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Chile
valeria.s.lira@gmail.com

Cristian Villegas
– Exact Science Department, University of São Paulo,

São Paulo, Brazil
clobos@usp.br

Received: August 2021 Revised: July 2022 Accepted: July 2022

Abstract:

• In this paper we discuss estimation and diagnostic procedures in partially varying-coefficient gen-
eralized linear models based in the penalized likelihood function. Specifically, we derive a weighted
back-fitting algorithm to estimate the model parameters using smoothing spline. Moreover, we
developed the local influence method to assess the sensitivity of maximum penalized likelihood
estimators when small perturbations are introduced into the model or data. Finally, an example
with real data of ozone concentration is given for illustration.

Keywords:

• exponential family; maximum penalized likelihood estimators; likelihood displacement;
semiparametric models; weighted back-fitting algorithm.

AMS Subject Classification:

• 49A05, 78B26.

� Corresponding author

https://doi.org/10.57805/revstat.v22i3.507
https://orcid.org/0000-0002-6038-2149
mailto:german.ibacache@uv.cl
mailto:valeria.s.lira@gmail.com
https://orcid.org/0000-0003-3176-5236
mailto:clobos@usp.br


322 V. Lira, G. Ibacache-Pulgar and C. Villegas

1. INTRODUCTION

Partially varying-coefficient generalized linear model (PVCGLM) is an extension of
generalized linear model (GLM), and have received special attention in recent years. These
models have the same characteristics as GLM (see, for instance, McCullagh and Nelder,
1989 [27]), in the sense of encompassing different families of distributions for the response
variable, allowing for non-linear dependence between the mean of the response variable and
the explanatory variables (linear predictor) through a link function, and allowing for non-
constant variance in the data. In addition, PVCGLM have the flexibility to model explanatory
variables effects that can contribute parametrically and explanatory variables effects in which
the coefficients are allowed to vary as smooth functions of other variables (for example, time
variable). The model is a very useful tool for exploring dynamic patterns in some scientific
areas, such as environmental, epidemiology, medical science, ecology and so on; see Fan and
Zhang (2008) [9], Finley (2011) [14], Ma et al. (2011) [26], Li et al. (2018) [24], and He et al.

(2022) [18].

As was noted by some authors (see, for example, Ouwens et al., 2001 [29]), GLM param-
eter estimators can be higly impacted by outlying observations. For this reason, diagnostic
analysis is of fundamental importance in the statistical modelling of any data set. The main
idea of the local influence technique, introduced by Cook (1986) [5], is to evaluate the sensi-
tivity of parameter estimators when small perturbations are introduced in the assumptions
of the model or in the data. Some of the works related to the technique of local influence
applied to different regression models are the following. Thomas and Cook (1989) [33] ex-
tended the method of local influence proposed by Cook to generalized linear models, with
the purpose to asses the effect of small perturbations in the data. Ouwens et al. (2001) [29]
developed local influence to detect influential data structures under a generalized linear mixed
model; specifically, they proposed a two-stage diagnostic procedure, the first to measure the
influence of the subjects and the second to measure the influence of the observations. Zhu
and Lee (2001) [35] extended the method of local influence for incomplete data based on the
conditional expectation of the complete-data log-likelihood function, and applied the results
to the generalized linear mixed model; see also Zhu and Lee (2003) [36]. Espinheira et al.

(2008) [8] developed the local influence method for beta regressions model under different
perturbation schemes. Rocha and Simas (2011) [31] extended the local influence method to
a general formulation of the class of the beta regression models, whereas Ferrari et al. (2011)
[12] derived the normal curvatures of local influence for beta regression models with varying
dispersion. Ferreira and Paula (2016) [13] extended the local influence technique for different
perturbation schemes considering a skew-normal partially linear model and Emami (2016) [6]
applied local influence analysis to the Liu penalized least squares estimator.

In semiparametric context, Thomas (1991) [33] constructed local influence diagnostics
to evaluate the sensitivity of the smoothing parameter estimate obtained by cross-validation
criterion. Zhu et al. (2003) [36] and Ibacache-Pulgar and Paula (2011) [21] provide local
influence measures to evaluate the sensitivity of the maximum penalized likelihood estima-
tor in normal and Student-t partially linear models, respectively. Ibacache-Pulgar et al.

(2012, 2013) [19, 20] derived the local influence curvature for elliptical semiparametric mixed
and symmetric semiparametric additive models, respectively. Zhang et al. (2015) [34] and
Ibacache-Pulgar and Reyes (2018) [22] developed local influence measures for normal and
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elliptical partially varying-coefficient models, respectively. Recently, Ibacache-Pulgar et al.

(2021) [23] developed the local influence method to semiparametric additive beta regression
models and Sanchez et al. (2021) [32] derived the normal curvature for a new quantile regres-
sion model.

The aim of this paper is to apply local influence to the PVCGLM. The paper is organized
as follows. In Section 2, the PVCGLM is presented. A discussion on the process used to obtain
the maximum likelihood (ML) estimator based on the penalized likelihood, the derivation of a
back-fitting algorithm and some inferential result are given in Section 3. In Section 4 the main
concepts of local influence are considered and normal curvatures for different perturbations
schemes are derived. An illustration of the methodology is presented in Section 5. Finally,
in Section 6, some concluding remarks are given.

2. STATISTICAL MODEL

In this section we present the PVCGLM and the penalized log-likelihood function used
to carry out parameter estimation.

2.1. Formulation

Consider a data set that is composed of a response variable yi, for i ∈ {1, ..., n}, that
follows a distribution in the exponential family with density function

fy(yi; θi, φ) = exp

[
yiθi − ψ(θi)

ai(φ)
+ c(yi, φ)

]
,(2.1)

where θi is the canonical form of the location parameter and is a function of the mean µi, ai(φ)
is a known function of the unknown dispersion parameter φ (or a vector of unknown dispersion
parameters), c is a function of the dispersion parameter and the responses, and ψ is a known
function, such that the mean and variance of yi are equals to µi = E(yi) = ∂ψ(θi)/∂θi and
Var(yi) = ai(φ) Vi, with Vi = V(µi) = ∂2ψ(θi)/∂θ2

i , respectively. The PVCGLM is defined
by Equation (2.2) and the following systematic component:

g(µi) = ηi = w>
i α +

s∑
k=1

x(k)
i βk(tki

),(2.2)

where wi is a (p× 1) vector of predictors variables, α = (α1, ..., αp)> is a vector of regression
coefficients, βk(·) for k ∈ {1, ..., s} are unknown smooth arbitrary functions of tk, associated
with the predictor variable x(k)

i . Here, the superscript k refers to the relationship of the
predictor variable xi with the k-th nonparametric component. Note that Model (2.2) can be
written in a matrix form as

η = Wα +
s∑

k=1

Ñkβk ,(2.3)
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where W = (w>
1 , ...,w

>
n ), Ñk = X(k)Nk, X(k) = diag1≤i≤n(x(k)

i ), Nk is an (n× rk) incidence
matrix with the (i, l)-th element equal to the indicator I(tki

= t0kl
) with t0kl

denoting the
distinct and ordered values of the explanatory variable tk, and βk = (ψk1 , ..., ψkr)

> is a (rk×1)
vector of parameters with ψkl

= βk(t0kl
) for l ∈ {1, ..., rk}.

2.2. Penalized log-likelihood function

Let θ = (α>,β>
1 , ...,β

>
s , φ)> ∈ Θ ⊆ Rp∗ , with p∗ = p+ r + 1 and r =

∑s
k=1 rk, be the

vector of unknown parameters associated to Model (2.1). Then, the log-likelihood function
is given by

(2.4) L(θ) =
n∑

i=1

Li(θ),

where

Li(θ) =

[
yiθi − ψ(θi)

ai(φ)
+ c(yi, φ)

]
.(2.5)

Since the βk’s belong to a space of infinite dimension and are considered parameters with
respect to the expected value of yi, it is necessary to define a restricted subspace for these
functions so that the identifiability of the parameters holds. This choice typically depends on
the domain of the function, on a priori knowledge of form of the function, on constraints to
ensure identifiability, or simply on some specific application. In this paper, we will assume
that the function βk belongs to the Sobolev function space

W(l)
2 = {βk : βk, β

(1)
k , ..., β

(l−1)
k abs. cont., β(l)

k ∈ L2[ak, bk]} ,

where β(l)
k (tk) = dlβ(tk)/dtl

k, with t0k ∈ [ak, bk]. To ensure the identifiability of the parameters
and an adequate fit of the model, we incorporate a penalty term in the original log-likelihood
function over each function βk. In this way, we obtain a penalized version of the log-likelihood
function of the form (see details in Green and Silverman, 1994 [15])

Lp(θ,λ) = L(θ)−
s∑

k=1

λk

2
β>

k Kkβk ,(2.6)

where λ = (λ1, ..., λs)> denotes a (s× 1) vector of smoothing parameters that controls the
tradeoff between goodness of fit and the smoothness estimated functions, and Kk is a (rk×rk)
nonnegative definite smoothing matrix associated with the k-th explanatory variable that only
depends on the knots. In this case, the estimation of βk leads to a smooth cubic spline with
knots at the points t0kl

for l ∈ {1, ..., rk}.
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3. ESTIMATION AND INFERENCE

In this section we outlying the estimation of the parameters of the PVCGLM. Specif-
ically, we propose an iterative process based on the Fisher score and back-fitting algorithms
to estimate the regression coefficients and the nonparametric functions, and respective stan-
dard errors being obtained from the penalized Fisher information matrix. More details about
estimation procedure can be found, for example, in Hastie and Tibshirani (1993) [16], Cai et

al. (2000) [4], Fang and Huang (2005) [10] and Rigby and Stasinopoulos (2005) [30].

3.1. Weighted maximum penalized likelihood estimator

Assuming that the function (2.6) is regular with respect to α, βk’s and φ, the penalized
score function vector of θ is given by

Up(θ) =
∂Lp(θ,λ)

∂θ
.

After some algebraic manipulations (see, for instance, Liu et al., 2021 [25], for details of the
calculation of derivatives of matrix or vectors), we obtain the following:

∂Lp(θ,λ)
∂α

= W>T (y − µ) ,

∂Lp(θ,λ)
∂βk

= Ñ>
k T (y − µ)− λkKkβk k ∈ {1, ..., s} ,

∂Lp(θ,λ)
∂φ

=
n∑

i=1

−(ai(φ))−2{yiθi − ψ(θi)}+
n∑

i=1

c′(yi, φ),

where W is a (n× p) matrix whose i -th row is w>
i , T = diag1≤i≤n

(
(ai(φ))−1(∂µi/∂ηi)V −1

i

)
with Vi = V (µi) = ∂2ψ(θi)/∂θ2

i the variance function, ai(φ) is a function of φ, y = (y1, ..., yn)>,
µ = (µ1, ..., µn)> and c′(yi, φ) = ∂c(yi, φ)/∂φ. To estimate θ, we have to solve Up(θ) = 0.
However, the estimating equations are nonlinear and require an iterative method. For ex-
ample, maximum penalized likelihood (MPL) estimator for θ can be performed by using
the Fisher scoring algorithm. Let β0 = α, Ñ0 = W , and λ fixed. Then, the Fisher scoring
algorithm is given by

I S
(u)
0 Ñ1 ... S

(u)
0 Ñs

S
(u)
1 Ñ0 I ... S

(u)
1 Ñs

...
...

. . .
...

S
(u)
s Ñ0 S

(u)
s Ñ1 ... I




β
(u+1)
0

β
(u+1)
1
...

β
(u+1)
s

 =


S

(u)
0 z(u)

S
(u)
1 z(u)

...
S

(u)
s z(u)

 ,(3.1)

where z(u) = (y − µ(u)) +
(∑s

k=0 Ñkβk
(u)

)
and

S
(u)
k =


(Ñ>

0 M (u)Ñ0)−1Ñ>
0 M (u) k = 0

(Ñ>
k M (u)Ñk + λk Kk)−1Ñ>

k M (u) k ∈ {1, ..., s} ,
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where M = diag1≤i≤n

(
(ai(φ))−1(∂µi/∂ηi)2V −1

i

)
. Consequently, the weighted back-fitting

(Gauss-Seidel) iterations that are used to solve the equations system (3.1) take the form

β
(u+1)
k = S

(u)
k

(
z(u) −

s∑
l=0,l 6=k

Ñlβ
(u)
l

)
,(3.2)

for u ∈ {0, 1, ...}. On the other hand, the MPL estimator of the dispersion parameter, φ̂,
can be obtained by solving the following iterative process:

φ(u+1) = φ(u) −E

{
∂2Lp(θ,λ)

∂φ2

}−1
∂Lp(θ,λ)

∂φ

∣∣∣
θ=θ(u) ,

for u ∈ {0, 1, ...}.

Algorithm 1 – Joint iterative process for estimating the parameters of the PVCGLM. |
(i) Initialize:

(a) Provide values for β
(0)
0 ,β

(0)
1 , ...,β(0)

s .
(b) Get starting value for φ by using the fitted values from (a).

(c) From the current value θ(0) = (β(0)>

0 ,β
(0)>

1 , ...,β(0)>

s , φ(0))> obtaining the weight matrix
M (0). Then, obtain

z(0) = (y − µ(0)) +
( s∑

k=0

Ñkβ
(0)
k

)
,

S
(0)
0 = (Ñ>

0 M (0)Ñ0)−1N>
0 M (0) ,

S
(0)
k = (Ñ>

k M (0)Ñk + λkKk)−1Ñ>
k M (0) , k ∈ {1, ..., s} .

(ii) Step 1: Iterate repeatedly by cycling between the following equations:

β
(u+1)
0 = S

(u)
0

(
z(u) −

s∑
l=1

Ñlβ
(u)
l

)
,

β
(u+1)
1 = S

(u)
1

(
z(u) − Ñ0β

(u+1)
0 −

s∑
l=2

Ñlβ
(u)
l

)
,

...

β(u+1)
s = S(u)

s

(
z(u) −

s−1∑
l=0

Ñlβ
(u+1)
l

)
,

for u ∈ {0, 1, ...}. Repeat (ii) replacing β(u)
 by β(u+1)

 until convergence criterion
∆u(β(u+1)

 ,β(u)
 )=

∑s
=0 ‖ β(u+1)

 − β(u)
 ‖ /

∑s
=0 ‖ β(u)

 ‖ is below some small threshold
(Hastie and Tibshirani, 1990 [17]).

(iii) Step 2: For current values β(u+1)
 for  ∈ {0, 1..., s}, obtaining φ(u+1) by using

φ(u+1) = φ(u) −E

{
∂2Lp(φ,λ)
∂φ∂φ

}−1
∂Lp(φ,λ)

∂φ

∣∣∣
θ=θ(u) .

(iv) Iterating between steps (ii) and (iii) by replacing β(0)
 for  ∈ {0, 1..., s} and φ(0) by β(u+1)

 and
φ(u+1), respectively, until convergence.
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Note that the system of equations (3.1) is consistent and the back-fitting algorithm (3.2)
converges to a solution for any starting values if the weights matrix involved is symmetric
and positive definite. Additionally, the solution is unique when there is not concurvity in the
data, that is, nonlinear dependencies among the predictor variables. However, in the presence
of concurvity, the starting functions will determine the final solution, while in presence exact
concurvity is highly unlikely, except in the case of symmetric smoothers with eigenvalues
in [0,1]; see, for instance, Berhane and Tibshirani (1998) [1]. The summary, the solution
of the estimating equation system (3.1) to obtain the MPL estimates of θ may be attained
by iterating between a weighted back-fitting algorithm with weight matrix M and a Fisher
score algorithm to obtain ML estimation of φ, which is equivalent to the iterative process in
Algorithm 1.

3.2. Standard error of MPL estimator

Similarly to the classical theory of generalized linear models, the variance-covariance
matrix of θ̂ can be approximated through the inverse of Fisher information matrix obtained
from penalized log-likelihood function, Lp(θ,λ). Assuming that the penalized log-likelihood
function (2.6) is twice differentiable with respect to θ, we have that the penalized Fisher
information matrix is given by

Ip = −E

(
∂2Lp(θ,λ)
∂θ∂θ>

)
.

This matrix assumes the following diagonal structure in blocks:

Ip(θ) =

(
Iαβk

p (θ) 0
0 Iφφ

p (θ)

)
,

where

Iαβk
p (θ) =


W>MW W>MÑ1 ... W>MÑs

Ñ>
1 MW Ñ>

1 MÑ1 + λ1K1 ... Ñ>
1 MÑs

...
...

. . .
...

Ñ>
s MW Ñ>

s MÑ1 ... Ñ>
s MÑs + λsKs


and

Iφφ
p (θ) =

n∑
i=1

−2(ai(φ))−3(µiθi − ψ(θi))−
n∑

i=1

E(c′′(yi, φ)),

with c′′(yi, φ) = ∂2c(yi, φ)/∂φ2 for i ∈ {1, ..., n}. Therefore, the approximate variance-
-covariance matrix of θ̂ and an approximate pointwise standard error band (SEB) for βk(·),
that allows us to assess the accuracy of β̂k(·) at different locations within the range of interest,
are given by

Ĉov(θ̂) ≈ I−1
p

∣∣
θ̂
,

SEBapprox(βk(t0l )) = β̂k(t0l )± 2
√

V̂ar(β̂k(t0l )) l ∈ {1, ..., rk},

where Var(β̂k(tl)), for k ∈ {1, ..., s}, is the l-th principal diagonal element of the corresponding
block-diagonal matrix of I−1

p .
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3.3. Effective degrees of freedom and smoothing parameters

In the iterative process defined in the Equation (3.2), considering φ as known, we can
write the expression of the estimator of βk at step u as

β
(u+1)
k = (Ñ>

k MÑk + λk Kk)−1Ñ>
k Mz∗

(u)
k ∈ {1, ..., s} ,(3.3)

where z∗
(u)

= z(u) −
∑s

l=0,l 6=k Ñlβ
(u)
l . From the convergence of the iterative process given in

the Equation (3.3), we obtain

β̂k = (Ñ>
k M̂Ñk + λk Kk)−1Ñ>

k M̂ẑ∗ k ∈ {1, ..., s} ,

where ẑ∗ =
[
(y− µ̂) +

(∑s
k=0 Ñkβ̂k

)]
−
∑s

l=0,l 6=k Ñlβ̂l. In this paper we define the effective
degrees of freedom (df) associated with the smooth functions as (see, for instance, Hastie and
Tibshirani, 1990 [17])

edf(λk) = tr
{
Ñk(Ñ>

k M̂Ñk + λk Kk)−1Ñ>
k M̂

}
.

Following Ibacache-Pulgar and Reyes (2018) [22], we choose the optimal smoothing parameter
for each smooth functions by specifying an appropriate edf(λk) value.

4. LOCAL INFLUENCE

In this section we obtain the normal curvature for PVCGLM. Specifically, the Hessian
and perturbations matrices for different perturbations schemes.

4.1. The method

To assess the influence of minor perturbations on the MPL estimator of θ, θ̂, we
can consider the likelihood displacement LD(ω) = 2

[
Lp(θ̂,λ)− Lp(θ̂ω,λ)

]
≥ 0, where θ̂ω

is the MPL estimador under the perturbed penalized log-likelihood function, denoted by
Lp(θ,λ |ω), and ω = (ω1, ..., ωn)> be an n-dimensional vector of perturbations restricted
to some open subset Ω ∈ Rn. It is assumed that there exists ω0 ∈ Ω, a vector of no
perturbation, such that Lp(θ,λ |ω0) = Lp(θ,λ). Cook (1986) [5] suggests to study the local
behavior of LD(ω) around ω0 selecting a unit direction ` ∈ Ω (‖`‖ = 1), and then to consider
the plot of LD(ω0 + a`) (called lifted line) against a, where a ∈ R. Each lifted line can
be characterized by considering the normal curvature C`(θ) around a = 0. The suggestion
is to consider the direction ` = `max corresponding to the largest curvature C`max(θ). The
index plot of `max may reveal those observations that under small perturbations exercise
notable influence on LD(ω). According to Cook (1986) [5], the normal curvature at the
unit direction ` is given by C`(θ) = −2

[
`>∆>

p L−1
p ∆p`

]
, which represents the local influence

on θ̂ after perturbing the model or data, where Lp is the Hessian matrix evaluated at θ̂

and ∆p = ∂2Lp(θ,λ |ω)/∂θ∂ω> is the perturbation matrix evaluated at θ̂ and ω = ω0.
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Escobar and Meeker (1992) [7] proposed to study the normal curvature at the direction
` = εi, where εi is an n-dimensional vector with 1 at the i-th position and zeros at the
remaining positions. In this case, the normal curvature, called total local influence of the
i-th individual, takes the form Cεi(θ) = 2| cii | for i ∈ {1, ..., n}, where cii is the i-th principal
diagonal element of the matrix C = ∆>

p L−1
p ∆p. In order to have a invariant curvature under

uniform change of scale, Poon and Poon (1999) [28] proposed the conformal normal curvature
defined as

B`(θ) =
C`(θ)

2
√

tr(∆>
p L−1

p ∆p)2
= − `>∆>

p L−1
p ∆p`√

tr(∆>
p L−1

p ∆p)2
.

This curvature is characterized to allow for any unit direction ` that 0 ≤ B`(θ) ≤ 1. A sug-
gestion is to consider the direction ` = `max corresponding to the largest curvature B`max(θ)
or, alternatively, to evaluate the normal curvature at the direction ` = εi and analyse the
index plot of Bεi(θ).

4.2. Derivation of normal curvature

The perturbation schemes that are considered in the analysis of local influence depend
on the structure of the proposed model (see, for instance, Billor and Loynes, 1993 [2]), and can
be classified into two broad groups: perturbation to the model (in order to study modifications
in the assumptions) or in the data. For example, we might be interested in perturbing the
response or the explanatory variables. The reasons for considering such perturbation schemes
are, for example, the existence of outliers or measures with measurement errors, respectively.
However, the perturbation scheme to be considered should be formulated in a way that
responds to questions previously established by the researcher. We will present in what
follows expressions of the Lp and ∆p matrices for some perturbations schemes.

Hessian matrix

Let Lp (p∗×p∗) be the Hessian matrix with (j∗,`∗)-th element given by ∂2Lp(θ,λ)/∂θj∗ θ̀ ∗

for j∗, `∗ ∈ {1, ..., p∗}, where p∗ = p+ r + 1, with r =
∑s

k=1 rk. After some algebraic manip-
ulations we find

∂2Lp(θ,λ)
∂α∂α> = −W>M̃W ,

∂2Lp(θ,λ)
∂βk∂β>

k

=


−Ñ>

k M̃Ñk − λkKk k = k
′

−Ñ>
k M̃Ñk′ k 6= k

′
,

∂2Lp(θ,λ)
∂φ2

=
n∑

i=1

2(ai(φ))−3(yiθi − ψ(θi)) +
n∑

i=1

c′′(yi, φ)) ,
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∂2Lp(θ,λ)
∂α∂β>

k

= −W>M̃Ñk ,

∂2Lp(θ,λ)
∂αj∂φ

= −
n∑

i=1

(ai(φ))−2

{
(yi − µi)V −1

i

∂µi

∂ηi
wi

}
,

∂2Lp(θ,λ)
∂ψkl

∂φ
= −

n∑
i=1

(ai(φ))−2

{
(yi − µi)V −1

i

∂µi

∂ηi
nkil

}
,

where c′′(yi, φ) = ∂2c(yi, φ)/∂φ2, M̃ = diag1≤i≤n

(
(ai(φ))−1(∂µi/∂ηi)

2V −1
i ρi

)
, ρi = κ(µi)/

{g′(µi)2Vi}, with κ(µi) = 1 + (yi − µi){V ′
i /Vi + g′′(µi)/g′(µi)} and g′(µi) = dηi/dµi, and

nkli
denotes the (i, l)-th element of the matrix Nk.

Cases-weight perturbation

Let us consider the attributed weights for the observations in the penalized log-likelihood
function as

Lp(θ,λ|ω) = L(θ|ω)−
s∑

k=1

λk

2
β>

k Kkβk ,

where L(θ|ω) =
∑n

i=1 ωi Li(θ), ω = (ω1, ..., ωn)> is the vector of weights, with 0 ≤ ωi ≤ 1,
and ω0 = (1, ..., 1)> the vector of no perturbation. Differentiating Lp(θ,λ|ω) with respect to
the elements of θ and ω, we obtain after some algebraic manipulation

∂2Lp(θ,λ|ω)
∂α∂ω>

∣∣∣
θ=

bθ, ω=ω0

= W>D̂τ ,

∂2Lp(θ,λ|ω)
∂βk∂ω>

∣∣∣
θ=

bθ, ω=ω0

= Ñ>
k D̂τ k ∈ {1, ..., s} ,

∂2Lp(θ,λ|ω)
∂φ∂ω>

∣∣∣
θ=

bθ, ω=ω0

= û> ,

where Dτ = diag1≤i≤n

(
τi
)

and u = (u1, ..., un)>, with τi = (ai(φ))−1(yi− ∂ψ(h(ηi))/∂h(ηi)) ·
· ∂h(ηi)/∂ηi, h(ηi) = ψ

′−1
(ηi), ψ

′−1
(·) denoting the inverse function of ψ

′
(·), ui = −(ai(φ))−2 ·

· (yih(ηi)− ψ(h(ηi)) + c′(yi, φ)e>in, and ein a vector with 1 at the i -th position and zero else-
where.

Response variable perturbation

In general, the response variable can be perturbed in two ways:

yiω =
{
yi + ωi additive perturbation i ∈ {1, ..., n}
yi × ωi multiplicative perturbation .

In this paper we consider yiω = yi +ωi, where ω = (ω1, ..., ωn)> is the vector of perturbations
and ω0 = (0, ..., 0)> the vector of no perturbation. The perturbed penalized log-likelihood
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function is constructed from expression (2.6) with yi replaced by yiω, that is,

Lp(θ,λ|ω) = L(θ|ω)−
s∑

k=1

λk

2
β>

k Kkβk ,

where L(·) is given by Equation (2.4) with yiω in the place of yi. Differentiating Lp(θ,λ|ω)
with respect to the elements of θ and ωi we obtain, after some algebraic manipulation, that

∂2Lp(θ,λ|ω)
∂α∂ω>

∣∣∣
θ=

bθ, ω=ω0

= W>D̂c ,

∂2Lp(θ,λ|ω)
∂βk∂ω>

∣∣∣
θ=

bθ, ω=ω0

= Ñ>
k D̂c k ∈ {1, ..., s} ,

∂2Lp(θ,λ|ω)
∂φ∂ω>

∣∣∣
θ=

bθ, ω=ω0

= d̂> ,

where Dc = diag1≤i≤n

(
ci
)

and d = (d1, ..., dn)>, with ci = ∂h(ηi)/∂ηi and di = −(ai(φ))−2 ·
· (h(ηi)e>in + c′(yiω, φ)/∂ωi), with ein denoting a vector with 1 at the i -th position and zero
elsewhere..

Explanatory variable perturbation

The explanatory variable can be perturbed in two ways:

wiω =
{

wiω + ωi additive perturbation i ∈ {1, ..., n}
wiω × ωi multiplicative perturbation .

Here the d-th explanatory variable, assumed continuous, is perturbed by considering the
additive perturbation scheme, namely widω = wid +ωi, where ω = (ω1, ..., ωn)> is the vector
of perturbations such as ωi ∈ R. The vector of no perturbation is given by ω0 = (0, ..., 0)>.
The perturbed penalized log-likelihood function is given by

Lp(θ,λ|ω) = L(θ|ω)−
s∑

k=1

λk

2
β>

k Kkβk ,

where L(·) is given by Equation (2.4) with µiω = g−1(ηiω) in the place of µi, for ηiω = w>
iωα+∑s

k=1 x(k)
i βk(tki

), with wid replaced by widω. Differentiating Lp(θ,λ|ω) with respect to the
elements of θ and ωi we obtain

∂2Lp(θ,λ|ω)
∂α∂ω>

∣∣∣
θ=

bθ, ω=ω0

= epτ̂
> − αdW

>D̂b ,

∂2Lp(θ,λ|ω)
∂βk∂ω>

∣∣∣
θ=

bθ, ω=ω0

= epτ̂
> − αdÑ

>
k D̂b k ∈ {1, ..., s} ,

∂2Lp(θ,λ|ω)
∂φ∂ω>

∣∣∣
θ=

bθ, ω=ω0

= −
n∑

i=1

(ai(φ))−2

{
yi
∂(ηiω)
∂ωi

− ∂ψ(h(ηiω))
∂ωi

}
e>in,

where τ = (τ1, ..., τn)>, Db = diag1≤i≤n

(
bi
)

and ep is a vector with 1 at the p-th position
and zero elsewhere, τi = (ai(φ))−1(yi− ∂ψ(h(ηiω))/∂h(ηiω))∂h(ηiω)/∂ηiω and bi = (ai(φ))−1 ·
· (yi − ∂ψ(h(ηiω))/∂h(ηiω))∂2h(ηiω)/∂η2

iω − (∂2ψ(h(ηiω))/∂2h(ηiω))(∂h(ηiω)/∂ηiω)2.
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5. APPLICATION

In this section, we illustrate the applicability of the PVCGLM and the local influence
method through an application based on a set of real data. For our analysis, we consider the
Poisson distribution.

5.1. Data set and problem statement

To motivate the use of the PVCGLM and the local influence method developed in
this work, we consider a set of real data from a study conducted in the city of Los Angeles
during 1976 (see, for instance, Breiman and Friedman, 1985 [3] and Faraway, 2006 [11]) with
the purpose of describing the relationship between the outcome variable O3 (concentration
of ozone per hour in Upland, CA, measured in parts per million (ppm) and a set of nine
explanatory variables, for a sample of 330 days. The description of such variables is as follows.
VH (pressure height 500 millibar, measured at the base of the air force of Vandenberg, in
meters), WIND (wind speed, in miles per hour), HUM (humidity in percentage), TEMP
(sandburg Air Base temperature, in Celsius), IBH (inversion base height, in foot), DPG
(dagget pressure gradient, in mmHg), IBT (inversion base temperature, in Fahrenheit), VIS
(visibility, in miles), DAY (calendar day).

5.2. Model fit

In our application we will consider only four explanatory variables, specifically, the
variables VIS, TEMP, IBT and DAY. Figure 1 contains the dispersion graphs between the
outcome variable and each one of the explanatory variables.

We see in Figure 1a that the relationship between O3 and the explanatory variable VIS
is approximately linear, whereas the relationship between O3 and DAY appear to be nonlinear
(Figure 1b). Note that there is a significant increase in the level of O3 from January to July
with a decrease until December. This suggests that the incorporation of a quadratic or
nonparametric term in the model can account for the behavior of O3 over time. On other
hand, Figures 1c and 1d suggest that the explanatory variables TEMP and IBT might be
interacting with the variable DAY in nonlinear fashion. Figures 2a and 2b shows the graph
of autocorrelation and partial autocorrelation, respectively. Following the same analysis of
Faraway (2006) [11], in this work we will no consider the possible temporal correlation for
O3.

Initially, we will fit a GLM assuming that the response variable O3 follows a Poisson
distribution with mean µi and logarithmic link function considering different structures of
the linear predictor for the explanatory variables VIS, TEMP, IBT and DAY (see Table 1).
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Figure 1: Scatter plots: log(O3) versus VIS (a), log(O3) versus DAY (b),
log(O3) versus TEMP×DAY (c) and log(O3) versus IBT×DAY (d).
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Figure 2: Autocorrelation (a) and partial autocorrelation (b) for Ozone data.

Table 1: Different structures of the linear predictor for the explanatory variables VIS, TEMP,
IBT and DAY assuming that the response variable O3 ∼ Poisson(µi).

Model Systematic component g(µi) = log(µi)

I α0 + α1VISi + α2TEMPi + α3IBTi

II α0 + α1VISi + α2TEMPi + α3IBTi + α4DAYi

III α0 + α1VISi + α2TEMPi + α3IBTi + f(DAYi)
IV α0 + α1VISi + α2TEMPi + α3IBTi + α4DAYi + α5TEMPi×DAYi + α6IBTi×DAYi

V α0 + α1VISi + TEMPiβ1(DAYi) + IBTiβ2(DAYi)
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For Model I, only the individual effect of the VIS, TEMP and IBT explanatory variables
were considered. In Model II, the individual effects of these three covariates plus the effect
of the DAY variable were incorporated in a linear manner, whereas in the Model III the
individual effect of the DAY explanatory variable is included nonlinearly by using a smooth
function. Model IV considers the individual contributions of VIS, TEMP, IBT and DAY
explanatory variables, plus the interaction effects of the TEMP and IBT explanatory variables
with the DAY variable. Finally, Model V corresponds to a PVCGLM where the explanatory
variables TEMP and IBT interact with the variable DAY in nonlinear fashion. Table 2
contains the ML and MPL estimates associated with the parametric component for the five
fitted models; the respective standard errors appear in parentheses.

Table 2: AIC, R2, ML and MPL estimates (standard error) for all five fitted models
to the Ozone data.

Model
Parameters

I II III IV V

α0 0.65 (0.11) 0.79 (0.11) 1.09 (0.16) 0.88 (0.21) 1.18 (0.17)
α1 −0.00 (0.00) −0.00 (0.00) −0.00 (0.00) −0.00 (0.00) −0.00 (0.00)
α2 0.02 (0.00) 0.03 (0.00) 0.01 (0.00) 0.02 (0.00) —
α3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) —
α4 — −0.001 (0.00) — −0.001 (0.00) —
α5 — — — −0.00 (0.00) —
α6 — — — 0.00 (0.00) —

AIC 1890.71 1861.27 1752.56 1863.66 1735.76
R2 0.682 0.691 0.752 0.690 0.754

It should be noted that the p-values (omitted here) associated with the parameters of
each fitted model are smaller than 0.05, thus indicating the contributions of the individual
and interaction effects are statistically significant. Note also that the parameter estimates
(associated with the parametric component) obtained from the different fitted models are
quite similar and accurate. The last two rows of the Table 2 shows the Akaike Information
Criterion (AIC) and R2 values, respectively. It is clear that the PVCGLM, for which the
AIC(λ1, λ2) = 1735.76, presents the best fit to the Ozone data, followed by Model III with an
AIC = 1752.56, which is confirmed by the QQ-plots presented in Figure 3; see, specifically,
Figures 3(c) and 3(e). Note also that the R2 associated with our model is higher than Models
I, II and IV, and slightly higher that Model III.

For the PVCGLM the estimates of the smoothing parameters λ1 and λ2 as well as
the corresponding df’s were obtained by the procedure proposed by Ibacache-Pulgar et

al. (2013) [20], and are presented in Table 3. Figures 4(a) and 4(b) show the estimated
smooth functions under PVCGLM and the corresponding approximate SEB (dashed curves).

Table 3: Fit summary for smoothing components under PVCGLM fitted to Ozone data.

Smooth function

β1(DAY) β2(DAY)

df(λk) 6.894 7.228
λk 89050.050 5886.339
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Figure 3: Normal probability plots to Ozone data: Model I (a), Model II (b), Model III (c),
Model IV (d) and Model V (e).

Note that the plots confirm the nonlinear trends of the interaction effects between
(TEMP,DAY) and (IBT,DAY).
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Figure 4: Plots of the estimated smooth functions β1 (a) and β2 (b) and
their approximate pointwise SEB denoted by the dashed lines,
Ozone data.
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5.3. Local influence analysis

As mentioned earlier, the measure LD(ω) is useful for assessing the distance between
θ̂ and θ̂ω. In order to identify influential potentially observations on MPL estimators under
the fitted PVCGLM model to Ozone data, we present some index plots of Bi = Bei(γ), for
γ = α,βk and k ∈ {1, 2}.

Case-weight perturbation

Figure 5 shows the index plot Bi for the case-weight perturbation scheme under the
fitted model. Note at Figure 5, that observations #125, #219, #167 and #258 are more in-
fluential for the MPL estimator α̂, whereas observations #219, #221 and #222 are influential
for the MPL estimator β̂1 and β̂2, respectively. When we introduce an additive perturbation
to the response variable, the results are analogous to those observed under the case-weight
perturbation scheme, and therefore the graphs are omitted.
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Figure 5: Index plots of Bi for assessing local influence on α̂ (a), β̂1 (b) and β̂2 (c)
considering case-weight perturbation, Ozone data.
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Explanatory variable additive perturbation

By perturbing the explanatory variable in an additive way, it becomes clear that s
observations #125, #219 and #167 are more influential for the MPL estimator α̂, whereas
observations #219, #221 and #222 are influential for the MPL estimator β̂1 and β̂2, respec-
tively; see Figure 6.
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Figure 6: Index plots of Bi for assessing local influence on α̂ (a), β̂1 (b) and β̂2 (c)
considering explanatory variable perturbation, Ozone data.

Based on the local influence analysis, we conclude that the MPL estimators of the
regression coefficient and of the smooth functions are sensitive to perturbations introduced
into the data or to the model. In addition, this analysis revealed that the observations that
were detected as influential for the parametric component are not necessarily influential for
the nonparametric component, and vice versa. For instance, under the case-weight perturba-
tion scheme, observations #125, #219, #167 and #258 were detected as influential for the
parametric component. However, of these three observations, only observation #219 is indi-
cated as influential for the nonparametric component, in addition to observations #221 and
#222. In general, similar results were obtained when the explanatory variable is additively
perturbed.
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5.4. Confirmatory analysis

In order to investigate the impact on the model inference when the observations de-
tected as potentially influential in the diagnostic analysis are removed, we present the relative
changes (RCs) in the MPL estimate of αj for j ∈ {1, 2} after removing from the data set the
influential potentially observations (%). The RC is defined as RCξ = |(ξ̂ − ξ̂(I))/ξ̂| × 100%,
where ξ̂(I) denotes the MPL estimate of ξ, with ξ = αj , after the corresponding observation(s)
are removed according to the set I. Table 4 presents the RCs in the regression coefficient esti-
mates after removing the observations indicated as potentially influential for the parametric
component of the model.

Table 4: Relative changes (in %) in the MPL estimates of αj under the PVCGLM.

Parameters Relative changes
Dropped observation

α0 α1 RCα0 RCα1

125 1.17365 −0.001616 0.977 1.635
167 1.16798 −0.001592 1.455 0.125
219 1.18324 −0.001626 0.167 2.264
258 1.21007 −0.001622 2.096 2.013

125–167 1.17727 −0.001623 0.672 2.075
125–219 1.18273 −0.001628 0.211 2.389
125–258 1.52686 −0.001638 28.823 3.019
167–219 1.17701 −0.001603 0.694 0.817
167–258 1.53185 −0.001614 29.245 1.509
219–258 1.17689 −0.001609 0.703 1.195

125–167–219 1.15265 −0.001637 2.748 2.955
167–219–258 1.17625 −0.001593 0.758 0.189

125–167–219–258 1.51397 −0.001654 27.737 4.025

On the other hand, Table 5 shows the RCs observed in the estimation of the regression
coefficient once the observations detected as potentially influential for the nonparametric
component of the model are excluded.

Table 5: Relative changes (in %) in the MPL estimates of αj under the PVCGLM
considering the observations detected as influential on the nonparametric
component.

Parameters Relative changes
Dropped observation

α0 α1 RCα0 RCα1

none 1.18 −0.001
219 1.183 −0.002 0.167 2.264
221 1.161 −0.002 2.041 1.132
222 1.552 −0.002 30.949 2.075

219–221 1.142 −0.002 3.641 1.635
219–222 1.521 −0.002 28.330 4.779
221–222 1.151 −0.002 2.865 1.258

219–221–222 1.186 −0.002 0.092 2.955
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Considering these results, we conclude that, although some RCs are large, inferential
changes are not detected. It is interesting to notice from Tables 4 and 5 the coherence with
the local influence diagnostic shown previously. For instance, removal of the observations
sets I = {167, 258} and I = {125, 258}, which contain observations detected as influential
potentially for the parametric component, leads to significant changes in the MPL estimates,
mainly in α̂0, of the order of 29.245% and 28.823%, respectively; see Table 4.

Note also that the individual removal of observation #258 produces a RC of order
of 2.096%. On the other hand, the removal of the observations set I = {219, 222}, whose
observations were detected as influential potentially for nonparametric component, leads to
significant changes in the MPL estimate of α0, 28.330%. It is also observed that the removal
of observation #222 produces a RC of 30.949%. This indicates the need of a diagnostic
examination. The changes produced in the estimates of the smooth functions are presented
in Figure 7.
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Figure 7: Plots of estimated smooth functions, β̂1 and β̂2, for the Ozone data and their approximate
pointwise SEB denoted by the dashed lines: excluding observations #219 and #221 (a)–(b),
excluding observations #219 and #222 (c)–(d), excluding observations #221 and #222
(e)–(f), excluding observations #219, #221 and #222 (g)–(h).
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5.5. Computational aspects and summary of our methodology

The fitted models, quantile-quantile plots (qqplot) with simulated envelopes, and lo-
cal influence were done in Matlab version R2015a and are available via email for people
interested in replicating our analyses. Additionally, it is important to note that there are
at least two libraries in the free R software that can be used to fit our models, for ex-
ample, the mgcv library (https://cran.r-project.org/web/packages/mgcv/index.html) and
gamlss (https://cran.r-project.org/web/packages/gamlss/index.html). However, there is
no R library that performs local influence for the models studied in our work. Next, we
summarize all the stages of our methodology through an algorithm (Algorithm 2).

Algorithm 2 – Some guidelines for applying the analysis of local influence on the PVCGLM.|
1. Make a scatterplot and analyze the trend of the variables. Depending on the trend of your data

you should use linear, quadratic, or polynomial function (parametric function). Alternatively, you
could use a non-linear parametric form or nonparametric function (cubic spline for instance).

2. Decide if your response variable is a discrete random variable (Bernoulli, Binomial, Poisson, etc)
or continuous (Normal, Gamma, etc) belonging to the exponential family. After that, decide
which is the best option for your link function (log, square root, inverse, logit, probit, etc) and
try different parametric, nonparametric, or semiparametric for the systematic component of a
generalized linear model.

3. Choose the best model based on some criterion such as R-square or AIC.

4. Apply the local influence method and if you have some outlying observation study the relative
changes deleting some observations. If you do not have outlying observations, make some conclu-
sions about your data set.

6. CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH

In this paper we study some aspects of the partially varying-coefficient generalized lin-
ear models. Specifically, we derive a weighted back-fitting iterative process to estimate the
regression coefficients, the smooth functions and the dispersion parameter associated with
our model. The variance-covariance matrix of the maximum penalized likelihood estimators
was approximated by the inverse of penalized Fisher information matrix, and the effective
degrees of the freedom of the nonparametric components were calculated from the estimates
obtained in convergence of the iterative process. Furthermore, we extended the local influ-
ence method and obtained closed expressions for the Hessian matrix and the perturbation
matrix under different perturbation schemes. We performed a statistical data analysis with
a real data set on ozone concentration and some meteorological variables. The study showed
the advantage of incorporating a semiparametric additive term when there are predictors
whose interactions contribute nonlinearly to the model, and the utility of the local influence
method to detect influential observations on the maximum penalized likelihood estimators.
One of the main limitations of our model is the absence of a structure that allows modeling
the correlation in those data sets that have a time component, this being one of the main lines
of research to be developed. In addition, we believe that the exploration of new perturbation
schemes is necessary, mainly in the interaction components and the smoothing parameter.

https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/gamlss/index.html
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Finally, we recommend the use of partially varying-coefficient generalized linear models and
the local influence method when the response variable belongs to the exponential family and
the interactions between the explanatory variables can be modelled through smooth func-
tions, and our interest is to evaluate the sensitivity of the maximum penalized likelihood
estimator.
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[23] Ibacache-Pulgar, G.; Figueroa-Zuñiga, J. and Marchant, C. (2021). Semiparametric
additive beta regression models: inference and local influence diagnostics, REVSTAT – Sta-
tistical Journal, 19, 255–274.

[24] Li, J.; Xia, X.; Wong, W.E. and Nott, D. (2018). Varying-coefficient semiparametric
model averaging predicction, Biometrics, 14, 1417–1426.

[25] Liu, S.; Leiva, V.; Zhuang, D.; Ma, T. and Figueroa-Zuñiga, J.I. (2021). Matrix differ-
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