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Paráıba, João Pessoa, Brazil
pedro.rafael.marinho@gmail.com

Received: December 2020 Revised: June 2022 Accepted: June 2022

Abstract:

• The article introduces a new family by combining the Marshall and Olkin-G and Gamma-G classes.
It has only two extra shape parameters and can be a better model than other existing classes of
distributions. Simulations are performed to verify the consistency of the estimators. Its flexibility
is shown by means of two real data sets.

Keywords:

• applications; distribution family; mathematical properties; simulations.

AMS Subject Classification:

• 60E05, 62E10, 62E15.

� Corresponding author

https://doi.org/10.57805/revstat.v22i3.504
https://orcid.org/0000-0002-5480-3103
mailto:maria@de.ufpe.br
https://orcid.org/0000-0002-3052-6551
mailto:gauss@de.ufpe.br
https://orcid.org/0000-0003-1591-8300
mailto:pedro.rafael.marinho@gmail.com


294 M.C.S. Lima, G.M. Cordeiro and P.R.D. Marinho

1. INTRODUCTION

The advances in the field of Data Science requires the search for new families of dis-
tributions that adequately model real data has been increasing steadily in the last years.
The construction of different generation methods and even generators of families has made
it difficult to compare new proposals. In the midst of a huge set of existing families in the
literature of new distributions, to find a proposal that is in fact an excellent competitor when
compared to other existing ones, in terms of adjustment to real data sets and also that does
not present estimation problems, is a major challenge.

The classes of distributions in the early 1980s were based on the simple idea of adding
parameters to a baseline distribution. The mechanism by adding shape parameters to a
baseline distribution has proved to be useful to make the generated distributions more flexible
especially for studying tail properties than existing ones and for improving their goodness-of-
fit statistics to real data. Many special distributions in these families are discussed by Tahir
and Nadarajah (2015) [1].

The addition of parameters in the construction of new distributions/families was im-
proved by the inclusion of mathematical functions known in the literature, such as beta and
gamma functions, for example, which produce new generators with more flexible properties
than their baselines. Two well-known examples are the beta-G (Eugene et al., 2002) [2] and
gamma-G (Zografos and Balakrishnan, 2009) [3] generators.

However, the inclusion of such functions for generating new families brought, in some
cases, problems for parameter estimation. So, despite the fit being more suitable for some
types of data and, therefore, having a superior performance when compared to other gener-
ators, the estimation process can often be a problem.

In this context, this work presents a new family obtained by composing a very compet-
itive class in the literature with another class that has the gamma function in its structure.

Let G(x) be the cumulative distribution function (CDF) of a baseline distribution and
g(x) = dG(x)/dx be the corresponding probability density function (PDF) depending on a
parameter vector η. A generalized family is presented with two extra shape parameters by
transforming the CDF G(x) according to two sequential important classes. These classes,
called Marshall and Olkin-G and Gamma-G, are important for modeling data in several
areas, and they are reviewed below.

The CDF of the Marshall and Olkin’s (1997) [4] (MO-G) class (for θ > 0) is

(1.1) FMO-G(x) =
G(x)

θ + (1− θ)G(x)
=

G(x)
1− (1− θ)[1−G(x)]

, x ∈ R.

The density function corresponding to (1.1) has the form

(1.2) fMO-G(x) =
θ g(x)

[θ + (1− θ)G(x)]2
.
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For θ = 1, fMO-G(x) is equal to g(x). Equation (1.2) represents the PDF of the mini-
mum of n iid random variables having density g(x), say T1, ..., TN , where N has a geometric
distribution with probability parameters θ and θ−1 if 0 < θ < 1 and θ > 1, respectively.

Tahir and Nadarajah (2015, Table 2) [1] presented thirty distributions belonging to
this family. It is easily generated from the baseline quantile function (QF) by QMO-G(u) =
QG(θu/[θu+ 1− u]) for u ∈ (0, 1).

Marshall and Olkin considered the exponential and Weibull distributions for the base-
line G and derived some structural properties of the generated distributions. If G is an
exponential distribution, the special case refers to a two-parameter competitive model to the
Weibull and gamma distributions.

The CDF of the gamma-G (Γ-G) class (Zografos and Balakrishnan, 2009) [3] is

FΓ-G(x) = γ1(a,− log[1−G(x)]), x ∈ R,(1.3)

where a > 0 is an extra shape parameter, γ1(a, z) = γ(a, z)/Γ(a) is the incomplete gamma
function ratio, and γ(a, z) =

∫ z
0 t

a−1 e−tdt.

Then, the PDF of the Γ-G class can be expressed as

fΓ-G(x) =
1

Γ(a)
{− log[1−G(x)]}a−1 g(x).(1.4)

Each new Γ-G distribution follows from a given baseline G. For a = 1, the Γ-G class
reduces to G. If Z is a gamma random variable with unit scale and shape a > 0, then W =
QG(1− e−Z) has density (1.4). So, the Γ-G distribution is easily generated from the gamma
distribution and the QF of G.

The remaining of the paper is addressed as follows. Section 2 introduces the Marshall
and Olkin-Gamma-G (MOGa-G) family, and provides some special models. The maximum
likelihood estimates (MLEs) of its parameters is addressed in Section 3. Some simulations are
performed in Section 4 to estimate the biases of the MLEs. Two empirical applications illus-
trate the potentiality of the proposed family in Section 5. A variety of theoretical properties
are obtained in Section 6. Some conclusions remarks are offered in Section 7.

2. THE NEW FAMILY

By combining Equations (1.1) and (1.3), the CDF of the random variable X ∼MOGa-G
representing the new family has the form

(2.1) FX(x) =
γ1(a,− log[1−G(x)])

θ + (1− θ)γ1(a,− log[1−G(x)])
, x ∈ R.

By differentiating (2.1), the PDF of X follows as

(2.2) fX(x) =
θ{− log[1−G(x)]}a−1 g(x)

Γ(a) {θ + (1− θ)γ1(a,− log[1−G(x)])}2 .



296 M.C.S. Lima, G.M. Cordeiro and P.R.D. Marinho

The density (2.2) can be interpreted from a sequence of N iid random variables, say
Z1, ..., ZN , each one having a gamma density with unit scale and shape a > 0, assuming that
N (is not fixed) has a geometric distribution with probabilities θ and θ−1 for 0 < θ < 1 and
θ > 1, respectively. By transforming the Zi’s via the baseline QF by Wi = QG(1− e−Zi)
(for i = 1, ..., N), Equation (1.2) defines the PDF of the minimum W1, ...,Wn. The proposed
family from the double composition of the two classes absorbs the impacts of their different
flexibilities on real applications.

Table 1 provides some special cases of (2.2), where Φ(x) and φ(x) are the CDF and
PDF of the standard normal distribution. The density and hazard (h(x) = f(x)/[1− F (x)])
functions of the MOGa-Weibull (MOGa-W) model are displayed in Figure 1, which provide
more flexibility to both functions for both classes applied separately to the Weibull model.
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Figure 1: The density and hazard functions of the MOGa-W model.

The CDF (2.1) can be easily inverted to calculate the QF of the MOGa-G distri-
bution, say x = QX(u) = F−1

X (u) (for u ∈ (0, 1)), in terms of the baseline QF QG(·). The
inverse of FX(x) = u, where u is a uniform number in (0, 1), follows by combining the in-
verses of Equations (1.1) and (2.1). So, FX(x) = u gives z = z(u) = θu/[1− (1− θ)u] and
γ1(a,− log[1−G(x)]) = z(u). Hence, the QF of X can be expressed as

x = QG(v(u)),

where

v(u) = 1− exp
[
−γ−1

1

(
a, z(u)

)]
,

and γ−1
1 (a,w) =Q−1(a,1−w) is the inverse function of γ1(a,w). Some formulae for Q−1(a,1−w)

are given in http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/.

http://functions.wolfram.com/GammaBetaErf/InverseGammaRegularized/
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Table 1: Special Distributions in the MOGa-G family.

Distribution Baseline CDF Generated PDF

Normal G(x) = Φ(x) fX(x) =
θ{− log[1−Φ(x)]}a−1 φ(x)

Γ(a) {θ+(1−θ)γ1(a,− log[1−Φ(x)])}2

Logistic G(x) = 1
1+e−x fX(x) =

θ e−x {− log[1−(1+e−x)−1]}a−1

Γ(a) (1+e−x)2 {θ+(1−θ)γ1(a,− log[1−(1+e−x)−1])}2

Gumbel G(x) = 1− exp(−ex) fX(x) =
θ exp(a x−ex)

Γ(a) {θ+(1−θ)γ1(a,ex)}2

Log-Normal G(x) = Φ(log x) fX(x) =
θ φ(log x) {− log[1−Φ(log x)]}a−1

Γ(a) x {θ+(1−θ)γ1(a,− log[1−Φ(log x)])}2

Exponential G(x) = 1− exp(−λx), λ > 0 fX(x) = θ λa x(a−1)

Γ(a) {θ+(1−θ)γ1(a,λx)}2

Weibull G(x) = 1− exp(−(λx)γ), λ, γ > 0 fX(x) =
θ γλa γxa γ−1 exp{−(λ γ)γ}
Γ(a){θ+(1−θ)γ1[a,(λ x)γ ]}2

Gamma G(x) = γ1(α, βx), α, β > 0 fX(x) =
θ βα xα−1 e−βx {− log[1−γ1(α,βx)]}a−1

Γ(a) {θ+(1−θ)γ1(a,− log[1−γ1(α,βx)])}2

Pareto G(x) = 1− 1
(1+x)ν , ν > 0 fX(x) =

θ e−x [ν log(1+x)]a−1 g(x)

Γ(a) (1+e−x)2 {θ+(1−θ)γ1(a,ν log[1+x])}2

Dagum G(x) = [1 + (x/β)−α]−p, α, β, p > 0 fX(x) =
θ{− log[1−[1+(x/β)−α]−p]}a−1

g(x)

Γ(a){θ+(1−θ)γ1[a,− log(1−((x/β)−α+1)−p)]}

3. ESTIMATION

The MOGa-G family can be fitted to real data using the AdequacyModel package
(Marinho et al., 2019) [5] in the R software. This package does not require to define the log-
likelihood function, and it computes the MLEs, their standard errors (SEs), and the formal
statistics defined in Section 5. It is only necessary to provide the PDF and CDF of the
distribution to be fitted to a data set.

For example, if xi is one observation from (2.2) and η is a q-parameter vector specifying
G(·) as the Weibull CDF, the log-likelihood function for θ> = (a, θ,η>) from n observations
can be expressed as

`(θ) = n log(θ) + n log(γ) + na γ log(λ) + (aγ − 1)
n∑

i=1

log(xi)− λγ
n∑

i=1

xγ
i

− n log[Γ(a)]− 2
n∑

i=1

log{θ + (1− θ)γ1[a, (λxi)γ ]}.(3.1)

Due to the impossibility of obtaining the MLEs in closed form, numerical methods
to calculate the estimates that maximize `(·) are necessary. Several programming languages
and statistical software provides functions and routines that make it easy to obtain numerical
estimates by various interactive methods. In practice, these estimates are commonly found
in this way, since the Newton and quasi-Newton methods produce satisfactory results under
reasonable conditions of the object function, i.e., when they do not impose restrictions that
disturb the convergence of the algorithms.
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The AdequacyModel package of the programming language R is used to obtain the
MLEs, see R Core Team (2020) [6]. This library, created and maintained by one of the
authors of this paper, is widely cited by several works in statistics, and serves as a basis for
other library implementations available on the Comprehensive R Archive Network (CRAN).
By using the goodness.fit function, it is possible to provide an implementation of (2.2), and
obtain `(·) by returning the MLEs, and some measures of adequacy of fit. Further details
regarding this package can be obtained from Marinho et al. (2019) [5].

4. SIMULATIONS

Due to the probable absence of MLEs in closed-form for distributions belonging to
the MOGa-G family, it is necessary to examine the precision of the estimates calculated
numerically.

In order to do that, the biases of the estimators of the parameters of the MOGa-
Dagum(θ, a, α, β, p) and MOGa-Weibull(θ, a, λ, γ) distributions are determined, where G ∼
Dagum(α, β, p) and Weibull(γ, λ) are the baseline models, respectively. All parameters are
taken equal to one for different sample sizes reported in Tables 2 and 3.

The numbers in Tables 2 and 3 indicate that the estimation method behaves well when
the sample size increases. This is theoretically expected. However, in practice, difficulties
can be faced to other families due to the flatness of the log-likelihood function.

All Monte Carlo simulations can be reproduced using the script in https://github.

com/prdm0/MOGG. The simulations are parallelized and able to use all threads available by
a multicore processor, thus making them more computationally efficient, and consequently
requiring less time to complete.

The simulations are performed on a computer with an Intel(R) Core(TM) i5-9500 CPU
processor with 6 threads working at a maximum frequency of 3.00GHz, requiring, on this
hardware, a time of 15.4828 hours to perform all simulations, 7.7414 hours for the MOGa-
Dagum(θ, a, α, β, p) distribution, and 4.9688 hours for the MOGa-Weibull(θ, a, λ, γ) distri-
bution. Tables 2 and 3 reveal that the average biases of the MLEs could be very small for
n > 2, 000.

To generate observations from the random variable X with density f , the well-known
Acceptance-Rejection Algorithm for continuous random variables is very useful when the QF
involves complex functions that can lead to some numerical inaccuracies. For doing this,
another random variable Y is chosen such that it can generate observations from a PDF h

with the same support as f . Then, the acceptance and rejection algorithm is defined by the
following steps:

1. Generate an outcome y from Y ;

2. Generate an observation u from a random variable U ∼ U(0, 1);

3. If u < f(y)
c g(y) , where c is a real constant, accept x = y; otherwise reject y as an

outcome from X and return to 1.

https://github.com/prdm0/MOGG
https://github.com/prdm0/MOGG
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The constant c must be chosen in such a way that f(y)
c g(y) ≤ 1. Thus, to minimize the

computational cost of generating observations from X through the generated observations
from Y , c is chosen as the lowest possible value to maximize the likelihood of acceptance.
Further details of this method can be found in Rizzo (2019) [7].

Table 2: Average biases of the MLEs of the MOGa-Dagum(θ, a, α, β, p) distribution
calculated by the BFGS method from simulations.

n B(θ̂) B(â) B(α̂) B(β̂) B(p̂) Time (mins)

10 0.2213 2.1944 2.6971 1.5803 1.3190 0.6960
20 0.4240 2.4793 1.5591 1.8083 0.7414 0.9819
60 0.7458 2.2661 0.5598 1.8495 0.2812 1.9417

100 0.6194 1.9438 0.3312 1.6142 0.2935 2.7208
200 0.3950 1.4262 0.1856 1.1556 0.3611 4.4534
400 0.2077 0.9599 0.1082 0.6157 0.4076 7.4698
600 0.1200 0.7213 0.0767 0.4024 0.3572 9.4975

1000 0.0629 0.4791 0.0503 0.2123 0.2584 12.4221
2000 0.0362 0.2958 0.0298 0.1145 0.1878 20.7251
5000 −0.0040 0.1325 0.0159 0.0144 0.0167 28.3380

10000 −0.0133 0.0815 0.0096 0.0081 0.0039 50.9298
20000 −0.0111 0.0349 0.0037 0.0006 −0.0109 68.6320
30000 −0.0036 0.0191 0.0006 −0.0041 −0.0034 97.3046
50000 −0.0057 0.0129 0.0016 0.0015 −0.0026 158.3737

Table 3: Average biases of the MLEs of the MOGa-Weibull(θ, a, λ, γ) distribution
calculated by the BFGS method from simulations.

n B(θ̂) B(â) B(λ̂) B(γ̂) Time (mins)

10 0.0818 0.1362 4.9274 1.2407 0.6716
20 0.3404 −0.0177 3.4160 1.4117 0.8077
60 0.7037 −0.0677 1.8806 1.3385 1.1773

100 0.6698 −0.0535 1.3684 1.1796 1.2643
200 0.5371 −0.0299 0.8265 0.9110 1.7886
400 0.3371 −0.0047 0.4205 0.5967 2.8386
600 0.2457 0.0076 0.2685 0.4306 3.6867

1000 0.1476 0.0093 0.1553 0.2818 5.0944
2000 0.0731 0.0035 0.0758 0.1530 8.8577
5000 0.0264 0.0007 0.0283 0.0618 15.8586

10000 0.0128 −0.0007 0.0142 0.0318 29.8629
20000 0.0053 −0.0012 0.0071 0.0160 48.7417
30000 0.0023 −0.0014 0.0053 0.0119 64.7387
50000 0.0023 −0.0004 0.0028 0.0063 112.7422

5. APPLICATIONS

Two applications compare the MOGa-Weibull (MOGa-W for short) model with seven
extended Weibull distributions: the beta-Weibull (β-W) (Famoye et al., 2005) [8], Ku-
maraswamy Weibull (Kw-W) (Cordeiro et al., 2010) [9], Marshall-Olkin Weibull (MO-W)
(Ahmed et al., 2017) [10], Marshall-Olkin Extended Weibull (MOE-W) (Cordeiro et al.,
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2019) [11], exponentiated Weibull (exp-W) (Mudholkar and Srivastava, 1993) [12], gamma
Weibull (Γ-W) (Cordeiro et al., 2016) [13], and exponentiated generalized Weibull (EG-W)
(Oguntunde et al., 2015) [14] (with a = 1). Some of these distributions are widely used in
practice.

The log-likelihood for θ from the MOGa-W distribution from one observation can be
expressed as

`(θ) = log(θ) + log(γ) + (a γ) log(λ) + (a γ − 1) log(x)− (γ x)γ − log[Γ(a)]

− 2 log{θ + (1− θ)γ1[a, (λx)γ ]},(5.1)

where θ = (a, θ, λ, γ)>. The components of the score function are

Ua(θ) = γ log(λ) + γ log(x)− ψ(0)(a)−
2
{
(1− θ)A− (1− θ)ψ(0)(a)γ1[a, (xλ)γ ]

}
θ Γ(a) + (1− θ)γ1[a, (λx)γ ]

,

Uθ(θ) =
1
θ
− 2{Γ(a)− γ1[a, (λx)γ ]}
θ Γ(a) + (1− θ)γ1[a, (λx)γ ]

,

Uλ(θ) =
γ

λ
[a− (λx)γ ] +

2γ λ−1(λx)a γ(1− θ) exp{−(λx)γ}
θ Γ(a) + (1− θ)γ1[a, (λx)γ ]

and

Uγ(θ) =
1
γ

+ a log(λ) + a log(x)− (λx)γ log(λx) +
2(1− θ)(λx)γ a log(λx) exp{−(λx)γ}

θ Γ(a) + (1− θ) γ1[a, (λx)γ ]
,

where ψ(n)(x) is the n-th derivative of the digamma function,

A = log[(λx)γ ] γ1[a, (λx)γ ] +G3,0
2,3

(
(λx)γ

∣∣∣ 1, 1
0, 0, a

)
,

and Gm,n
p,q

(
z
∣∣∣ a1,...,ap

b1, ..., bq

)
is the Meijer G function.

The AdequacyModel package is used to fit the previous distributions to two real data
sets. The SANN method, which is a variant of simulated annealing algorithm (Belisle, 1992)
[15], is used here. The distributions are compared via the Anderson Darling (A∗) and Cramér
von Mises (W∗) statistics reported in the goodness.fit function.

For the first case, the betareg package is applied to a modification of the “FoodEx-
penditure” data, which refer to the proportions of income spent on food for 38 households in
a large US city (according to the package information). The household expenditures for food
are given by

data = FoodExpenditurefood/#(FoodExpenditurefood),

where FoodExpenditurefood is the random variable corresponding to the household expen-
ditures for food, and #(·) indicates the number of observations on this variable. The obser-
vations for the first data set are given bellow:

0.4210000, 0.4382105, 0.5721316, 0.1955526, 0.2758158, 0.3565263, 0.6120000, 0.4730526,
0.3726579, 0.2322368, 0.3732632, 0.5158947, 0.3612632, 0.5563421, 0.4591053, 0.2533947,
0.3685526, 0.2410526, 0.4955526, 0.2010789, 0.3653158, 0.2544737, 0.5685263, 0.2859474,
0.7626316, 0.2863684, 0.4884474, 0.3060263, 0.4754474, 0.3826053, 0.5050526, 0.6820526,
0.7587632, 0.4176053, 0.3923684, 0.2513158, 0.6070000, 0.3881842.
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Some descriptive statistics are reported in Table 4. The minimum value refers to a
family of 3 people and income of 39,151, which does not represent the lowest family income
for the current data, as expected, occupying only the fifth position among those with the
lowest income. The maximum value corresponds to a family of 6 people with an income of
69,929, the second-largest number among the number of people per family in the group in
question. Furthermore, we can note that the current data present positive asymmetry and
negative kurtosis.

Table 4: Descriptive statistics for the food data.

Minimum 0.1956
1st Qu. 0.2913
Median 0.3903
Mean 0.4198
3rd Qu. 0.5027
Maximum 0.7626
Standard Deviation 0.1480
Skewness 0.5250
Kurtosis −0.4440

In addition, the standard deviation is relatively low. Figure 2 displays the total time on
test (TTT) plot for the first data set, which shows that the failure function is decreasing. So,
the MOGa-W distribution is appropriate to fit these data, since its hazard function presents
this shape (see, Figure 1(b)).
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Figure 2: TTT plot for the food data.

The MLEs, their standard errors (SEs) (in parentheses), and the statistics W∗ and A∗

for the fitted models to the current data are listed in Table 5. The results indicate that the
proposed model has better performance than the other seven fitted models.
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Table 5: Estimation results for food data.

Model â θ̂ λ̂ γ̂ W ∗ A∗

MOGa-W(a, θ, λ, γ) 0.9261 1.3796 33.3230 25.3988 0.0339 0.2376
(0.0262) (0.2238) (0.2853) (0.0825)

β−W(a, θ, λ, γ) 9.9288 0.1700 9.7594 1.5305 0.0435 0.2594
(0.0290) (0.0204) (<0.0001) (<0.0001)

KW-W(a, θ, λ, γ) 0.0498 99.9998 1.0760 23.4028 1.3309 6.7426
(0.0080) (16.2259) (0.0031) (0.0146)

MOE-W(a, θ, λ, γ) 0.1366 2.0204 62.7220 4.2956 0.0354 0.2579
(0.1599) (<0.0001) (<0.0001) (0.7365)

EGW(a, b, λ, γ) 5.6189 6.1833 1.2870 1.3798 0.0371 0.2518
(0.0028) (0.0009) (0.1159) (0.1480)

MO-W(a, λ, γ) 0.1592 — 1.5860 4.2671 0.0345 0.2573
(0.0717) (—) (0.1335) (0.1665)

exp-W(a, λ, γ) 6.1102 — 4.4680 1.3858 0.0372 0.2523
(0.4222) (—) (0.3175) (0.1677)

γ-W(a, λ, γ) 5.7515 — 10.0000 1.2087 0.0879 0.6599
(0.0015) (—) (0.0001) (0.0082)

A data set collected in a pilot study about hypertension in the Dominican Republic
in 1997 refers to the second application. The observations are the systolic blood pressure
of persons who came to medical clinics in several villages for a variety of complaints. The
observations for the data set in question are:

150, 120, 120, 180, 138, 115, 130, 150, 200, 120, 190, 90, 130, 120, 200, 140, 110, 134, 160,
140, 105, 126, 129, 120, 100, 130, 118, 144, 180, 138, 110, 140, 120, 118, 110, 110, 130, 140,
130, 165, 180, 130, 140, 112, 130, 158, 112, 150, 140, 142, 110, 140, 130, 132, 140, 140, 122,
128, 90, 118, 120, 110, 122, 200, 110, 140, 150, 120, 150, 120, 164, 122, 112, 130, 140, 102,
122, 130, 102, 130, 122, 200, 140, 180, 124, 110, 124, 90, 120, 159, 142, 140, 118, 122, 108,
170, 120, 140, 100, 118, 110, 114, 150, 160, 140, 190, 118, 120, 150, 120, 200, 150, 168, 110,
142, 150, 160, 142, 160, 150, 110, 128, 122, 150, 140, 122, 120, 130, 100, 130, 150, 130, 100,
120, 105, 100, 150, 196, 130, 110, 140, 122, 110, 164, 120, 120, 150, 160, 150, 135, 124, 110,
100, 95, 130, 120, 108, 118, 170, 105, 120, 95, 95, 120, 140, 142, 160, 110, 190, 180, 130, 130,
120, 204, 150, 150, 120, 122, 120, 130, 140, 148, 118, 126, 136, 140, 130, 102, 110, 110, 130,
126, 142, 140, 128, 130, 124, 162, 130, 130, 110, 80, 166, 140, 160, 160, 140, 98, 138, 120, 112,
112, 134, 140, 115, 140, 98, 115, 120, 80, 160, 126, 110, 130, 104, 236, 118, 120, 140, 120, 98,
164, 150, 110, 120, 130, 170, 180, 110, 120, 130, 118, 130, 190, 158, 90, 99, 210, 180, 140, 184,
105, 120, 150, 140, 130, 160, 118, 210, 100, 170, 150, 130, 170, 150, 120, 134, 90, 125, 170,
140, 150, 110, 105, 140, 120, 100, 124, 112, 160, 140, 118, 190, 110, 118, 160, 150, 124, 128,
150, 120, 125, 118, 132, 110, 143, 170, 98, 124, 180, 178, 110, 98, 159, 110, 140, 130, 122, 110,
98, 180, 90, 118, 165, 138, 138, 170, 106, 170, 140, 90, 118, 110, 102, 102, 180, 100, 110, 162,
140, 110, 98, 140, 140, 110, 170, 112, 90, 102, 106, 124, 110, 180, 138, 90, 150, 126, 110, 130,
150, 145, 140, 156, 110, 150, 160, 120, 140, 120, 110, 120, 140, 160, 160, 110, 150, 118, 110,
120, 120, 146, 124, 170, 124, 170, 159, 120, 120, 118, 152, 190.
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Table 6 provides the descriptive statistics for the second data set. Considering that the
systolic blood pressure represents the highest number presented in the pressure measuring
equipment, the maximum (236) found in this table should represent an individual with serious
heart problems. This is due to the fact that the normal systolic pressure is 120.

Table 6: Descriptive statistics for the clinic data.

Minimum 80
1st Qu. 118
Median 130
Mean 133
3rd Qu. 150
Maximum 236
Standard Deviation 25.7157
Skewness 0.7893
Kurtosis 0.5908

The minimum value (80) should be for an individual who probably suffers from low
blood pressure. Also note that the data set has positive skewness. This indicates that few
people have high pressure values and, in this case, the mode is 120, which represents a good
value for systolic pressure.

Figure 3 provides the TTT plot for the second clinic data, which shows that the hazard
function is decreasing, thus supporting the MOGa-W model.
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Figure 3: TTT plot for the clinic data.

The MLEs of the parameters, their SEs and the values of the adequacy measures for the
fitted models to the clinic data are reported in Table 7. By comparing the measure values,
the proposed distribution outperforms all other fitted models.
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Table 7: Estimation results for clinic data.

Model â θ̂ λ̂ γ̂ W ∗ A∗

MOGa-W(a, θ, λ, γ) 9.6293 3.6407 6.2608 12.8234 0.5093 2.8076
(0.0062) (0.1824) (0.0244) (0.0079)

β−W(a, θ, λ, γ) 31.0847 47.1463 0.0169 2.0540 0.7540 4.2794
(0.0127) (<0.0001) (0.0001) (<0.0001)

KW-W(a, θ, λ, γ) 7363.2810 0.0392 1.4676 0.6146 0.5351 2.9617
(0.0419) (0.0004) (<0.0001) (<0.0001)

MOE-W(a, θ, λ, γ) 101.1347 0.4238 0.0309 1.7024 1.1441 6.6446
(46.7828) (0.1008) (0.0036) (0.1681)

EGW(a, b, λ, γ) 0.2351 140.0000 0.4576 0.7425 0.8925 5.3338
(0.0025) (3.2785) (<0.0001) (<0.0001)

MO-W(a, λ, γ) 173.2139 — 0.0212 1.6019 1.4760 8.5870
(0.0001) (—) (0.0002) (0.0001)

exp-W(a, λ, γ) 69.0291 — 0.0240 1.3455 0.8899 5.0941
(0.0838) (—) (0.0002) (<0.0001)

Γ-W(a, λ, γ) 9.1122 — 0.0261 1.7464 0.6227 3.4882
(0.9633) (—) (0.0029) (0.0803)

6. MATHEMATICAL PROPERTIES

Here, some mathematical properties for the MOGa-G family are presented based on a
linear representation for its density function in terms of “exponentiated-G” (exp-G) densities.

6.1. Linear Representation

For an arbitrary CDF G(x), the CDF and PDF of the exp-G distribution with power
parameter a > 0 are

Πa(x) = G(x)a and πa(x) = a g(x)G(x)a−1,

respectively. This class of distributions is quite useful in several applications. In fact, Tahir
and Nadarajah (2015) [1] cited more than seventy papers on exponentiated distributions in
their Table 1.

First, the CDF of the MO-G distribution (1.2) admits the linear representation (Barreto-
Souza et al., 2013) [16]

(6.1) FMO−Γ(x) =
∞∑
i=0

wMO-G
i Πi+1(x) =

∞∑
i=0

wMO-G
i G(x)i+1,

where the coefficients are (for i = 0, 1, ...)

wMO−Γ
i = wMO−Γ

i (θ) =


(−1)i θ

(i+ 1)

∞∑
j=i

(j + 1)
(
j

i

)
θ̄j , θ ∈ (0, 1),

θ−1(1− θ−1)i, θ > 1,

and θ̄ = 1− θ.
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Second, the linear combination for the Γ-G cumulative distribution (1.4) follows from
Castellares and Lemonte (2015) [17] as

(6.2) FΓ-G(x) =
∞∑

j=0

wΓ-G
j Πa+j(x).

Here,

wΓ-G
j = wΓ-G

j (a) =
ϕj(a)
(a+ j)

,

ϕ0(a) =
1

Γ(a)
, ϕj(a) =

(a− 1)
Γ(a)

ψj−1(j + a− 2), j ≥ 1,

and

ψn−1(x) =
(−1)n−1

(n+ 1)!

[
Hn−1

n − x+ 2
n+ 2

Hn−2
n +

(x+ 2)(x+ 3)
(n+ 2)(n+ 3)

Hn−3
n − ···

+ (−1)n−1 (x+ 2)(x+ 3)···(x+ n)
(n+ 2)(n+ 3)···(2n)

H0
n

]

is the Stirling polynomial, Hm
n+1 = (2n+ 1−m)Hm

n + (n−m+ 1)Hm−1
n is a positive integer,

H0
0 = 1, H0

n+1 = 1× 3× 5× ··· × (2n+ 1) and Hn
n+1 = 1.

By inserting (6.2) in Equation (6.1) and via a result for a power series raised to a
positive integer (Gradshteyn and Ryzhik, 2000) [18], the expansion for the cdf of the MOGa-G
distribution reduces to

FMO−Γ-G(x) =
∞∑
i=0

wMO-Γ
i G(x)(i+1)a

 ∞∑
j=0

wΓ-G
j G(x)j

i+1

=
∞∑
i=0

wMO-Γ
i G(x)(i+1)a

∞∑
j=0

ci+1,j G(x)j =
∞∑

i,j=0

di,j Π(i+1)a+j(x),

where di,j = di,j(a, θ) = wMO-G
i ci+1,j(a), ci+1,0(a) = (wΓ-G

0 )i+1 and, for m ≥ 1, ci+1,m(a) =
1

mwΓ-G
0

∑m
r=1 [r(i+ 2)−m]wΓ-G

r ci+1,m−r(a).

By differentiating the last equation, the linear representation for the MOGa-G density
holds

(6.3) fMO−Γ-G(x) =
∞∑

i,j=0

di,j π(i+1)a+j(x).

So, some structural properties of the proposed family can be determined from the double
linear combination (6.3) and those properties of the exp-G distribution. In most applications,
the indices i and j can vary up to a small number of terms.
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6.2. Some quantities

Hereafter, let Ti,j ∼ exp-G[(i+ 1)a+ j]. The n-th moment of X can be determined
from (6.3) as

µ′n = E(Xn) =
∞∑

i,j=0

di,j E(Ti,j) =
∞∑

i,j=0

[(i+ 1)a+ j − 1] di,j τ [n, (i+ 1)a+ j − 1],(6.4)

where

τ(n, a) =
∫ ∞

−∞
xnG(x)a g(x)dx =

∫ 1

0
QG(u)n uadu.

Expressions for moments of several exponentiated distributions can be found in the
papers cited in Tahir and Nadarajah (2015, Table 1). We give just one example from Equation
(6.4) by taking the exponential distribution with rate λ > 0 for the baseline G. It follows easily
as

µ′n = n!λn
∞∑

i,j,m=0

(−1)n+m [(i+ 1)a+ j] di,j

(m+ 1)n+1

(
(i+ 1)a+ j − 1

m

)
.

For empirical purposes, the shape of many distributions can be usefully described by
the incomplete moments. These moments play an important role for measuring inequality.
For example, the mean deviations and Lorenz and Bonferroni curves depend upon the first
incomplete moment of the distribution. The n-th incomplete moment of X can be expressed
as

mn(y) =
∫ y

−∞
xn fX(x)dx =

∞∑
i,j=0

[(i+ 1)a+ j] di,j

∫ G(y)

0
QG(u)n u(i+1)a+j−1 du.(6.5)

The definite integral in (6.5) can be evaluated for most baseline G distributions.

The moment generating function (MGF) M(t) = E(etX) of X can be expressed from
(6.3)

M(t) =
∞∑

i,j=0

di,j Mi,j(t) =
∞∑

i,j=0

[(i+ 1)a+ j] di,j ρ(t, (i+ 1)a+ j − 1),(6.6)

where Mi,j(t) is the MGF of Yi,j and

ρ(t, a) =
∫ ∞

−∞
etx G(x)a g(x)dx =

∫ 1

0
exp{t QG(u)}uadu.

The MGFs of several MOGa-G distributions can be determined from Equation (6.6).
For example, the generating function of the MOGa-exponential with parameter λ (if t < λ−1)
is

M(t) =
∞∑

i,j=0

[(i+ 1)a+ j] di,j B((i+ 1)a+ j, 1− λt).
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7. CONCLUSIONS

A new family of distributions called the Marshall and Olkin-Gamma-G family with
two shape parameters is introduced. The estimation of the unknown parameters is done via
the maximum likelihood method and a simulation study is conducted to verify its adequacy.
Additionally, the usefulness of the proposed family is shown empirically by means of two
applications to real data. In fact, the new family can generate very competitive distributions
with the same number of parameters than others constructed by existing classes.
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