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1. INTRODUCTION

Our main focus in this study is on variance estimation for sensitive variables
in stratified sampling. Many researchers have dealt with the problem of mean
and variance estimation under simple random sampling and stratified random
sampling when the study variable is non-sensitive and is directly observable.
Zahid and Shabbir (2018)1 and many other authors have investigated the problem
of mean estimation in stratified random sampling when the study variable is non-
sensitive. Important contributions in the area of variance estimation in stratified
random sampling for non-sensitive random variables have been made by Kadilar
and Cingi (2006)2, Sidelel et al., (2014)3, Özel et al., (2014)4, Clement (2018)5,
Sanaullah et al., (2017)6, Younis and Shabbir (2019)7, and Asghar et al., (2019)8.
In all of these studies, the study variable is directly observed and an auxiliary
variable is used to increase the efficiency of estimation.

In research involving sensitive survey questions, standard estimation tech-
niques are unreliable. Warner(1965)9 introduced the Randomized Response Tech-
nique (RRT) as a research method to reduce response bias in estimation of a
sensitive study variable and at the same time improve the respondent coopera-
tion. Many authors including Kalucha et al., (2017)10, and Zhang et al., (2021)11

have estimated the mean of a sensitive study variable under stratified sampling.
However, not much work exists for variance estimation under RRT. Gupta et
al., (2020)12 introduced several variance estimators under RRT in simple ran-
dom sampling. The primary goal of this study is to re-examine the Gupta et al.,
(2020)13 study in the context of stratified random sampling.

Let us consider Y and X to be the observed and auxiliary variables defined
on a finite population U = {U1, U2, . . . , UN}. We assume that Y is sensitive in
nature and we observe a scrambled version of it given by Z = TY + S, where
T , S, Y and X are mutually uncorrelated. Let the population be divided into L
homogeneous strata with Nh unites (h = 1, 2, ..., L) in the hth stratum such that∑L

h=1Nh = N . From hth stratum, a simple random sample of size nh is drawn

without replacement such that
∑L

h=1nh = n. Let (xhi, yhi, zhi) be the observed

values on the variables X, Y , and Z in the hth stratum. Let x̄st =
∑L

h=1Whx̄h,

1See Zahid and Shabbir ([17]).
2See Kadilar and Cingi ([8]).
3See Sidelel et al., ([12]).
4See Özel et al., ([10]).
5See Clement ([2]).
6See Sanaullah et al., ([11]).
7See Younis and Shabbir ([16]).
8See Asghar et al., ([1]).
9See Warner([14]).

10See Kalucha et al., ([9]).
11See Zhang et al., ([18]).
12See Gupta et al., ([5]).
13See Gupta et al., ([5]).
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ȳst =
∑L

h=1Whȳh, z̄st =
∑L

h=1Whz̄h be the stratified sample means where ȳh =
1
nh

∑nh
i=1yhi, x̄h = 1

nh

∑nh
i=1xhi, z̄h = 1

nh

∑nh
i=1zhi are the stratum sample means

and Ȳh = 1
Nh

∑Nh
i=1yhi, X̄h = 1

Nh

∑Nh
i=1xhi, Z̄h = 1

Nh

∑Nh
i=1zhi are corresponding

population stratum means. Let Wh = Nh
N (h = 1, 2, ..., L) be the known stratum

weights.

The population variance of the study variable in stratified sampling is given
by Kadilar and Cingi (2006)14 as

(1.1) σ2c0 =

L∑
h=1

Whσ
2
yh +

L∑
h=1

Wh(Ȳh − Ȳ )2.

The combined ordinary and combined ratio estimators of population vari-
ance given by Kadilar and Cingi (2006)15 in stratified sampling are given, respec-
tively, by

(1.2) tc0 =
L∑
h=1

Whs
2
yh +

L∑
h=1

Wh(ȳh − ȳst)2,

and

(1.3) tc1 = tc0

(
σ2x
s2xst

)
, where s2xst =

L∑
h=1

Whs
2
xh +

L∑
h=1

Wh(x̄h − x̄st)2.

Some authors including Özel et al., (2014)16 have suggested the separate or-
dinary and separate ratio estimators of population variance in stratified sampling
which are given respectively by

(1.4) ts0 =
L∑
h=1

Whs
2
yh,

and

(1.5) ts1 =

L∑
h=1

Wh

(
s2yh
s2xh

)
σ2xh.

In this paper, we have considered the problem of estimating population
variance using auxiliary information by adapting Kadilar and Cingi (2006)17,
Özel et al., (2014)18, and Gupta et al., (2020)19 under RRT. We will discuss the
proposed combined variance estimators in detail in Section 2. Separate variance
estimators will be discussed in detail in Section 3. We also examine the effect of
ignoring the term

∑L
h=1Wh(ȳh− ȳst)2 in (1.2) on the estimates of the variance in

stratified random sampling.

14See Kadilar and Cingi ([8]).
15See Kadilar and Cingi ([8]).
16See Özel et al., ([10]).
17See Kadilar and Cingi ([8]).
18See Özel et al., ([10]).
19See Gupta et al., ([5]).
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2. Some Combined Variance Estimators in Stratified Random Sam-
pling

In this study, the respondent is asked to provide a scrambled response for
the sensitive study Y by using the generalized RRT model given by Z = TY +S,
as in Diana and Perri (2011)20, where S and T are uncorrelated scrambling
variables such that E(S) = 0 and E(T ) = 1. Gupta et al., (2020)21 used this
RRT model for estimating the population variance in simple random sampling.
They proposed the following estimators:

(2.1) t0(R) =
s2z − σ2S − σ2T ∗ z̄2

σ2T + 1
,

(2.2) t1(R) = t0(R) ∗
(
σ2x
s2x

)
,

and

(2.3) tp(R) =

[
t0(R) + (σ2x − s2x)

]
∗
(

(ασ2x + β)

ω(αs2x + β) + (1− ω)(ασ2x + β)

)g
,

where α and β are suitably chosen constants associated with the auxiliary variable
X. With g = 1, one can obtain various ratio estimators, and with g = −1 one can
obtain various product estimators. ω is an unknown whose optimal value will be
used.

Motivated by Gupta et al., (2020)22 and Kadilar and Cingi (2006)23, we
propose the following combined variance estimators in the stratified random sam-
pling:

2.1. The Combined Basic Variance Estimator

Based on the RRT model Z = TY + S, we have σ2zh as,

σ2zh = σ2Th(σ2yh + µ2yh) + σ2yh + σ2Sh

Rearranging, we get

σ2yh =
σ2zh − σ2Sh − (σ2Th ∗ Z̄2

h)

σ2Th + 1

20See Diana and Perri ([3]).
21See Gupta et al., ([5]).
22See Gupta et al., ([5]).
23See Kadilar and Cingi ([8]).
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The population variance of the study variable in stratified sampling is given by

(2.4) σ2c0(R) =

L∑
h=1

Wh

(
σ2zh − σ2Sh − σ2Th ∗ Z̄2

h

σ2Th + 1

)
+

L∑
h=1

Wh(Z̄h − Z̄)2.

Let σ2c0(R) = A1 +B1,

where A1 =
L∑
h=1

Wh

(
σ2zh − σ2Sh − σ2Th ∗ Z̄2

h

σ2Th + 1

)
and B1 =

L∑
h=1

Wh(Z̄h − Z̄)2.

We have our first proposed combined estimator given by

(2.5) tc0(R) =
L∑
h=1

Wh

(
s2zh − σ2Sh − σ2Th ∗ z̄2h

σ2Th + 1

)
+

L∑
h=1

Wh(z̄h − z̄st)2

tc0(R) = Â1 + B̂1

where Â1 =
L∑
h=1

Wh

(
s2zh − σ2Sh − σ2Th ∗ z̄2h

σ2Th + 1

)
and B̂1 =

L∑
h=1

Wh(z̄h − z̄st)2

To obtain the Bias and MSE expressions for the proposed estimators in the
stratified random sampling, we define the following error terms

δzh =
s2zh − σ2zh
σ2zh

, ezh =
z̄h − Z̄h
Z̄h

, ezst =
z̄st − Z̄
Z̄

, exst =
x̄st − X̄
X̄

such that E(δzh) = E(ezh) = E(ezst) = E(exst) = 0

E(δ2zh) = θh(λ40h − 1), E(δ2xh) = θh(λ04h − 1), E(δzhδxh) = θh(λ22h − 1),

E(δzhezh) = θhλ30hCzh, E(δxhezh) = θhλ12hCzh, E(e2zh) = θhC
2
zh

E(ezstezh) =
L∑
h=1

Whθhσ
2
zh, E(e2zst) =

1

Z̄2

L∑
h=1

W 2
hθhσ

2
zh, E(e2xst) =

1

X̄2

L∑
h=1

W 2
hθhσ

2
xh,

E(exstezh) =

L∑
h=1

Whθhσzxh, E(exstezst) =
1

Z̄X̄

L∑
h=1

W 2
hθhσzxh

where σzxh = ρzxhσzhσxh, ρzxh =
ρyxh√

1 +
σ2
Th(σ

2
yh+µ

2
yh)+σ

2
Sh

σ2
yh

, λrsh =
µrsh

µ
r
2
20hµ

s
2
02h

,

µrsh =
1

Nh − 1

Nh∑
i=1

(Zhi − Z̄h)r(Xhi − X̄h)s and C2
zh = C2

yhσ
2
Th +

(
σ2Sh

Ȳh
2

)
Consider the first term

(2.6) Â1 =

L∑
h=1

Wh

(
s2zh − σ2Sh − σ2Th ∗ z̄2h

σ2Th + 1

)
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Rewriting (2.6), we have

Â1 =

L∑
h=1

Wh

(
σ2zh(1 + δzh)− σ2Sh − σ2Th[Z̄h(1 + ezh)]2

σ2Th + 1

)
Subtracting A1 on both sides, we obtain

(2.7) (Â1 −A1) =

L∑
h=1

Wh

(
σ2zhδzh − 2σ2ThZ̄

2
hezh − σ2ThZ̄2

he
2
zh

σ2Th + 1

)

Taking the expectation on both sides of (2.7), the Bias of Â1 is obtained as,

(2.8) Bias(Â1) ≈ −
L∑
h=1

θhWh

(
σ2ThZ̄

2
hC

2
zh

σ2Th + 1

)
By squaring both sides of (2.7) and using the first order approximation, the MSE
is obtained as,
(2.9)

MSE(Â1) ≈
L∑
h=1

θhW
2
h

(
1

(σ2Th + 1)2

)(
σ4zh(λ40h−1)+4σ4ThZ̄

4
hC

2
zh−4σ2zhσ

2
ThZ̄

2
hλ30hCzh

)
Consider the second term

(2.10) B̂1 =
L∑
h=1

Wh(z̄h − z̄st)2

Rewriting (2.10), we have

(2.11) B̂1 =
L∑
h=1

Wh[Z̄h(1 + ezh)− Z̄(1 + ezst)]
2

Expanding (2.11), and restricting to terms up to order 2, we have
(2.12)

B̂1 =
L∑
h=1

Wh[(Z̄h−Z̄)2+(Z̄hezh−Z̄ezst)2+2(Z̄2
hezh−Z̄hZ̄ezst−Z̄hZ̄ezh+Z̄2

hezst)]

Subtracting B1 on both sides, we obtain
(2.13)

(B̂1−B1) = Z̄2e2zst+
L∑
h=1

Wh[Z̄2
he

2
zh−2Z̄hZ̄ezhezst+2(Z̄2

hezh−Z̄hZ̄ezst−Z̄hZ̄ezh+Z̄2
hezst)]

Taking the expectation on both sides of (2.13), the Bias of B̂1 is obtained as,

(2.14) Bias(B̂1) ≈ Z̄2
L∑
h=1

W 2
hθhC

2
zh +

L∑
h=1

Whθh[Z̄2
hC

2
zh − 2Z̄hZ̄σ

2
zh]
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By squaring both sides of (2.13), using the first order approximation and simpli-
fying, the MSE is obtained as

MSE(B̂1) ≈ 4Z̄4
L∑
h=1

W 2
hθhC

2
zh +

L∑
h=1

W 2
hθh

[
4Z̄2

hC
2
zh − 8Z̄hZ̄

L∑
h=1

Whσ
2
zh(Z̄h − Z̄)2

(2.15) +4Z̄hZ̄
2
L∑
h=1

W 2
hC

2
zh(Z̄h − 2Z̄)

]
The expressions for Bias and MSE of tc0(R) are given by

(2.16) Bias(tc0(R)) = Bias(Â1) +Bias(B̂1),

and

(2.17) MSE(tc0(R)) ≈MSE(Â1) +MSE(B̂1).

In (2.17), we assume that Â1 and B̂1 are uncorrelated. This is not an unreasonable
assumption since the sample mean and the sample variance are uncorrelated for
normal data. This is also confirmed by large number of simulated values of Â1

and B̂1 that we generated.

2.2. The Combined Ratio Variance Estimator

(2.18)

tc1(R) =

L∑
h=1

Wh

[(
s2zh − σ2Sh − σ2Th ∗ z̄2h

σ2Th + 1

)
∗
(
σ2xh
s2xh

)]
+

L∑
h=1

Wh

(
z̄h −

z̄st
x̄st

X̄

)2

tc1(R) = Â2 + B̂2

Consider the first term

(2.19) Â2 =

L∑
h=1

Wh

[(
s2zh − σ2Sh − σ2Th ∗ z̄2h

σ2Th + 1

)
∗
(
σ2xh
s2xh

)]
Rewriting (2.19), we have

Â2 =
L∑
h=1

Wh

[
σ2zh − σ2Sh − σ2ThZ̄2

h

σ2Th + 1
+

2σ2ThZ̄
2
hezhδxh − σ2zhδzhδxh − σ2ThZ̄2

he
2
zh

σ2Th + 1

]
Subtracting A1 and taking the expectation on both sides, the Bias of Â2, is
obtained as,

(2.20) Bias(Â2) ≈
L∑
h=1

θhWh

[(
2σ2ThZ̄

2
hλ12hCzh − σ2zh(λ22h − 1)− σ2ThZ̄2

hC
2
zh

σ2Th + 1

)]
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For MSE, we have

Â2 =
L∑
h=1

Wh

[
σ2zh + σ2zhδzh − σ2Sh − σ2ThZ̄2

h − 2σ2ThZ̄
2
hezh − σ2ThZ̄2

he
2
zh

σ2Th + 1

−σ2zhδxh − σ2zhδzhδxh + σ2Shδxh + σ2ThZ̄
2
hδxh + 2σ2ThZ̄

2
hezhδxh + σ2ThZ̄

2
he

2
zhδxh

σ2Th + 1

]
Simplifying and ignoring second and higher order terms,

Â2 =
L∑
h=1

Wh

[
σ2zh − σ2Sh − σ2ThZ̄2

h

σ2Th + 1
+
σ2zhδzh − 2σ2ThZ̄

2
hezh − σ2zhδxh + σ2Shδxh + σ2ThZ̄

2
hδxh

σ2Th + 1

]
Squaring and taking the expectation on both sides, we have,

Â2 =
L∑
h=1

W 2
hE

(
σ2zhδzh
σ2Th + 1

−
2σ2ThZ̄

2
hezh

σ2Th + 1
− σ2yhδxh

)2

After some simplifications, the MSE of Â2, is obtained as,

MSE(Â2) ≈
L∑
h=1

W 2
hθh

(σ2Th + 1)2

[
σ4zh(λ40h−1)−2σ2zhσ

2
yh(λ22h−1)(σ2Th+1)+σ4yh(λ04h−1)(σ2Th+1)2

(2.21) +4Czh

(
σ4ThZ̄

4
hCzh − σ2zhσ2ThZ̄2

hλ30h + σ2Thσ
2
yhZ̄

2
hλ12h(σ2Th + 1)

)]
Consider the second term

(2.22) B̂2 =

L∑
h=1

Wh

(
z̄h −

z̄st
x̄st

X̄

)2

Repeating the procedure outlined in steps (2.10) - (2.15) for the estimator (2.22),
yields definitions of bias and MSE for B̂2 as

Bias(B̂2) ≈ Z̄2
L∑
h=1

W 2
hθh(C2

zh + C2
xh) +

L∑
h=1

Whθh

[
Z̄2
hC

2
zh − 2Z̄hZ̄

L∑
h=1

Whσ
2
zh

(2.23) +2

(
Z̄h
X̄

L∑
h=1

W 2
hσzxh +

Z̄h
X̄

L∑
h=1

Whσzxh − 2

(
Z̄

X̄

L∑
h=1

W 2
hσzxh

))]

MSE(B̂2) ≈ 4Z̄4
L∑
h=1

W 2
hθh(C2

zh + C2
xh) +

L∑
h=1

W 2
hθh

[
4Z̄2

hC
2
zh(Z̄h − Z̄)2

+4Z̄2
hZ̄

2
L∑
h=1

W 2
h (C2

zh + C2
xh) + 8Z̄3

hZ̄

L∑
h=1

Wh

(
σzxh

Z̄X̄
− σ2zh

)
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−8Z̄2
hZ̄

2

(
2

Z̄X̄

L∑
h=1

Whσzxh −
L∑
h=1

2Whσ
2
zh +

1

Z̄X̄

L∑
h=1

W 2
hσzxh

)

+8Z̄hZ̄3

(
1

Z̄X̄

L∑
h=1

W 2
hσzxh −

L∑
h=1

W 2
hC

2
zh +

1

Z̄X̄

L∑
h=1

Whσzxh −
L∑
h=1

Whσ
2
zh

)

(2.24) −8Z̄2
1

Z̄X̄

L∑
h=1

W 2
hσzxh

]

The expressions for Bias and MSE of tc1(R) are given by

(2.25) Bias(tc1(R)) = Bias(Â2) +Bias(B̂2),

and

(2.26) MSE(tc1(R)) ≈MSE(Â2) +MSE(B̂2).

2.3. A Combined Generalized Variance Estimator

We now propose the following class of generalized population variance es-
timators.

tcp(R) =
L∑
h=1

Wh

[(
s2zh − σ2Sh − σ2Th ∗ z̄2h

σ2Th + 1

)
+ (σ2xh − s2xh)

]

∗
(

(ασ2xh + β)

ω(αs2xh + β) + (1− ω)(ασ2xh + β)

)g

(2.27) +
L∑
h=1

Wh

[(
z̄h−

[
z̄st+(X̄−x̄st)

])
∗
(

(αX̄ + β)

λ(αx̄st + β) + (1− λ)(αX̄ + β)

)g]2
tcp(R) = Â3 + B̂3

Consider the first term

Â3 =
L∑
h=1

Wh

[(
s2zh − σ2Sh − σ2Th ∗ z̄2h

σ2Th + 1

)
+(σ2xh−s2xh)

]
∗
(

(ασ2xh + β)

ω(αs2xh + β) + (1− ω)(ασ2xh + β)

)g
Using Taylor series approximation, we obtain the bias in Â3 as,

(2.28)

Bias(Â3) =

L∑
h=1

−Whθh

[
σ2ThZ̄

2
hC

2
zh

σ2Th + 1
−(gωψh)

(
σ2zh(λ22h − 1)− 2σ2ThZ̄

2
hλ12hCzh

σ2Th + 1
−σ2xh(λ04h−1)

)]
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where ψh=
∑L

h=1
ασ2

xh

ασ2
xh+β

The mean square error is given by

MSE(Â3) =
L∑
h=1

W 2
hθh

[(
σ4zh(λ40h − 1) + 4σ4ThZ̄

4
hC

2
zh − 4σ2zhσ

2
ThZ̄

2
hλ30hCzh

(σ2Th + 1)2

)
+

(2.29)(
(σ2xh+Qhσ

2
yh)2(λ04h−1)

)
−2

(
σ2zh(λ22h − 1)− 2σ2ThZ̄

2
hλ12hCzh

σ2Th + 1

)
(σ2xh+Qhσ

2
yh)

]
where Qh = gωψh
Differentiate (2.29) w.r.t Qh:

2σ2yh(σ2xh +Qhσ
2
yh)(λ04h − 1) = 2σ2yh

(
σ2zh(λ22h − 1)− 2σ2ThZ̄

2
hλ12hCzh

σ2Th + 1

)

Qhopt =

L∑
h=1

1

σ2yh

[(
σ2zh(λ22h − 1)− 2σ2ThZ̄

2
hλ12hCzh

σ2Th + 1

)(
1

(λ04h − 1)

)
− σ2xh

]

The MSE at this optimum value is given by

MSE(Â3)opt =
L∑
h=1

W 2
hθh

(σ2Th + 1)2

[(
σ4zh(λ40h−1)+4σ4ThZ̄

4
hC

2
zh−4σ2zhσ

2
ThZ̄

2
hλ30hCzh

)

(2.30) − 1

(λ04h − 1)

(
σ2zh(λ22h − 1)− 2σ2ThZ̄

2
hλ12hCzh

)2]
Consider the second term
(2.31)

B̂3 =

L∑
h=1

Wh

[(
z̄h −

[
z̄st + (X̄ − x̄st)

])
∗
(

(αX̄ + β)

λ(αx̄st + β) + (1− λ)(αX̄ + β)

)g]2
Repeating the procedure outlined in steps (2.10) - (2.15) for the estimator (2.31),
yields definitions of bias and MSE for B̂3 as

Bias(B̂3) ≈ Z̄2
L∑
h=1

W 2
hθh

(
C2
zh +D2C2

xh

)
+ X̄2

L∑
h=1

W 2
hC

2
xh +

L∑
h=1

Whθh

[
Z̄2
hC

2
zh

+
2Z̄h
Z̄

L∑
h=1

Whσzxh+2D
( Z̄h
X̄

L∑
h=1

W 2
hσzxh−Z̄hX̄

L∑
h=1

W 2
hC

2
xh+

Z̄h
X̄

L∑
h=1

Whσzxh−
2Z̄

X̄

L∑
h=1

W 2
hσzxh

(2.32) +Z̄X̄

L∑
h=1

W 2
hC

2
xh +

L∑
h=1

W 2
hσzxh

)
− 2Z̄hZ̄

L∑
h=1

Whσ
2
zh − 2

L∑
h=1

W 2
hσzxh

]
;
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where D = (gλφ) and φ =
αX̄

αX̄ + β

MSE(B̂3)opt ≈ θ

{
Z̄2X̄2

L∑
h=1

W 2
hC

2
xh + Z̄4

L∑
h=1

W 2
hC

2
zh − Z̄2

L∑
h=1

W 2
hσzxh

+Dopt

[
DoptZ̄

4
L∑
h=1

W 2
hC

2
xh + Z̄3X̄

L∑
h=1

W 2
hC

2
xh −

Z̄3

X̄

L∑
h=1

W 2
hσzxh

]

+

L∑
h=1

W 2
h

[
4

((
Z̄4
h − Z̄3

hZ̄
)
C2
zh + Z̄2

hZ̄
2
( L∑
h=1

W 2
hC

2
zh + C2

zh +
L∑
h=1

Whσ
2
zh

))

+
(
Z̄2
hX̄

2 − Z̄hZ̄X̄2
) L∑
h=1

W 2
hC

2
xh −

(
Z̄3
hZ̄

2 + Z̄hZ̄
3
) L∑
h=1

Whσ
2
zh

+

(
Z̄3
hX̄ + Z̄hZ̄

2X̄
)

Z̄X̄

L∑
h=1

Whσzxh − 2Z̄2
h

L∑
h=1

Whσzxh + Z̄hZ̄
L∑
h=1

W 2
hσzxh

+Dopt

(
DoptZ̄

2
hZ̄

2
L∑
h=1

W 2
hC

2
xh +

(
2Z̄3

h − 2Z̄2
hZ̄
)

X̄

L∑
h=1

Whσzxh

(2.33) +
(
Z̄2
hX̄Z̄ − 2Z̄hX̄Z̄

2 − Z̄hZ̄3
) L∑
h=1

W 2
hC

2
xh +

Z̄hZ̄
2

X̄

L∑
h=1

W 2
hσzxh

)]}
where

Dopt =

−
∑L

h=1

[(
2Z̄3

h−2Z̄2
hZ̄
)

X̄

∑L
h=1Whσzxh + Z̄2

(
Z̄hX̄ − 2X̄Z̄ − Z̄2

)∑L
h=1W

2
hC

2
xh + Z̄hZ̄

2

X̄

∑L
h=1W

2
hσzxh

]
2

{
Z̄4
h

∑L
h=1W

2
hC

2
xh +

∑L
h=1W

2
h

[
Z̄2
hZ̄

2
∑L

h=1W
2
hC

2
xh

]
+

[
Z̄3X̄

∑L
h=1W

2
hC

2
xh −

Z̄4

X̄

∑L
h=1W

2
hσzxh

]}
The expressions for Bias and MSE of tcp(R) are given by

(2.34) Bias(tcp(R)) = Bias(Â3) +Bias(B̂3),

and

(2.35) MSE(tcp(R))opt ≈MSE(Â3)opt +MSE(B̂3)opt

3. Some Separate Variance Estimators in Stratified Random Sampling

Some authors including Özel et al., (2014)24, Clement (2018)25 and Younis
and Shabbir (2019)26 have presented separate variance estimators. In doing so,
they have ignored the B1 term introduced in (1.2). We examine the following
separate variance estimators in stratified random sampling mainly to show that
ignoring the B1 term can give misleadingly low MSE values.

24See Özel et al., ([10]).
25See Clement ([2]).
26See Younis and Shabbir ([16]).
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3.1. The Separate Basic Variance Estimator

Following the authors listed above, the separate population variance of the
study variable in stratified sampling is given by

(3.1) σ2
s0(R) =

L∑
h=1

Wh

(
σ2
zh − σ2

sh − σ2
Th ∗ Z̄2

h

σ2
Th + 1

)
.

This leads to the following estimator:

(3.2) ts0(R) =

L∑
h=1

Wh

(
s2
zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
.

The Bias and MSE of ts0(R) are given respectively as,

(3.3) Bias(ts0(R)) ≈ −
L∑

h=1

θhWh

(
σ2
ThZ̄

2
hC

2
zh

σ2
Th + 1

)
,

and
(3.4)

MSE(ts0(R)) ≈
L∑

h=1

θhW
2
h

(
1

(σ2
Th + 1)2

)(
σ4
zh(λ40h−1)+4σ4

ThZ̄
4
hC

2
zh−4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)
.

3.2. The Separate Ratio Variance Estimator

(3.5) ts1(R) =

L∑
h=1

Wh

[(
s2
zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
∗
(
σ2
xh

s2
xh

)]

The Bias and MSE of ts1(R) are given respectively as,

(3.6) Bias(ts1(R)) ≈
L∑

h=1

θhWh

[(
2σ2

ThZ̄
2
hλ12hCzh − σ2

zh(λ22h − 1)− σ2
ThZ̄

2
hC

2
zh

σ2
Th + 1

)]

(3.7)

MSE(ts1(R)) ≈
L∑

h=1

W 2
hθh

(σ2
Th + 1)2

[
σ4
zh(λ40h−1)−2σ2

zhσ
2
yh(λ22h−1)(σ2

Th+1)+σ4
yh(λ04h−1)(σ2

Th+1)2

+4Czh

(
σ4
ThZ̄

4
hCzh − σ2

zhσ
2
ThZ̄

2
hλ30h + σ2

Thσ
2
yhZ̄

2
hλ12h(σ2

Th + 1)

)]
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3.3. A Separate Generalized Variance Estimator

The generalized separate population variance estimators can be written as

tsp(R) =

L∑
h=1

Wh

[(
s2
zh − σ2

sh − σ2
Th ∗ z̄2

h

σ2
Th + 1

)
+ (σ2

xh − s2
xh)

]

(3.8) ∗
(

(ασ2
xh + β)

ω(αs2
xh + β) + (1− ω)(ασ2

xh + β)

)g

.

The Bias and MSE of tsp(R) are given respectively as,
(3.9)

Bias(tsp(R)) =

L∑
h=1

−Whθh

[
σ2
ThZ̄

2
hC

2
zh

σ2
Th + 1

−(gωψh)

(
σ2
zh(λ22h − 1)− 2σ2

ThZ̄
2
hλ12hCzh

σ2
Th + 1

−σ2
xh(λ04h−1)

)]
,

(3.10)

MSE(tsp(R))opt =

L∑
h=1

W 2
hθh

(σ2
Th + 1)2

[(
σ4
zh(λ40h− 1) + 4σ4

ThZ̄
4
hC

2
zh− 4σ2

zhσ
2
ThZ̄

2
hλ30hCzh

)

− 1

(λ04h − 1)

(
σ2
zh(λ22h − 1)− 2σ2

ThZ̄
2
hλ12hCzh

)2]
.

4. Simulation Study

We consider a sample of size N = 2000 from two bivariate normal popula-

tions for

[
X

Y

]
determined by the following means and covariance matrices with

N1 = 1200 and N2 = 800:

Stratum 1: µ =

[
4

2

]
, Σ =

[
2 2.7

2.7 6

]
, ρyx = 0.80

Stratum 2: µ =

[
6

4

]
, Σ =

[
2 2.2

2.2 5

]
, ρyx = 0.70

These 2000 observations are treated as our finite populations. For the 2000
values generated from these distributions, the means, variances, and correlations
are given by

Stratum 1: µx1 = 4.021, µy1 = 2.010, σ2
x1 = 1.975, σ2

y1 = 5.987, ρyx1 = 0.797

Stratum 2: µx2 = 6.070, µy2 = 4.006, σ2
x2 = 1.982, σ2

y2 = 4.977, ρyx2 = 0.702
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Overall parameter values are given by

µx = 4.8413, µy = 2.8791, σ2
x = 2.9671, σ2

y = 6.4644, ρyx = 0.7596

We consider a sample of size n=600, where n1=360 and n2=240. The stra-
tum sample size nh(h = 1, 2) is based on the proportional allocation, that is,
nh = Wh × n. The scrambling variable S and T are assumed to have normal
distributions with E(S)=0, E(T)=1, Var(S)=0.5 and different values for Var(T).
In the combined and separate generalized variance estimators, we choose α = 1,
β = 0 and g = 1. Other choices of α and β in our simulations had minimal impact.
The Percent Relative Efficiency (PRE) with respect to the stratified sampling is
defined as

PRE =
MSE(tc0(R))

MSE(tci(R))
× 100, where i = 0, 1 and p.

Since we are developing the proposed estimators based on randomized data,
it is important to consider the privacy level as well. Gupta et al., (2018)27 intro-
duced a unified measure of estimator quality (δ) given by

δ =
TheoreticalMSE

∆DP
, where ∆DP =

L∑
h=1

Wh∆DPh

is the privacy level for the model Z=TY+S as given by Yan et al., (2009)28.

Theoretical and empirical MSEs and PREs for both the separate variance
estimators and combined variance estimators are reported in Table 1. For either
separate or combined estimators, the generalized estimator is clearly more effi-
cient than the basic estimator and the ratio estimator. One can note that the
MSEs increase as the variances of T increase, which is on expected lines due to
extra noise in the data. However, this loss in efficiency is off-set by the gain in
privacy as shown by the δ-column. For example, the MSEs of the combined gen-
eralized variance estimator tcp(R) increases from 0.2842 to 0.5024 when Var(T )
increases from 0.5 to 1, but δ value decreases from 0.0364 to 0.0323. In general,
the proposed variance estimators under the additive model (Z = Y + S) where
Var(T ) = 0 are more efficient compared to the generalized model (Z = TY + S)
where Var(T ) > 0 by providing smaller MSEs. However, the proposed variance
estimators under the generalized model (Z = TY + S) are better by providing
smaller δ values if we consider the efficiency and the privacy simultaneously.

Comparing the proposed separate variance estimators to the proposed com-
bined variance estimators, it may appear that the separate estimators are better
since they have smaller MSE. However, one should note that these estimators
degrade accuracy in comparison to the combined estimators. For example, as
the true variance of Y is 6.4644, the estimated variance of Y is 6.4137 for the
combined variance estimator when Var(T )=0.5. However, the estimated variance
of Y is 5.5344 for the separate variance estimator when Var(T )=0.5. The same
is true for the other cases. This indicates that the proposed combined variance
estimators are more accurate than the separate variance estimators.

27See Gupta et al., ([6]).
28See Yan et al., ([15]).
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Var(S) Var(T) Estimator σ̂2yσ̂
2
yσ̂2y MSE PRE δδδ Estimator σ̂2yσ̂

2
yσ̂2y MSE PRE δδδ

0.5

0

ts0(R) 5.4368
0.0857 100

0.1664 tc0(R) 6.4141
0.1119 100

0.2144
0.0858 100 0.1131 100

ts1(R) 5.4542
0.0752 113.9627

0.1441 tc1(R) 6.4322
0.0985 113.6040

0.1887
0.0765 112.1568 0.1014 111.5384

tsp(R) 5.4402
0.0635 134.9606

0.1368 tcp(R) 6.4182
0.0858 130.4195

0.1644
0.0647 132.6120 0.0863 131.0544

0.3

ts0(R) 5.5456
0.2142 100

0.0442 tc0(R) 6.4434
0.2588 100

0.0530
0.2151 100 0.2606 100

ts1(R) 5.5547
0.1951 109.8923

0.0400 tc1(R) 6.4534
0.2376 108.9225

0.0486
0.1964 109.5213 0.2399 108.6285

tsp(R) 5.5443
0.1757 122.0261

0.0374 tcp(R) 6.4429
0.2169 119.3176

0.0444
0.1769 121.5941 0.2174 119.8712

0.5

ts0(R) 5.5357
0.2788 100

0.0357 tc0(R) 6.4141
0.3361 100

0.0431
0.2781 100 0.3370 100

ts1(R) 5.5446
0.2579 108.1039

0.0330 tc1(R) 6.4239
0.3147 106.8001

0.0404
0.2596 107.1263 0.3158 106.7131

tsp(R) 5.5344
0.2351 118.5878

0.0306 tcp(R) 6.4137
0.2842 118.2617

0.0364
0.2491 111.6419 0.2922 114.9897

0.8

ts0(R) 5.5128
0.3801 100

0.0310 tc0(R) 6.3931
0.4560 100

0.0375
0.3766 100 0.4528 100

ts1(R) 5.5216
0.3621 104.9710

0.0294 tc1(R) 6.4041
0.4355 104.7072

0.0358
0.3589 104.9317 0.4331 104.5486

tsp(R) 5.5115
0.3406 111.5971

0.0279 tcp(R) 6.3981
0.4047 112.6760

0.0333
0.3399 110.7972 0.4141 109.3455

1

ts0(R) 5.4970
0.4550 100

0.0299 tc0(R) 6.3897
0.5431 100

0.0360
0.4512 100 0.5382 100

ts1(R) 5.5057
0.4399 103.4325

0.0287 tc1(R) 6.3929
0.5235 103.7440

0.0347
0.4372 103.2021 0.5202 103.4602

tsp(R) 5.4957
0.4207 108.1530

0.0262 tcp(R) 6.3928
0.5024 108.1011

0.0323
0.4169 108.2273 0.4950 108.7272

Table 1: Theoretical (in bold) and empirical MSEs and PREs of the variance
estimators with σ2y =6.4644.

5. Application

In this section a real data set is used to compare the performances of the
combined variance estimators. The data is obtained from Eurostat (2008)29, and
the sampling details are provided in Sousa et al., (2014) 30, a paper that was co-
authored by one of the co-authors of the current paper. There are 1698 records in
the population. The volume of purchase orders reported by the Information and
Communication Technologies for 2010 is taken as the study variable Y . Turnover
for the individual enterprises is the auxiliary variable X. The study variable Y

is scrambled using the additive scrambling variable S assumed to be a normally
distributed random variable with mean 0 and variance 0.5, and the multiplicative
scrambling variable T assumed to be a normally distributed random variable
with mean 1 and four different choices for its variance (0, 0.3, 0.5, and 1). Data
summary is provided in Table 2.

29See Eurostat ([4]).
30See Sousa et al., ([13]).
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Stratum NNN ρyxρyxρyx µyµyµy σyσyσy µyµyµy σxσxσx Population

1 979 0.7802 2.15 2.46 3.12 2.68 N = 1698,ρyx = 0.9368
2 362 0.7952 16.67 6.86 20.31 6.02 µy = 14.44,σ2y = 501.31

3 357 0.8408 45.88 30.21 56.33 30.18 µx = 17.97,σ2x = 640.59

Table 2: Population Characteristics and Sampling Information.

Theoretical and empirical MSEs and PREs are provided in Table 3 for each
of the proposed combined estimators. We used only the combined estimators
in this numerical application because of the inherent drawback in the separate
estimators as pointed out at the beginning of Section 3. The combined generalized
variance estimator is clearly more efficient than both the combined basic variance
estimator and the combined ratio variance estimator. Furthermore, the MSE
increases as the variance of T is increased, meanwhile the unified measure (δ)

value decreases. For example, for the combined generalized variance estimator,
theoretical MSE is 3353.681 for σ2

T = 0.3 but increases to 9240.276 for σ2
T = 1. In

contrast, the (δ) value decreases from 14.2817 to 12.1863 indicating that using
the multiplicative noise T lowers the efficiency but the added privacy because of
this more than compensates this loss.

Var(S) Var(T) Estimator σ̂2yσ̂
2
yσ̂2y MSE PRE δδδ

0.5

0

tc0(R) 502.1499
1230.678 100

2485.8154
1228.833 100

tc1(R) 502.6576
1079.764 113.9765

2180.9880
1086.812 113.0676

tcp(R) 501.8341
955.227 128.8361

1929.4389
947.223 129.7300

0.3

tc0(R) 500.7685
3615.078 100

15.8680
3656.872 100

tc1(R) 501.557
3483.887 103.7656

15.2921
3457.51 105.7660

tcp(R) 503.1153
3353.681 111.1073

14.2817
3337.229 112.9630

0.5

tc0(R) 503.8318
5389.539 100

14.2064
5353.592 100

tc1(R) 501.3672
5092.119 105.8407

13.4224
5004.276 106.9803

tcp(R) 501.8327
4878.576 110.4736

12.8596
4841.631 110.5741

1

tc0(R) 501.3862
9792.979 100

12.9152
9719.734 100

tc1(R) 503.1442
9540.721 102.6440

12.5825
9574.217 101.5198

tcp(R) 500.9520
9240.276 105.9814

12.1863
9209.5 105.5403

Table 3: Theoretical (in bold) and empirical MSEs and PREs of the variance
estimators.
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6. Conclusion

Separate and combined variance estimators are considered under RRT in
stratified random sampling. The simulation study shows that the generalized
variance estimator is more efficient than the other estimators. Also, the proposed
combined variance estimators are more accurate than the separate variance esti-
mators. Furthermore, if one considers efficiency and privacy simultaneously, the
linear combination model Z = TY +S, where Var(T ) > 0, produces better variance
estimators compared to the additive model Z = Y + S where Var(T ) = 0. This
can be attributed to the fact that proposed variance estimators under Z = TY +S

have higher privacy level and hence smaller δ values. The real data application
in Section 5 shows the same improvement with the generalized estimator as was
seen in the simulation results of Section 4. We would like to mention that this
work can be extended in several directions in new studies. For example, one can
work with the case when the mean of the auxiliary variable is unknown. Also,
the generalized estimator we suggest is not the only option. One can use other
forms of generalizations.
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