 0rp(Oyn + tyn) + Oyn + 05

Rearranging, we get

2 2 2 ~9
2 _ % 9g8n (oFy, * Zj;)

g, =
yh 2
o7y +1

20See Diana and Perri ([3]).
21See Gupta et al., ([5]).
*28ce Gupta et al., ([5]).
#3See Kadilar and Cingi ([8]).
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The population variance of the study variable in stratified sampling is given by

2 - UZh_Ug‘h_U%h*ZI% = > 2
(24)  op(R) =D Wy P +) Wi(Zn — 2)*.
= h=1

Let 0% (R) = Ay + By,

L 2 2 L
o2 — 0%, — o2, x 7} _ _
here Ay = Y W), | —2—5h—Th d By = Wi(Zy - Z)?
where Aq A h( UTh+1 an 1= - h( h )

We have our first proposed combined estimator given by

L s2, — 0%, — 02, xz2 L
(2.5)  tw(R) = ZWh< h_Sh _Th h) + > Wiz — 2)?
h=1

oy +1 h=1

tcO(R) - Al + Bl

— O%n — OFn * % - 2
where A Wi and By = Wi(zn — 2
1= z () wna By = S - 2)
To obtain the Bias and MSE expressions for the proposed estimators in the
stratified random sampling, we define the following error terms

2 2 - 7 - > -
STh — O%n Zn — Zp, Zst — 4 Tgr — X
5 _ — J— J—
zh — 2 y €2h = = y €zt = = )y Cast = -
o2, 7 7 X

such that E(d,,) = E(e.n) = E(ezst) = E(egst) =0
E(62),) = 0n(Aon — 1), E(02,) = 0 (Moan — 1), E(0:1021) = Op(Naan — 1),
E(6.1e:n) = OpX30Cohy E(0znezn) = OpA12nCony B(€2),) = QhC,zh

L
E(ezstezh) = ZWhthEhv ( 351& ZWhthzhv ( Zst ZWhghO_ih,
h=1
E(exstezh) = ZWhehath, (eﬂcsteZSt ZWh Onozan
h=1
Pyah h
where 0., = PzxhO zhOzhy Pzah = yj 2 2 »Arsh = ﬁrfsﬁ?
1+ Trn (TyntHyn) to5, 30 M2
”Zh
1
=1 h

Consider the first term

A = 525, — Oan — T * %
2.6 Ay = W, z
(2.6) =y h< et )
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Rewriting (2.6, we have

L _
A=W ( sn(1+02n) — %‘ — ol Zn(1 + ezh)]2>
P O'Th +1

Subtracting A; on both sides, we obtain

L 2 2 72 2 72 2
N 0%, 0,4 — 204, Z e, — 04, Zie
(2.7) (A, — 4y) = ZW’%< zh9zh Th2 hCzh Th%h zh>
JTh+1

Taking the expectation on both sides of 1 , the Bias of A; is obtained as,
. L 0%, Z:C%,

2.8 Bias(A1) = =) 0,Wp| —5——2

(2.8) ias(Ay) hg_l h h< o2 +1 >

By squaring both sides of (2.7 and using the first order approximation, the MSE
is obtained as,
(2.9)

MSE(A;) Zehwh< I )<a§h(A40h—1)+4a§‘;h2;fc§h—4a§ha%hZ§A30hczh>
Th
Consider the second term
L
(2.10) By =) Wiz~ za)*

Rewriting (2.10), we have
L
(2.11) By =Y WilZn(1+exn) — Z(1 + ezar))?
h=1

Expanding (2.11]), and restricting to terms up to order 2, we have
(2.12)
L

By =Y Wil(Zn—2)*+(Znen— Zezst)* +2(Znesn — ZnZezst— ZnZea + Ziezst))
Subtracting B on both sides, we obtain
(2.13)

L
(El—Bl) = 2262515‘1‘2”/};[Z}%egh_2thezhezst+2(Zlgezh_thezst_zhzezh‘i‘z}%ezst)]
h=1

Taking the expectation on both sides of |D the Bias of B is obtained as,

L L
(2.14) Bias(By) ~ 2%y Wi0,C2, + Y Wiu[Z;C2, — 22, Z02)]
h=1 h=1
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By squaring both sides of ([2.13)), using the first order approximation and simpli-
fying, the MSE is obtained as

L L L
MSE(By) ~4Z*Y W20,C2, + > W6, [42,305 —8ZnZY Wy (Zn — Z)°
h=1 h=1 h=1

L
(2.15) +4Z, 2% Wi C3,(Z), — 22)}
h=1

The expressions for Bias and MSE of t.(R) are given by

(2.16) Bias(teo(R)) = Bias(A,) + Bias(B)),
and
(2.17) MSE(teo(R)) =~ MSE(A,) + MSE(B;).

In , we assume that Al and Bl are uncorrelated. This is not an unreasonable
assumption since the sample mean and the sample variance are uncorrelated for
normal data. This is also confirmed by large number of simulated values of A
and B; that we generated.

2.2. The Combined Ratio Variance Estimator

L 2, — 0%, — o2, %72 o2 L Zst o 2
- (b 8). ()] - 29

Sth

tcl(R) = AQ + BQ
Consider the first term

A L 2, — 0%, — 02, xz2 o
(2.19) Ay = ZW’IK zh 52h Th h) " <§h>:|
h=1 o7y +1

Rewriting ([2.19), we have

L 2 2 2 72 2 72 2 2 2.2
/iz _ ZWh [Uzh — 05 — 014y, + 207, Zjezn0ch — 05,0000 — UThZhezh]
= 2 2
— orp +1 orp, +1

Subtracting A; and taking the expectation on both sides, the Bias of Ay, is
obtained as,

2073, ZiManCan — 02, (Mazn — 1) — Uzzrhzgcghﬂ

L
2.20) Bias(Ay) ~ > 0, W,
(2.20) Bias(As) hzl h h[< o2, 11
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For MSE, we have

L 2 2 2 2 72 2 72 2 722
Ay = ZWh Oon + On9zh = 05 — OrnZiy — 2070 ZCzh — OrnZiCan
oy +1

2 2 2 2 72 2 72 2 72,2
a%h +1

Simplifying and ignoring second and higher order terms,

L 2 2 2 52 2 2 52 2 2 2 52

ZWh |:o-zh — 05 — UThZh+Uzh5zh — 207, Zj,€2h — 05p00h + 05,0zn + O-ThZh(Sﬂﬂh}

2 7
o7y, + 1 ogy, 1

Squaring and taking the expectation on both sides, we have,
2 72 2
zwh (Gl - Zondien _ 5,
0%y, Th

After some simplifications, the MSE of Ag, is obtained as,

L

0

MSFE AQ ~ Z W[ gh()\40h—l)—QUthSh(AQQh—l)(U%h+1)+03h(/\04h—1)(U%h+1)2
=1

(221)  +4C <U§L”hZ;4zCzh — k07 R ZiA30n + OFnT o Zia Mzn (07, + 1)”

Consider the second term
L 5 2
(2.22) By=> W, <zh - _StX>

Repeating the procedure outlined in steps ([2.10f) - (2.15)) for the estimator (2.22)),
yields definitions of bias and MSE for Bs as

Bias(Bsy) Z2ZWh0h (C%, +C2) +ZWh9h
h=1 h=1

Z}c?, — QZhZZthrzh
h=1

7 L 7 L 7L

h 2 h 2

2.23 21 = Wio,. — Whoseh — 2| = Wio .,
(2.23) + (X;?:l 5O zah + X;?:l WO zuh <XhE:1 ho h>>

L L
MSE(By) = AZ"Y “W20,(C2, + C2,) + > W7o,
h=1 h=1

AZ}CE(Zn — Z)?

L
72 752 2 2 ozzh 2
+4227 thWh( 2, +C%) + SZ3ZZWh< = — th)
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L L L
— = 2 1
—82}2? <Z Wioan — Y _2Whod, + ZW,fazzh>
ZXhzl h=1 ZXh:l
1 L L 1 L L
7 73 2 o 22 - o 2
87,7 (2;2; W2own ;thm ZXI;WWM hz_lwhazh)

(2.24) —822 _—_ ZWhath}

The expressions for Bias and MSE of .1 (R) are given by

(2.25) Bias(t.1(R)) = Bias(As) + Bias(Bs),
and
(2.26) MSE(t.1(R)) ~ MSE(Ay) + MSE(Bs).

2.3. A Combined Generalized Variance Estimator

We now propose the following class of generalized population variance es-

timators.
Er e )
?, :,
. ] o
2.20) +) W [(Z’” 2] )+ (amn ) L 0 T T H) ]

tep(R) = A3 + B3

Consider the first term

L 2 2 2 32 2 g
- 8% — 0% — 04y *Z (awo?, + B)
A :E:”’hK zh — 95n — 9Th h>_|_ 02, —s? ]*< zh )
5 — o2, +1 (02n=52n) w(as?, + B) + (1 —w)(ac?, + B)

Using Taylor series approximation, we obtain the bias in As as,

(2.28)

Z2C?
Bias A5 Z Wh h[GTh zh

oy, + 1

2 2 72
O'Zh()\ggh - 1) - QUThZh)\lQhCzh 2 >:|
—02 (Aoap—1
U%h 1 mh( 04h )

~(grin)
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Olo'ih
where 1);,= Zh | o2 4B

The mean square error is given by

MSE A3 ZW]%H )\40h — 1) + 40'ThZ 02h — 4U§h0%h213,)‘30hczh N
(0%, +1)2

(2.29) 2
<(Uzh+Qh‘7§h)2(/\o4h— 1)) —2 (UZh(

Aaop — 1) = 202, Z2X2n,Can,
U%h +1

)(Uzh‘*‘QhU;h)}

where Qp, = gwip

Differentiate (2.29)) w.r.t Qp:

02, (Asop — 1) — 20%h2}2l>\12hczh)
oF, +1

L —
Q _ Zi Ozh(AQQh — 1) — 20%h2%)\12h02h 1 B 0_2
hopt o2 U%h +1 ()‘04}1 — 1) zh

h=1yh

QUzh(Ugh + Qhazz,h)(/\oz;h —-1)= 20§h<

The MSE at this optimum value is given by

L

- W26, _ _
MSE(A3)opt = ) :(02:_1)2[<U,§h()‘40h_1)+4U§“hzﬁ0§h_403h072“hzf2/\30h02h)
h=1""Th

1 - 2
Consider the second term
(2.31)

Bs = ZWh [<Zh = [Ea + (X = jst)}) i <)\(O¢xst + ﬁgo—ékX(le—BZ\)(aX + 5)>g] |

Repeating the procedure outlined in steps ([2.10)) - (2.15]) for the estimator (2.31)),
yields definitions of bias and MSE for Bj as

L L
Bias(Bs) zZQZW,?Gh(Cah%—DQ ) X22Wh 2+ Y Wb | Z3C3,

h=1 h=1

2Z = L i 27 &
h§ Whamh+2D( §§ Wio.an—Zn XY :WﬁC§h+7h§ Wisoh— > Wiaun
h=1 h=1 h=1 h=1

L L L L
(2.32)  +ZXY WiCH + Zwﬁ%h) — 22,2y Who2, — 22W,§ath] :
h=1 h=1 h=1 h=1
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aX

where D = (gA\¢) and ¢ = oX 17

L L L
MSE(B3)opt ~ 9{Z2X2ZW}30§/1 + 20y WiCZh = 22y Wiown
h=1 h=1 h=1

L L 53 L
_ e Z3
+Dopt [Doptz‘? 1W,?C§h - Z3Xh§_1W,$C§h — XhE_lwf?%h]

L L L
3w 4<(z§ B2+ B (S W + B+ Y Whagh)>
h=1 h=1 h=1
L L
HBX — 22X S W2, — (B2 + 202 S Wad?,
h=1 h=1

(Z3X + 2,2°X)

L L L
Z Whoszh — QZ}QL Z Who sah + ZhZ Z W}?szh

zZX h=1 h=1 h=1
72 72 - 22 (222 _22%2) -
+Dopt DopchZ Z Wh th + # Z Whath
h=1 h=1
L Z 22 L
(233)  +(ZRXZ - 22, X2 — 2,2°%) Y WECE, + “- N Wﬁam)] }
X
h=1 h=1
where
L [ BB S W 220X 257 2 S WECH + BT Wi

Dopt =

~ L L 792 77 L 73 Y L 7 L
o{zisi wicy s shwime s wics] + [P wics - ok wie) |

The expressions for Bias and MSE of ¢.,(R) are given by

(2.34) Bias(t.,(R)) = Bias(As) + Bias(Bs),

and

(2.35) MSE(tep(R))opt & MSE(A3)opt + MSE(Bs)opt

3. Some Separate Variance Estimators in Stratified Random Sampling

Some authors including Ozel et al., (2014) Clement (2018) and Younis
and Shabbir (2019)@ have presented separate variance estimators. In doing so,
they have ignored the B; term introduced in . We examine the following
separate variance estimators in stratified random sampling mainly to show that
ignoring the B; term can give misleadingly low MSE values.

2Gee Ozel et al., ([10]).
#5See Clement ([2]).
?6See Younis and Shabbir ([16]).
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3.1. The Separate Basic Variance Estimator

Following the authors listed above, the separate population variance of the
study variable in stratified sampling is given by

L 2 2 2 52
05, — 0%, —0qy ¥ 2
31 2 (R W, zh sh Th h)
( ) Uso( )_ E h( U%h 1

h=1

This leads to the following estimator:

XL: §2, — 0% — o2, x 72
(3.2) tso(R) = Wh( z s )
h=1 U%h +1

The Bias and MSE of t5(R) are given respectively as,

o Z2C2
3.3 Bi ~-=) W, L >
(33) tas(t Z h< oty + 1
and
(3.4)
L 1 ) )
MSE(tso(R)) = Z%Wﬁ ((024‘1)2> (O';lh(/\40h_1)+4U%hZﬁC§h_40§h0%hZ}%/\30hCzh>-
h=1 Th

3.2. The Separate Ratio Variance Estimator

EL: 82, — Oon — On * % oo
(3.5) tsl(R): Wh|:< z sh L L)*< T ):|
h=1 ofn +1 Seh
The Bias and MSE of t,;(R) are given respectively as,
2 72 _ 52 1) 42 72012
(3.6)  Bias(t Z9hW [(QJThZh/\uhC'zh U;h(/\QQh 1) UThZhCzh>:|
opp +1
(3.7)

W26,
MSE(ts1(R)) ~ Z — [ 2n(aon—1) 202,075, (Maan—1) (07, +1)+0y, (Aoan—1) (07, +1)°

+4Cp, (U%hzﬁczh — 02,07 Zi Ason + U%haihz}%)‘m}z(a%h + 1))}
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3.3. A Separate Generalized Variance Estimator

The generalized separate population variance estimators can be written as

4 52, = Oon — 0w * % 2 2
tsp(R) = ZWh |:( = O'S%h +1 ) + (Uxh - Szh):|
h=1

*( (002, + B) y
w(ast, +8) + (1 —w)(aol, +8))

The Bias and MSE of ¢,,(R) are given respectively as,
(3.9)

(3.8)

L 2 72,2 2 2 72
. g A C g ()\22h — 1) — 20 A )\12}0 h
Bias(tsy(R)) = Y —Wy0, | -Lh=h=zh zh ThZhZ 2R 220 62, (Aoan—1
slt () = 3 Wit | T () o #2001 ).
(3.10)
L w2, _ _
MSE(tun(B)on = Y- 1 s | (o2 o = 1+ 408 ZHC2, — 102,80 2800 Con
h=1' Th
1 - 2
_m (Ugh()\ggh — 1) — 2U%hzi)\12hczh> :|

4. Simulation Study

We consider a sample of size N = 2000 from two bivariate normal popula-
tions for ;( determined by the following means and covariance matrices with

N; = 1200 and N, = 800:

4 2 27
Stratum 1: u = o . = 0.80
B P 2.7 6| ™
6] [ 2 2.9]
Stratum 2: p 4l 99 5 | P 0.70

These 2000 observations are treated as our finite populations. For the 2000
values generated from these distributions, the means, variances, and correlations
are given by

Stratum 1: ji1 = 4.021, 111 = 2.010,02; = 1.975,02;, = 5.987, pye1 = 0.797

Stratum 2: ji,0 = 6.070, 12 = 4.006, 02, = 1.982,02, = 4.977, pyea = 0.702
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Overall parameter values are given by
fip = 4.8413, pi,, = 2.8791, 02 = 2.9671, 02 = 6.4644, p,,, = 0.7596

We consider a sample of size n=600, where n;=360 and n,=240. The stra-
tum sample size np(h = 1,2) is based on the proportional allocation, that is,
np = Wy x n. The scrambling variable S and T are assumed to have normal
distributions with E(S)=0, E(T)=1, Var(S)=0.5 and different values for Var(T).
In the combined and separate generalized variance estimators, we choose o = 1,
B =0and g = 1. Other choices of o and 8 in our simulations had minimal impact.
The Percent Relative Efficiency (PRE) with respect to the stratified sampling is
defined as

= ———— =2 x 100, where i =0,1 and p.

Since we are developing the proposed estimators based on randomized data,
it is important to consider the privacy level as well. Gupta et al., (2018)@ intro-
duced a unified measure of estimator quality (§) given by

L

s where ADP = ZWhADPh
h=1

_ Theoretical MSE

1)
App

is the privacy level for the model Z=TY+S as given by Yan et al., (2009)]

Theoretical and empirical MSEs and PREs for both the separate variance
estimators and combined variance estimators are reported in Table |1} For either
separate or combined estimators, the generalized estimator is clearly more effi-
cient than the basic estimator and the ratio estimator. One can note that the
MSEs increase as the variances of T increase, which is on expected lines due to
extra noise in the data. However, this loss in efficiency is off-set by the gain in
privacy as shown by the §-column. For example, the MSEs of the combined gen-
eralized variance estimator ¢.,(R) increases from 0.2842 to 0.5024 when Var(T)
increases from 0.5 to 1, but § value decreases from 0.0364 to 0.0323. In general,
the proposed variance estimators under the additive model (Z =Y + S) where
Var(T) = 0 are more efficient compared to the generalized model (Z = TY + 5)
where Var(T) > 0 by providing smaller MSEs. However, the proposed variance
estimators under the generalized model (Z = TY + S) are better by providing
smaller § values if we consider the efficiency and the privacy simultaneously.

Comparing the proposed separate variance estimators to the proposed com-
bined variance estimators, it may appear that the separate estimators are better
since they have smaller MSE. However, one should note that these estimators
degrade accuracy in comparison to the combined estimators. For example, as
the true variance of Y is 6.4644, the estimated variance of Y is 6.4137 for the
combined variance estimator when Var(7)=0.5. However, the estimated variance
of Y is 5.5344 for the separate variance estimator when Var(7T)=0.5. The same
is true for the other cases. This indicates that the proposed combined variance
estimators are more accurate than the separate variance estimators.

*"See Gupta et al., ([6]).
*See Yan et al., ([I5]).
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Var(S) | Var(T) | Estimator | o} MSE PRE ) Estimator | o2 MSE PRE )
to(R) | 5.4368 %‘32587 1188 0.1664 | tw(R) | 6.4141 %ﬁ;f igg 0.2144

0 ts1(R) 5.4542 %g;gf 1111???6287 0.1441 te1(R) 6.4322 %‘Atl)gif 1111:??2;40 0.1887
R ik A TR ik O

to(R) | 55436 | S22 Tooma | rg(r) | aza | 025081100 050

0.3 ta(R) | 55547 %igﬁ 11%322912; 0.0400 | tw(R) | 6.4534 %;igge 11%8&3228255 0.0486
s S O S

tw(R) | 55357 %;;gf 1188 0.0357 | tw(R) | 64141 %ggfol 188 0.0431

0.5 0.5 ta(R) | 55446 %;igg 11%?125’5 0.0330 | tu(R) | 6.4239 %i}fg 11%%:’;?511 0.0404
e S S | S T

to(R) | 55128 %’23&1 1188 0.0310 | tw(R) | 6.3931 %'jggg 1188 0.0375

0.8 ta(R) | 55216 %if;; 11%13;170 0.0204 | tu(R) | 6.4041 %‘g?f 11(())1:;(4];62 0.0358
o B T |y 0

to(R) | 54970 %jffg 1188 00299 |  tw(R) | 6.3807 %igg; 1188 0.0360

1 ta(R) | 55057 %‘g?g 11%?‘2‘32215 0.0287 | ta(R) | 6.3929 %33325 11%2136120 0.0347

()| sagsr | 04207 1081530 [ I T 05024 [ 108.T0TT o

0.4169 | 108.2273 0.4950 | 108.7272

Table 1: Theoretical (in bold) and empirical MSEs and PREs of the variance
estimators with 05 =6.4644.

5. Application

In this section a real data set is used to compare the performances of the
combined variance estimators. The data is obtained from Eurostat (2008)%] and
the sampling details are provided in Sousa et al., (2014) @ a paper that was co-
authored by one of the co-authors of the current paper. There are 1698 records in
the population. The volume of purchase orders reported by the Information and
Communication Technologies for 2010 is taken as the study variable Y. Turnover
for the individual enterprises is the auxiliary variable X. The study variable Y
is scrambled using the additive scrambling variable S assumed to be a normally
distributed random variable with mean 0 and variance 0.5, and the multiplicative
scrambling variable T' assumed to be a normally distributed random variable
with mean 1 and four different choices for its variance (0, 0.3, 0.5, and 1). Data
summary is provided in Table 2.

?9See FEurostat ([]).
30See Sousa et al., ([13]).
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Stratum | N Pyz Iy oy Iy Oy Population
1 979 | 0.7802 | 2.15 | 2.46 | 3.12 | 2.68 | N =1698,p,x = 0.9368
2 362 | 0.7952 | 16.67 | 6.86 | 20.31 | 6.02 | p, = 14.44,05 =501.31
3 357 | 0.8408 | 45.88 | 30.21 | 56.33 | 30.18 | p, = 17.97,02 = 640.59

Table 2: Population Characteristics and Sampling Information.

Theoretical and empirical MSEs and PREs are provided in Table 3 for each
of the proposed combined estimators. We used only the combined estimators
in this numerical application because of the inherent drawback in the separate
estimators as pointed out at the beginning of Section 3. The combined generalized
variance estimator is clearly more efficient than both the combined basic variance
estimator and the combined ratio variance estimator. Furthermore, the MSE
increases as the variance of T is increased, meanwhile the unified measure (9)
value decreases. For example, for the combined generalized variance estimator,
theoretical MSE is 3353.681 for 02 = 0.3 but increases to 9240.276 for 02 = 1. In
contrast, the (§) value decreases from 14.2817 to 12.1863 indicating that using
the multiplicative noise T lowers the efficiency but the added privacy because of

this more than compensates this loss.

Var(S) | Var(T) | Estimator a?;‘; MSE PRE )
t(R) | 502.1499 11222353738 igg 2485.8154
0 te1(R) 502.6576 1100’;2’871624 1111:;)..3’67'?65 2180.9880
tep(R) 501.8341 13?522?’)7 11222.?;(?01 1929.4389
teo(R) 500.7685 ?;)%}356););28 1188 15.8680
0.3 ta(R) | 501.557 3;5537'.85?7 ll%z';gg’(? 15.2021
) | o | PBOST [ ATLIOTS
to(R) | 503.8318 i)?ézgé’g’f 188 14.2064
b5 | | s ORI T0SSIOT
tep(R) 501.8327 %1881?%716 1111?);1,’77316 12.8596
teo(R) 501.3862 %77?3_'?373 188 12.9152
1 te1(R) 503.1442 9955472’271271 11%21..(53;1;80 12.5825
)| sovasan | P02 1098

Table 3: Theoretical (in bold) and empirical MSEs and PREs of the variance

estimators.
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6. Conclusion

Separate and combined variance estimators are considered under RRT in
stratified random sampling. The simulation study shows that the generalized
variance estimator is more efficient than the other estimators. Also, the proposed
combined variance estimators are more accurate than the separate variance esti-
mators. Furthermore, if one considers efficiency and privacy simultaneously, the
linear combination model Z = TY +S, where Var(T) > 0, produces better variance
estimators compared to the additive model Z =Y + S where Var(T) = 0. This
can be attributed to the fact that proposed variance estimators under Z = TY + S
have higher privacy level and hence smaller § values. The real data application
in Section 5 shows the same improvement with the generalized estimator as was
seen in the simulation results of Section 4. We would like to mention that this
work can be extended in several directions in new studies. For example, one can
work with the case when the mean of the auxiliary variable is unknown. Also,
the generalized estimator we suggest is not the only option. One can use other
forms of generalizations.
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