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1. INTRODUCTION

The dilemma of missing value is very usual in a sample survey and its presence can spoil
the traditional results. Therefore, it becomes essential to resolve the problem of missing values
in a data set. The well-known imputation technique is used to replace the missing values.
Three basic concepts on missing values were suggested by Rubin (1976), such as missing
at random (MAR), observed at random (OAR), and parameter distribution (PD). Several
renowned authors like Lee et al. (1994), Singh and Horn (2000), Singh and Deo (2003), Singh
(2009), and Singh and Valdes (2009) introduced various imputation methods in the presence
of missing values. Heitjan and Basu (1996) exhibited a difference between missing at random
and missing completely at random (MCAR) approach. Thereafter, Ahmed et al. (2006),
Kadilar and Cingi (2008), Diana and Perri (2010) and Bhushan and Pandey (2016, 2018),
Mohamed et al. (2016), Prasad (2017), Bouza et al. (2020), Bouza-Herrera and Viada (2021),
and Bhushan et al. (2018, 2022) utilized MCAR strategy in their study for the imputation
of missing values.

In real life, situations may emerge where it is either difficult to measure the study
variable or indeed expensive but can be ranked either visually or by any cost free method.
In such circumstances, McIntyre (1952) proposed the idea of ranked set sampling (RSS),
which is superior to simple random sampling but did not furnish any mathematical support.
Takahasi and Wakimoto (1968) extended the idea of McIntyre (1952) and provided the oblig-
atory mathematical foundation to the theory of RSS. Samawi (1996) envisaged the idea of
SRSS superior to StRS. Samawi and Siam (2003) introduced combined and separate ratio
estimators under SRSS. Mandowara and Mehta (2014) considered modified ratio estimators
under SRSS. Linder et al. (2015) investigated the regression estimator under SRSS. Khan
and Shabbir (2016) suggested Hartley-Ross type unbiased estimators under RSS and SRSS.
Recently, Saini and Kumar (2018) suggested the ratio estimator using quartile as an auxiliary
information under SRSS.

In sample surveys, when each group contains very small observations, then each obser-
vation becomes essential to draw conclusions. Further use of such kind of data set consisting
of missing values may vitiate the final conclusion and decrease the efficiency of the estima-
tor as well. In order to tackle with such kind of problems, Bouza-Herrera and Al-Omari
(2011) suggested mean imputation and ratio methods for the median estimator under RSS.
Al-Omari and Bouza (2014) introduced ratio estimators of the population mean with missing
values under RSS. Sohail et al. (2018) suggested ratio type imputation methods under RSS.

In this paper, we suggest some imputation methods in the presence of missing data
under SRSS. The rest paper is arranged in subsequent sections. In the next section, we
discuss the sampling methodology along with the notations used throughout the manuscript.
In Section 3, the combined and separate imputation methods are reviewed. In Section 4,
we have suggested combined and separate classes of imputation methods. The theoretical
comparisons of combined and separate imputation methods are given in Section 5, whereas
Section 6 deals with the simulation study conducted in favour of theoretical findings. Lastly,
the conclusion is given in Section 7.
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2. METHODOLOGY AND NOTATIONS

The procedure of ranked set sampling consists of drawing m simple random samples of
size m from the population. These m units are now ranked within each set with respect to the
variable of interest, say x. The first smallest unit is quantified from the first set for the mea-
surement of the auxiliary variable along with the associated study variables. The unit with
the second smallest rank is quantified from the second ranked set for the measurement of the
auxiliary variables along with the associated study variable and the process is carried on as far
as the m-th smallest unit is quantified from the last set. The above process is known as a cy-
cle. The repetition of this whole procedure up to k times furnishes n = mk ranked set samples.

The stratified ranked set sampling is a sampling procedure analogous to stratified ran-
dom sampling, which is based on splitting a population into L mutually exclusive and ex-
haustive strata and a ranked set sample of nh = mhk units are measured within each stratum
such that h = 1, 2, ..., L. The sampling is accomplished independently across the strata. Thus,
SRSS scheme can be supposed to a collection of L separate ranked set samples.

Consider a finite population U comprised of N measurable units with values yi, i ∈ U .
Let a stratified ranked set sample of size n = mhk be chosen from U to estimate the population
mean of the study variable y. Let r be the number of responding elements out of n sampled
elements. Let P be the probability that i-th respondent associated with a responding class
A and (1− P ) be the probability that i-th respondent associated with the non-responding
class Ā. Moreover, note that s = A ∪ Ā and let the values yi, i ∈ A be observable for each
characteristic, but for the characteristic i ∈ Ā the values are missing and require imputation
in order to establish the complete frame of data to draw a reasonable inference. The auxiliary
variable x will be used to execute the imputation of missing values and let the ranking be
performed over the auxiliary variables as well.

The succeeding notations would be used from the beginning to end in the case of
combined estimators.

Let ȳr,srss = Ȳ (1 + ε0), x̄r,srss = X̄(1 + ε1), x̄n,srss = X̄(1 + ε2) such that E(ε0) =
E(ε1) = E(ε2) = 0 and

E(ε20) =
L∑

h=1

W 2
h

(
C2

yh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
yh

Ȳ 2

)
=

L∑
h=1

W 2
h

(
γ∗C2

yh
−D2∗

yh

)
= I∗0 ,

E(ε21) =
L∑

h=1

W 2
h

(
C2

xh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γ∗C2

xh
−D2∗

xh

)
= I∗1 ,

E(ε22) =
L∑

h=1

W 2
h

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γC2

xh
−D2

xh

)
= I1,

E(ε0, ε1) =
L∑

h=1

W 2
h

(
ρxhyh

Cxh
Cyh

mhkP
− 1

m2
hkP

mh∑
i=1

τxhyh

X̄Ȳ

)

=
L∑

h=1

W 2
h

(
γ∗ρxhyh

Cxh
Cyh

−D∗
xhyh

)
= I∗01,
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E(ε0, ε2) =
L∑

h=1

W 2
h

(
ρxhyh

Cxh
Cyh

mhk
− 1

m2
hk

mh∑
i=1

τxhyh

X̄Ȳ

)

=
L∑

h=1

W 2
h (γρxhyh

Cxh
Cyh

−Dxhyh
) = I01,

E(ε1, ε2) =
L∑

h=1

W 2
h

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γC2

xh
−D2

xh

)
= I1,

where γ∗= 1/mhkP , γ = 1/mhk, τyh
= (µyh

− Ȳh), τxh
= (µxh

−X̄h) and τxhyh
= (µxh

−X̄h) ·
· (µyh

− Ȳh). Also, Cxh
= Sxh

/X̄ and Cyh
= Syh

/Ȳ are the coefficients of variation of auxiliary
variable x and study variable y, respectively.

In the case of separate estimators, the following notations will be used throughout the
paper.

Let ȳr,h[rss] = Ȳh(1 + e0h
), x̄r,h(rss) = X̄h(1 + e1h

), x̄n,h(rss) = X̄h(1 + e2h
) such that

E(e0h
) = E(e1h

) = E(e2h
) = 0 and

E(e2
0h

) =

(
C2

yh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
yh

Ȳ 2
h

)
=
(
γ∗C2

yh
−M2∗

yh

)
= J∗0 ,

E(e2
1h

) =

(
C2

xh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γ∗C2

xh
−M2∗

xh

)
= J∗1 ,

E(e2
2h

) =

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γC2

xh
−M2

xh

)
= J1,

E(e0h
, e1h

) =

(
ρxhyh

Cxh
Cyh

mhkP
− 1

m2
hkP

mh∑
i=1

τxhyh

X̄hȲh

)
=
(
γ∗ρxhyh

Cxh
Cyh

−M∗
xhyh

)
= J∗01,

E(e0h
, e2h

) =

(
ρxhyh

Cxh
Cyh

mhk
− 1

m2
hk

mh∑
i=1

τxhyh

X̄hȲh

)
= (γρxhyh

Cxh
Cyh

−Mxhyh
) = J01,

E(ε1h
, ε2h

) =

(
C2

xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γC2

xh
−M2

xh

)
= J1,

where τyh
= (µyh

− Ȳh), τxh
= (µxh

− X̄h) and τxhyh
= (µxh

− X̄h)(µyh
− Ȳh), Cxh

= Sxh
/X̄h

and Cyh
= Syh

/Ȳh.

3. RECAP OF IMPUTATION METHODS

In this section, we consider a concise recap of existing prominent combined and separate
imputation methods under SRSS.
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3.1. Combined imputation methods

The mean method of imputation under SRSS is given by

yc
.im =

{
yi for i ∈ A,

ȳr,srss for i ∈ Ā.

The sequent estimator is given by
T c

m = ȳr,srss

where ȳr,srss =
L∑

h=1

Whȳh[rss] is the stratified ranked set sample mean of study variable y.

Also, Wh = Nh/N is the weight of stratum h and Nh and N are the size of stratum h and
total population size, respectively.

The imputation methods are categorized into three situations under the availability of
auxiliary informations:

Situation I: When X̄ is known and x̄n,srss is utilized.

Situation II: When X̄ is known and x̄r,srss is utilized.

Situation III: When X̄ is unknown and x̄n,srss, x̄r,srss are utilized.

The classical combined ratio type imputation methods are defined under SRSS as:

Situation I

yc
.iR1

=

{
yi for i ∈ A,

1
n−r

[
nȳr,rss

(
X̄

x̄n,srss

)
− rȳr,srss

]
for i ∈ Ā.

Situation II

yc
.iR2

=

{
yi for i ∈ A,

1
n−r

[
nȳr,rss

(
X̄

x̄r,srss

)
− rȳr,srss

]
for i ∈ Ā.

Situation III

yc
.iR3

=

{
yi for i ∈ A,

1
n−r

[
nȳr,rss

(
x̄n,srss

x̄r,srss

)
− rȳr,srss

]
for i ∈ Ā.

The sequent estimators are

T c
R1

= ȳr,srss

(
X̄

x̄n,srss

)
,

T c
R2

= ȳr,srss

(
X̄

x̄r,srss

)
,

T c
R3

= ȳr,srss

(
x̄n,srss

x̄r,srss

)
,

where x̄n,srss =
L∑

h=1

Whx̄h(rss) is the stratified ranked set sample mean of auxiliary variable x.
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Following Diana and Perri (2010), we define the regression imputation methods to
impute the missing value under SRSS as:

Situation I

yc
.iDP1

=

{
yi for i ∈ A,

ȳr+
n

n−r b1(X̄ − x̄n,srss)yr,srss for i ∈ Ā.

Situation II

yc
.iDP2

=

{
yi for i ∈ A,

ȳr+
n

n−r b2(X̄ − x̄r,srss)yr,srss for i ∈ Ā.

Situation III

yc
.iDP3

=

{
yi for i ∈ A,

ȳr + n
n−r b3(x̄n,srss − x̄r,srss)yr,srss for i ∈ Ā.

The sequent combined estimators under the above situations are given by

T c
DP1

= ȳr,srss + b1(X̄ − x̄n,srss),

T c
DP2

= ȳr,srss + b2(X̄ − x̄r,srss),

T c
DP3

= ȳr,srss + b3(x̄n,srss − x̄r,srss).

Following Sohail et al. (2018), one may envisage a combined class of ratio type impu-
tation methods under SRSS for the imputation of missing values as:

Situation I

yc
.iS1

=

yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

x̄n,srss

)β1

− ȳr,srss

]
for i ∈ Ā,

yc
.iS4

=

{
yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

β4x̄n,srss+(1−β4)X̄

)
− ȳr,srss

]
for i ∈ Ā.

Situation II

yc
.iS2

=

yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

x̄r,srss

)β2

− ȳr,srss

]
for i ∈ Ā,

yc
.iS5

=

{
yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

β5x̄r,srss+(1−β5)X̄

)
− ȳr,srss

]
for i ∈ Ā.

Situation III

yc
.iS3

=

yi for i ∈ A,

n
n−r

[
ȳr,srss

(
x̄n,srss

x̄r,srss

)β3

− ȳr,srss

]
for i ∈ Ā,

yc
.iS6

=

{
yi for i ∈ A,

n
n−r

[
ȳr,srss

(
X̄

β6x̄r,srss+(1−β6)x̄n,srss

)
− ȳr,srss

]
for i ∈ Ā.
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The sequent estimators are given by

T c
S1

= ȳr,srss

(
X̄

x̄n,srss

)β1

,

T c
S2

= ȳr,srss

(
X̄

x̄r,srss

)β2

,

T c
S3

= ȳr,srss

(
x̄n,srss

x̄r,srss

)β3

,

T c
S4

= ȳr,srss

(
X̄

β4x̄n,srss + (1− β4)X̄

)
,

T c
S5

= ȳr,srss

(
X̄

β5x̄r,srss + (1− β5)X̄

)
,

T c
S6

= ȳr,srss

(
X̄

β6x̄r,srss + (1− β6)x̄n,srss

)
,

where βi; i = 1, 2, ..., 6 are suitably chosen optimizing scalars.

Appendix A of supplementary file contains the minimum mean square error (MSE) of
the sequent estimators consisting of different imputation methods.

3.2. Separate imputation methods

The separate mean method of imputation under SRSS is given by

ys
.im =

{
yi for i ∈ Ah,

ȳr,h[rss] for i ∈ Āh.

The sequent estimator is given by

T s
m =

L∑
h=1

Whȳr,h[rss],

where ȳr,h[rss] = 1
mhk

mh∑
i=1

k∑
j=1

yh[i]j is the ranked set sample mean of study variable in stratum h.

The separate imputation methods are categorized into three situations under the avail-
ability of auxiliary informations:

Situation I: When X̄ is known and x̄n,h(rss) is utilized.

Situation II: When X̄ is known and x̄r,h(rss) is utilized.

Situation III: When X̄ is unknown and x̄n,h(rss), x̄r,h(rss) are utilized.

The classical separate ratio type imputation method is described under SRSS as:

Situation I

ys
.iR1

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄n,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.
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Situation II

ys
.iR2

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄r,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation III

ys
.iR3

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.

The sequent estimators are given by

T s
R1

=
L∑

h=1

Wh

[
ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)]
,

T s
R2

=
L∑

h=1

Wh

[
ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)]
,

T s
R3

=
L∑

h=1

Wh

[
ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)]
.

On the lines of Diana and Perri (2010), we define a separate regression imputation
method under SRSS as:

Situation I

ys
.iDP1

=

{
yi for i ∈ Ah,

yr,h[rss] + n
n−r b1(X̄ − x̄n,h(rss)) for i ∈ Āh.

Situation II

ys
.iDP2

=

{
yi for i ∈ Ah,

yr,h[rss] + n
n−r b2(X̄ − x̄r,h(rss)) for i ∈ Āh.

Situation III

ys
.iDP3

=

{
yi for i ∈ Ah,

yr,h[rss] + n
n−r b3(x̄n,h(rss) − x̄r,h(rss)) for i ∈ Āh.

The sequent separate estimators under the above situations are given by

T s
DP1

=
L∑

h=1

Wh[ȳr,h[rss] + b1h
(X̄h − x̄n,h(rss))],

T s
DP2

=
L∑

h=1

Wh[ȳr,h[rss] + b2h
(X̄h − x̄r,h(rss))],

T s
DP3

=
L∑

h=1

Wh[ȳr,h[rss] + b3h
(x̄n,h(rss) − x̄r,h(rss))].
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Motivated by Sohail et al. (2018), we define a separate class of ratio type imputation
methods under SRSS as:

Situation I

ys
.is1

=

yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄n,h(rss)

)β1h − rȳr,h[rss]

]
for i ∈ Āh.

ys
.is4

=

yi for i ∈ Ah,
1

n−r

[
nȳr,h[rss]

(
X̄h

β4h
x̄n,h(rss)+(1−β4h

)X̄h

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation II

ys
.is2

=

yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄r,h(rss)

)β2h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.is5

=

yi for i ∈ Ah,
1

n−r

[
nȳr,h[rss]

(
X̄h

β5h
x̄r,h(rss)+(1−β5h

)X̄h

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation III

ys
.is3

=

yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)β3h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.is6

=

{
yi for i ∈ Ah,

1
n−r

[
nȳr,h[rss]

(
X̄h

β6h
x̄r,h(rss)+(1−β6h

)x̄n,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh.

The sequent estimators are given by

T s
S1

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

x̄n,h(rss)

)β1h

,

T s
S2

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

x̄r,h(rss)

)β2h

,

T s
S3

=
L∑

h=1

Whȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)β3h

,

T s
S4

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

β4h
x̄n,h(rss) + (1− β4h

)X̄h

)
,

T s
S5

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

β5h
x̄r,h(rss) + (1− β5h

)X̄h

)
,

T s
S6

=
L∑

h=1

Whȳr,h[rss]

(
X̄h

β6h
x̄r,h(rss) + (1− β6h

)x̄n,h(rss)

)
,

where βih ; i = 1, 2, ..., 6 are suitably opted scalars.

Appendix B of supplementary file contains the minimum mean square error (MSE) of
the sequent estimators consisting of different imputation methods.
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4. PROPOSED IMPUTATION METHODS

The crux of this paper is binary:

1. To propose some efficient combined and separate imputation methods for the esti-
mation of population mean Ȳ .

2. To determine the effect of the correlation coefficient, coefficient of skewness, and
coefficient of kurtosis over the efficiency of the imputation procedures.

4.1. Combined imputation methods

Following Bhushan and Pandey (2016, 2018), we envisage nine new imputation methods
under the three situations specified in the former section as:

Situation I

yc
.iSA1

=

{
α1yi for i ∈ A,

α1ȳr,srss + nθ1
n−r (x̄n,srss − X̄) for i ∈ Ā,

yc
.iSA4

=

yi for i ∈ A,

1
n−r

[
nα4ȳr,srss

(
X̄

x̄n,srss

)θ4

− rȳr,srss

]
for i ∈ Ā,

yc
.iSA7

=

{
yi for i ∈ A,

1
n−r

[
nα7ȳr,srss

(
X̄

X̄+θ7(x̄n,srss−X̄)

)
− rȳr,srss

]
for i ∈ Ā.

Situation II

yc
.iSA2

=

{
α2yi for i ∈ A,

α2ȳr,srss + nθ2
n−r (x̄r,srss − X̄) for i ∈ Ā,

yc
.iSA5

=

yi for i ∈ A,

1
n−r

[
nα5ȳr,srss

(
X̄

x̄r,srss

)θ5

− rȳr,srss

]
for i ∈ Ā,

yc
.iSA8

=

{
yi for i ∈ A,

1
n−r

[
nα8ȳr,srss

(
X̄

X̄+θ8(x̄r,srss−X̄)

)
− rȳr,srss

]
for i ∈ Ā.

Situation III

yc
.iSA3

=

{
α3yi for i ∈ A,

α3ȳr,srss + nθ3
n−r (x̄r,srss − x̄n,srss) for i ∈ Ā,

yc
.iSA6

=

yi for i ∈ A,

1
n−r

[
nα6ȳr,srss

(
x̄n,srss

x̄r,srss

)θ6

− rȳr,srss

]
for i ∈ Ā,

yc
.iSA9

=

{
yi for i ∈ A,

1
n−r

[
nα9ȳr,srss

(
x̄n,srss

x̄n,srss+θ9(x̄n,srss−x̄r,srss)

)
− rȳr,srss

]
for i ∈ Ā.
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Under the above situations, the sequent estimators are given by

T c
SA1

= α1ȳr,srss + θ1(x̄n,srss − X̄),

T c
SA2

= α2ȳr,srss + θ2(x̄r,srss − X̄),

T c
SA3

= α3ȳr,srss + θ3(x̄r,srss − x̄n,srss),

T c
SA4

= α4ȳr,srss

(
X̄

x̄n,srss

)θ4

,

T c
SA5

= α5ȳr,srss

(
X̄

x̄r,srss

)θ5

,

T c
SA6

= α6ȳr,srss

(
x̄n,srss

x̄r,srss

)θ6

,

T c
SA7

= α7ȳr,srss

[
X̄

X̄ + θ7(x̄n,srss − X̄)

]
,

T c
SA8

= α8ȳr,srss

[
X̄

X̄ + θ8(x̄r,srss − X̄)

]
,

T c
SA9

= α9ȳr,srss

[
x̄n,srss

x̄n,srss + θ9(x̄r,srss − x̄n,srss)

]
,

where α1, α2, ..., α9 and θ1, θ2, ..., θ9 are the suitably chosen scalars.

Theorem 4.1. The MSE of the sequent estimators consisting of the proposed im-

putation methods is given by

MSE(T c
SA1

) = (α1 − 1)2Ȳ 2 + α2
1Ȳ

2I∗0 + θ2
1X̄

2I1 + 2α1θ1X̄Ȳ I01,

MSE(T c
SA2

) = (α2 − 1)2Ȳ 2 + α2
2Ȳ

2I∗0 + θ2
2X̄

2I∗1 + 2α2θ2X̄Ȳ I∗01,

MSE(T c
SA3

) =
[

(α3 − 1)2Ȳ 2 + α2
3Ȳ

2I∗0 + θ2
3X̄

2{I∗1 − I1}
+2α3θ3X̄Ȳ {I∗01 − I01}

]
,

MSE(T c
SA4

) = Ȳ 2

[
1 + α2

4

{
1 + I∗0 + θ4(2θ4 + 1)I1 − 4θ4I01

}
−2α4

{
1− θ4I01 + θ4(θ4+1)

2 I1

} ]
,

MSE(T c
SA5

) = Ȳ 2

[
1 + α2

5

{
1 + I∗0 + θ5(2θ5 + 1)I∗1 − 4θ5I

∗
01

}
−2α5

{
1− θ5I

∗
01 + θ5(θ5+1)

2 I∗1

} ]
,

MSE(T c
SA6

) = Ȳ 2

[
1 + α2

6

{
1 + I∗0 + θ6(2θ6 + 1)(I∗1 − I1)− 4θ6(I∗01 − I01)

}
−2α6

{
1− θ6(I∗01 − I01) + θ6(θ6+1)

2 (I∗1 − I1)
} ]

,

MSE(T c
SA7

) = Ȳ 2

[
1 + α2

7

{
1 + I∗0 + 3θ2

7I1 − 4θ7I01

}
−2α7

{
1 + θ2

7I1 − θ7I01

} ]
,

MSE(T c
SA8

) = Ȳ 2

[
1 + α2

8

{
1 + I∗0 + 3θ2

8I
∗
1 − 4θ8I

∗
01

}
−2α8

{
1 + θ2

8I
∗
1 − θ8I

∗
01

} ]
,

MSE(T c
SA9

) = Ȳ 2

[
1 + α2

9

{
1 + I∗0 + 3θ2

9( I∗1 − I1 )− 4θ9(I∗01 − I01)
}

−2α9

{
1 + θ2

9(I
∗
1 − I1)− θ9(I∗01 − I01)

} ]
.

Proof: Appendix C of supplementary file contains a summary of the derivations. The
derivations can easily be done using Taylor series expansion.
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Theorem 4.2. The minimum MSE of the sequent estimators consisting of the pro-

posed imputation methods are

minMSE(T c
SAi

) = Ȳ 2(1− αi(opt)) = Ȳ 2

(
1− A2

i

Bi

)
; i = 1, 2, 3,(4.1)

minMSE(T c
SAj

) = Ȳ 2

(
1−

A2
j

Bj

)
; j = 4, 5, 6,(4.2)

minMSE(T c
SAk

) = Ȳ 2

(
1−

A2
k

Bk

)
; k = 7, 8, 9.(4.3)

Proof: Appendix C of supplementary file contains a summary of the derivations.

Corollary 4.1. The proposed sequent estimators T c
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T c
SAj

, j = 4, 5, 6, iff

αi(opt) >
A2

j

Bj
(4.4)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.4).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.1) and
(4.2), we get (4.4).

Corollary 4.2. The proposed sequent estimators T c
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T c
SAk

, k = 7, 8, 9, iff

αi(opt) >
A2

k

Bk
(4.5)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.5).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.1) and
(4.3), we get (4.5).

Corollary 4.3. The proposed sequent estimators T c
SAj

, i = 4, 5, 6 dominate the pro-

posed sequent estimators T c
SAk

, k = 7, 8, 9, iff

A2
j

Bj
>

A2
k

Bk
(4.6)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.6).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.2) and
(4.3), we get (4.6).

The only way to determine if (4.4), (4.5), and (4.6) are true in practise is through the
computational analysis done in Section 6.
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4.2. Separate imputation methods

On the lines of Bhushan and Pandey (2016, 2018), we suggest nine new separate im-
putation methods under the three situations discussed in the earlier section as:

Situation I

ys
.iSA1

=

{
α1h

yi for i ∈ Ah,

α1h
ȳr,h[rss] + nθ1h

n−r (x̄n,h(rss) − X̄h) for i ∈ Āh,

ys
.iSA4

=

yi for i ∈ Ah,

1
n−r

[
nα4h

ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)θ4h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.iSA7

=

yi for i ∈ Ah,
1

n−r

[
nα7h

ȳr,h[rss]

(
X̄h

X̄h+θ7h
(x̄n,h(rss)−X̄h)

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation II

ys
.iSA2

=

{
α2h

yi for i ∈ Ah,

α2h
ȳr,h[rss] + nθ2h

n−r (x̄r,h(rss) − X̄h) for i ∈ Āh,

ys
.iSA5

=

yi for i ∈ Ah,

1
n−r

[
nα5h

ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)θ5h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.iSA8

=

yi for i ∈ Ah,
1

n−r

[
nα8h

ȳr,h[rss]

(
X̄h

X̄+θ8h
(x̄r,h(rss)−X̄h)

)
− rȳr,h[rss]

]
for i ∈ Āh.

Situation III

ys
.iSA3

=

{
α3h

yi for i ∈ Ah,

α3h
ȳr,h[rss] + nθ3h

n−r (x̄r,h(rss) − x̄n,h(rss)) for i ∈ Āh,

ys
.iSA6

=

yi for i ∈ Ah,

1
n−r

[
nα6h

ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)θ6h − rȳr,h[rss]

]
for i ∈ Āh,

ys
.iSA9

=

{
yi for i ∈ Ah,

1
n−r

[
nα9h

ȳr,h[rss]

(
x̄n,h(rss)

x̄n,h(rss)+θ9h
(x̄n,h(rss)−x̄r,h(rss))

)
− rȳr,h[rss]

]
for i ∈ Āh.

The sequent estimators consisting of the above imputation methods are

T s
SA1

=
L∑

h=1

Wh[α1h
ȳr,h[rss] + θ1h

(x̄n,h(rss) − X̄h)],

T s
SA2

=
L∑

h=1

Wh[α2h
ȳr,h[rss] + θ2h

(x̄r,h(rss) − X̄h)],

T s
SA3

=
L∑

h=1

Wh[α3h
ȳr,h[rss] + θ3h

(x̄r,h(rss) − x̄n,h(rss))],
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T s
SA4

=
L∑

h=1

Whα4h
ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)θ4h

,

T s
SA5

=
L∑

h=1

Whα5h
ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)θ5h

,

T s
SA6

=
L∑

h=1

Whα6h
ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)θ6h

,

T s
SA7

=
L∑

h=1

Whα7h
ȳr,h[rss]

[
X̄h

X̄h + θ7h
(x̄n,h(rss) − X̄h)

]
,

T s
SA8

=
L∑

h=1

Whα8h
ȳr,h[rss]

[
X̄h

X̄h + θ8h
(x̄r,h(rss) − X̄h)

]
,

T s
SA9

=
L∑

h=1

Whα9h
ȳr,h[rss]

[
x̄n,h(rss)

x̄n,h(rss) + θ9h
(x̄r,h(rss) − x̄n,h(rss))

]
,

where α1h
, α2h

, ..., α9h
and θ1h

, θ2h
, ..., θ9h

are suitably chosen scalars.

Theorem 4.3. The MSE of the sequent estimators consisting of the proposed im-

putation methods is given by

MSE(T s
SA1

) =
L∑

h=1

W 2
h

[
(α1h

− 1)2Ȳ 2
h + α2

1h
Ȳ 2

h J∗0 + θ2
1h

X̄2
hJ1 + 2α1h

θ1h
X̄hȲhJ01

]
,

MSE(T s
SA2

) =
L∑

h=1

W 2
h

[
(α2h

− 1)2Ȳ 2
h + α2

2h
Ȳ 2

h J∗0 + θ2
2h

X̄2
hJ∗1 + 2α2h

θ2h
X̄hȲhJ∗01

]
,

MSE(T s
SA3

) =
L∑

h=1

W 2
h

[
(α3h

− 1)2Ȳ 2
h + α2

3h
Ȳ 2

h J∗0 + θ2
3h

X̄2
h{J∗1 − J1}

+2α3h
θ3h

X̄hȲh{J∗01 − J01}

]
,

MSE(T s
SA4

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

4h

{
1 + J∗0 + θ4h

(2θ4h
+ 1)J1 − 4θ4h

J01

}
−2α4h

{
1− θ4h

J01 + θ4h
(θ4h

+1)

2 J1

} ]
,

MSE(T s
SA5

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

5h

{
1 + J∗0 + θ5h

(2θ5h
+ 1)J∗1 − 4θ5h

J∗01
}

−2α5h

{
1− θ5h

J∗01 + θ5h
(θ5h

+1)

2 J∗1

} ]
,

MSE(T s
SA6

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

6h

{
1 + J∗0 + θ6h

(2θ6h
+ 1)(J∗1 − J1)− 4θ6h

(J∗01 − J01)
}

−2α6h

{
1− θ6h

(J∗01 − J01) + θ6h
(θ6h

+1)

2 (J∗1 − J1)
} ]

,

MSE(T s
SA7

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

7h

{
1 + J∗0 + 3θ2

7h
J1 − 4θ7h

J01

}
−2α7h

{
1 + θ2

7h
J1 − θ7h

J01

} ]
,

MSE(T s
SA8

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

8h

{
1 + J∗0 + 3θ2

8h
J∗1 − 4θ8h

J∗01
}

−2α8h

{
1 + θ2

8h
J∗1 − θ8h

J∗01
} ]

,

MSE(T s
SA9

) =
L∑

h=1

W 2
h Ȳ 2

h

[
1 + α2

9h

{
1 + J∗0 + 3θ2

9h
( J∗1 − J1 )− 4θ9h

(J∗01 − J01)
}

−2α9h

{
1 + θ2

9h
(J∗1 − J1)− θ9h

(J∗01 − J01)
} ]

.

Proof: Appendix C of supplementary file contains a summary of the derivations. The
derivations can easily be done using Taylor series expansion.
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Theorem 4.4. The minimum MSE of the sequent estimators consisting of the pro-

posed imputation methods is given by

minMSE(T s
SAi

) =
L∑

h=1

W 2
h Ȳ 2

h (1− αih(opt)) =
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
; i = 1, 2, 3,(4.7)

minMSE(T s
SAj

) =
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
jh

Bjh

)
; j = 4, 5, 6,(4.8)

minMSE(T s
SAk

) =
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
kh

Bkh

)
; k = 7, 8, 9.(4.9)

Proof: Appendix C of supplementary file contains a summary of the derivations.

Corollary 4.4. The proposed sequent estimators T s
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T s
SAj

, j = 4, 5, 6, iff

L∑
h=1

W 2
h Ȳ 2

h αih(opt) >

L∑
h=1

W 2
h Ȳ 2

h

(
A2

ih

Bih

)
(4.10)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.10).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.7) and
(4.8), we get (4.10).

Corollary 4.5. The proposed sequent estimators T s
SAi

, i = 1, 2, 3 dominate the pro-

posed sequent estimators T s
SAk

, k = 4, 5, 6, iff

L∑
h=1

W 2
h Ȳ 2

h αih(opt) >
L∑

h=1

W 2
h Ȳ 2

h

(
A2

kh

Bkh

)
(4.11)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.11).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.7) and
(4.9), we get (4.11).

Corollary 4.6. The proposed sequent estimators T s
SAj

, j = 4, 5, 6 dominate the pro-

posed sequent estimators T s
SAk

, k = 7, 8, 9, iff

L∑
h=1

W 2
h Ȳ 2

h

(
A2

jh

Bjh

)
>

L∑
h=1

W 2
h Ȳ 2

h

(
A2

kh

Bkh

)
(4.12)

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.12).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.8) and
(4.9), we get (4.12).

The only way to determine if (4.10), (4.11), and (4.12) are true in practise is through
the computational analysis done in Section 6.
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5. OPTIMALITY CONDITIONS

In this section, we obtain the optimality conditions under two heads, namely, optimal-
ity conditions for combined imputation methods and the optimality conditions for separate
imputation methods.

5.1. Optimality conditions for the combined imputation methods

By comparing the minimum MSE of the suggested combined imputation methods
yc

.iSAi
, i = 1, 2, ..., 9 from (4.1) and (4.2) with the minimum MSE of the other existing com-

bined imputation methods from (A.1), (A.2), (A.3), (A.4), (A.8), (A.9), (A.10), (A.14),
(A.15), and (A.16), respectively, given in Appendix A of supplementary file, we get the fol-
lowing optimality conditions:

MSE(T c
m) > MSE(T c

SAi
) =⇒ A2

i

Bi
> 1− I∗0 ,

MSE(T c
R1

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 − I1 + 2I01,

MSE(T c
R2

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 − I∗1 + 2I∗01,

MSE(T c
R3

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 − I1 − I∗1 + 2I∗01,

MSE(T c
DP1

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I2
01

I1
,

MSE(T c
DP2

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I∗
2

01

I∗1
,

MSE(T c
DP3

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

(I∗01 − I01)2

(I∗1 − I1)
,

MSE(T c
S1

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I2
01

I1
,

MSE(T c
S2

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I∗
2

01

I∗1
,

MSE(T c
S3

) > MSE(T c
SAi

) =⇒ A2
i

Bi
> 1− I∗0 +

(I∗01 − I01)2

(I∗1 − I1)
.

The optimality of the suggested combined imputation methods can be justified under
the above conditions.
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5.2. Optimality conditions for the separate imputation methods

By comparing the minimum MSE of the proposed imputation methods ys
.iSAi

, i =
1, 2, ..., 9 given in (4.7) and (4.8) with the minimum MSE of the other existing imputation
methods given in (B.17), (B.18), (B.19), (B.20), (B.24), (B.25), (B.26), (B.30), (B.31),
and (B.32), respectively, given in Appendix B of supplementary file, we get the following
optimality conditions:

MSE(T s
m) > MSE(T s

SAi
) =⇒

L∑
h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h J∗1 ,

MSE(T s
R1

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h [J∗0 + J1 − 2J01],

MSE(T s
R2

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h [J∗0 + J∗1 − 2J∗01],

MSE(T s
R3

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h [J∗0 + J∗1 + J1 − 2J∗01],

MSE(T s
DP1

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J2
01

J1

]
,

MSE(T s
DP2

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J∗
2

01

J∗1

]
,

MSE(T s
DP3

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

(J∗01−J01)2

�
J∗1 − J1

�
]
,

MSE(T s
S1

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J2
01

J1

]
,

MSE(T s
S2

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

J∗
2

01

J∗1

]
,

MSE(T s
S3

) > MSE(T s
SAi

) =⇒
L∑

h=1

W 2
h Ȳ 2

h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ 2

h

[
J∗0 −

(J∗01−J01)2

�
J∗1 − J1

�
]
.

Under the above conditions, the optimality of the proposed separate imputation meth-
ods can be ascertained.

5.3. Comparison of proposed combined and separate imputation methods

By comparing the minimum MSE of the proposed combined and separate classes of
imputation methods from (4.1), (4.2) and (4.7), (4.8), we get

minMSE(T c
SAi

)−minMSE(T s
SAi

) =
L∑

h=1

[
(Ȳ 2 −W 2

h Ȳ 2
h )−

(
Ȳ 2 A2

i

Bi
−W 2

h Ȳ 2
h

A2
ih

Bih

)]
.(5.1)



70 Sh. Bhushan and A. Kumar

If the sequent estimators are conclusive and the relationship between auxiliary and
study variables within each stratum is a straight line passing through the origine, then the
last term of (5.1) is miniscule and it vanished.

In addition, except Rh becomes invariant from stratum to stratum, the separate estima-
tors perform better in each stratum provided the sample in each stratum is to be sufficiently
large so that the approximate formula for MSE(T s

SAi
), i = 1, 2, ..., 9 is valid and the cumula-

tive bias that can affect the proposed estimators is negligible, whereas the proposed combined
estimators are to be highly advocated with only a small sample in each stratum (see, Cochran,
1977).

6. SIMULATION STUDY

To highlight the properties and to access the performance of the proposed imputation
methods, motivated by Singh and Horn (1998), simulations were carried out over two arti-
ficially generated asymmetric populations such as gamma and exponential of size N = 2100
units each with variables X and Y whose values are given by

yi = 8.2 +
√

(1− ρ2
xy) y∗i + ρxy

(
Sy

Sx

)
x∗i ,

xi = 4.2 + x∗i .

where x∗i and y∗i are independent variates of proportional distribution. Each population is
divided into three equal strata and a stratified ranked set sample of size 9 with set size 3 and
number of cycles 3 is drawn from each stratum with the help of the methodology described
in Section 2. With 10000 iterations, the percent relative efficiency (PRE) of the sequent
estimators with respect to the conventional mean estimator was obtained as

PRE =
1

10000

∑10000
i=1 (Tm − Ȳ )2

1
10000

∑10000
i=1 (T ∗ − Ȳ )2

× 100,

where T ∗ is the existing and proposed combined and separate class of estimators.

The findings of the simulation are disclosed from Table 1 to Table 4 through PRE

for reasonably chosen values of correlation coefficient ρxy = 0.6, 0.7, 0.8, 0.9 and fair choice of
response probability P = 0.4, 0.6.

From Table 1 to Table 4, consisting of the simulation results of two asymmetric popula-
tions, namely, gamma and exponential, we have seen that the proposed combined and separate
imputation methods yc

.iSAj
and ys

.iSAj
, j = 1, 2, ..., 9 dominate the other existing imputation

methods for reasonably chosen values of the correlation coefficient. We have also seen that
the proposed combined and separate imputation methods yc

.iSAj
and ys

.iSAj
, j = 4, 5, 6 per-

form better among the proposed class of imputation methods under situations I, II and III.
Moreover, it is also seen that the PRE of the proposed imputation methods under situations
I, II and III in both populations decreases with the increase in asymmetry.
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Table 1: PRE of proposed combined estimators at P = 0.4.

ρxy 0.6 0.7 0.8 0.9

T c
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T c

SAi
, i = 1, 7 106.0998 105.5777 105.4108 104.7131

Tc
SA4

106.1067 105.5846 105.4176 104.7198
T c

R1 100.2267 99.3709 98.3220 95.5744
T c

DP1/T c
Si

, i = 1, 4 105.983 105.46 105.3005 104.6141

Situation II
T c

SAi
, i = 2, 8 115.0805 113.7576 113.4881 111.7679

Tc
SA5

115.1003 113.7771 113.5075 111.7865
T c

R1 97.5580 95.7573 93.4999 87.5916
T c

DP2/T c
Si

, i = 2, 5 114.9637 113.6399 113.3778 111.6689

Situation III
T c

SAi
, i = 3, 9 108.1050 107.4685 107.3868 106.5397

Tc
SA6

108.1161 107.4795 107.3977 106.5502
T c

R1 97.3431 96.3414 95.0160 91.2945
T c

DP3/T c
Si

, i = 3, 6 107.9882 107.3508 107.2765 106.4406

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T c

SAi
, i = 1, 7 106.2035 106.5419 106.7350 105.8748

Tc
SA4

106.2096 106.5481 106.7411 105.8808
T c

R1 99.7239 100.2227 100.2960 98.5947
T c

DP1/T c
Si

, i = 1, 4 106.1075 106.4467 106.6419 105.7829

Situation II
T c

SAi
, i = 2, 8 112.9619 112.5542 112.8376 111.6621

Tc
SA5

112.9805 112.5726 112.856 111.6799
T c

R2 89.3047 88.4097 88.1260 85.9139
T c

DP2/T c
Si

, i = 2, 5 112.8659 112.4590 112.7445 111.5702

Situation III
T c

SAi
, i = 3, 9 105.3578 105.7988 105.8817 105.2694

Tc
SA6

105.3684 105.8092 105.8920 105.2796
T c

R3 87.5260 88.2363 87.8974 86.9790
T c

DP3/T c
Si

, i = 3, 6 105.2617 105.7036 105.7886 105.1775
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Table 2: PRE of proposed combined estimators at P = 0.6.

ρxy 0.6 0.7 0.8 0.9

T c
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T c

SAi
, i = 1, 7 109.3365 108.5032 108.2434 107.1516

Tc
SA4

109.3437 108.5104 108.2505 107.1584
T c

R1 100.3407 99.0588 97.5032 93.5045
T c

DP1/T c
Si

, i = 1, 4 109.2587 108.4248 108.1698 107.0855

Situation II
T c

SAi
, i = 2, 8 115.3909 114.0088 113.6905 111.9040

Tc
SA5

115.4041 114.0218 113.7034 111.9163
T c

R2 98.2571 96.3813 94.0605 88.0659
T c

DP2/T c
Si

, i = 2, 5 115.3131 113.9304 113.6170 111.8379

Situation III
T c

SAi
, i = 3, 9 105.1641 104.7748 104.7360 104.2151

Tc
SA6

105.1690 104.7796 104.7407 104.2197
T c

R3 97.9303 97.2720 96.3820 93.8046
T c

DP3/T c
Si

, i = 3, 6 105.0863 104.6964 104.6625 104.1491

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T c

SAi
, i = 1, 7 109.5194 110.0755 110.3901 109.0041

Tc
SA4

109.5258 110.0819 110.3965 109.0104
T c

R1 99.5862 100.3351 100.4455 97.9046
T c

DP1/T c
Si

, i = 1, 4 109.4554 110.0121 110.3281 108.9429

Situation II
T c

SAi
, i = 2, 8 113.7547 113.6404 113.9884 112.5204

Tc
SA5

113.7669 113.6525 114.0006 112.5322
T c

R2 91.4958 91.0133 90.8178 88.2189
T c

DP2/T c
Si

, i = 2, 5 113.6907 113.577 113.9264 112.4592

Situation III
T c

SA3 103.4189 103.5222 103.5633 103.3902
Tc

SA6
103.4436 103.5267 103.5677 103.4246

T c
R3 90.6449 90.7375 90.4534 89.9166

T c
DP3/T c

Si
, i = 3, 6 103.3749 103.4588 103.5013 103.3590
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Table 3: PRE of proposed separate estimators at P = 0.4.

ρxy 0.6 0.7 0.8 0.9

T s
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T s

SAi
, i = 1, 7 106.0962 105.5742 105.4076 104.7104

Ts
SA4

106.1027 105.5807 105.4141 104.7167
T s

R1 100.6188 99.7795 98.7804 96.1227
T s

DP1/T s
Si

, i = 1, 4 105.983 105.4600 105.3005 104.6141

Situation II
T s

SAi
, i = 2, 8 115.0769 113.7541 113.4850 111.7652

Ts
SA5

115.0954 113.7724 113.5031 111.7826
T s

R2 98.5741 96.7889 94.6180 88.8216
T s

DP2/T s
Si

, i = 2, 5 114.9637 113.6399 113.3778 111.6689

Situation III
T s

SAi
, i = 3, 9 108.1014 107.4650 107.3836 106.5370

Ts
SA6

108.1119 107.4753 107.3939 106.5469
T s

R3 81.4466 80.3429 77.9883 72.6504
T s

DP3/T s
Si

, i = 3, 6 107.9882 107.3508 107.2765 106.4406

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T s

SAi
, i = 1, 7 106.2010 106.5393 106.7324 105.8724

Ts
SA4

106.2067 106.5451 106.7382 105.8781
T s

R1 100.0305 100.5150 100.5927 98.9217
T s

DP1/T s
Si

, i = 1, 4 106.1075 106.4467 106.6419 105.7829

Situation II
T s

SAi
, i = 2, 8 112.4594 112.5516 112.8350 111.6596

Ts
SA5

112.4770 112.5691 112.8525 111.6766
T s

R2 90.1295 89.1992 88.9243 86.7481
T s

DP2/T s
Si

, i = 2, 5 112.8659 112.4590 112.7445 111.5702

Situation III
T s

SAi
, i = 3, 9 105.3552 105.7962 105.8791 105.2670

Ts
SA6

105.3654 105.8061 105.889 105.2767
T s

R3 74.6746 73.9110 73.4349 71.8010
T s

DP3/T s
Si

, i = 3, 6 105.2617 105.7036 105.7886 105.1775



74 Sh. Bhushan and A. Kumar

Table 4: PRE of proposed separate estimators at P = 0.6.

ρxy 0.6 0.7 0.8 0.9

T s
m 100 100 100 100

x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693

Situation I
T s

SAi
, i = 1, 7 109.3341 108.5009 108.2413 107.1498

Ts
SA4

109.3409 108.5076 108.2479 107.1562
T s

R1 100.9318 99.6695 98.1811 94.2940
T s

DP1/T s
Si

, i = 1, 4 109.2587 108.4248 108.1698 107.0855

Situation II
T s

SAi
, i = 2, 8 115.3885 114.0065 113.6884 111.9022

Ts
SA5

115.4008 114.0187 113.7005 111.9138
T s

R2 99.2688 97.4083 95.1744 89.2927
T s

DP2/T s
Si

, i = 2, 5 115.3131 113.9304 113.6170 111.8379

Situation III
T s

SAi
, i = 3, 9 105.1618 104.7725 104.7339 104.2133

Ts
SA6

105.1663 104.7770 104.7383 104.2176
T s

R3 75.3238 74.4041 72.0020 66.8509
T s

DP3/T s
Si

, i = 3, 6 105.0863 104.6964 104.6625 104.1491

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395

Situation I
T s

SAi
, i = 1, 7 109.5177 110.0737 110.3884 109.0025

Ts
SA4

109.5238 110.0798 110.3944 109.0084
T s

R1 100.0457 100.7759 100.8935 98.3895
T s

DP1/T s
Si

, i = 1, 4 109.4554 110.0121 110.3281 108.9429

Situation II
T s

SAi
, i = 2, 8 113.7531 113.8386 113.9867 112.5188

Ts
SA5

113.7646 113.8502 113.9983 112.5300
T s

R2 92.3101 91.7963 91.6107 89.0465
T s

DP2/T s
Si

, i = 2, 5 113.6907 113.7770 113.9264 112.4592

Situation III
T s

SAi
, i = 3, 9 103.4372 103.5205 103.5615 103.4185

Ts
SA6

103.4417 103.5247 103.5658 103.4228
T s

R3 70.0312 69.5489 69.0562 67.4148
T s

DP3/T s
Si

, i = 3, 6 103.3749 103.4588 103.5013 103.3590
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7. CONCLUSION

This paper is the outset to suggest some combined and separate classes of imputation
methods along with their properties for the estimation of population mean in the presence of
missing data using SRSS. The theoretical conditions are derived under which the proposed
combined and separate classes of imputation methods are justified. In order to enhance
the theoretical findings and to determine the effect of skewness and kurtosis over PRE, a
simulation study is accomplished on two asymmetric populations viz. gamma and exponential
with reasonable choice of correlation coefficient ρxy and probability of non responding units P .
It is noticed from the perusal of theoretical and simulation results that:

1. The proposed combined and separate of imputation methods yc
.iSAj

and ys
.iSAj

, j =
1, 2, ..., 9 always perform better than the combined and separate mean imputation
method yc

.im
and ys

.im
, ratio imputation methods yc

.iRj
and ys

.iRj
, j = 1, 2, 3 and

their own conventional counterparts for different values of correlation coefficient
ρxy, coefficient of skewness β1 and coefficient of kurtosis β2.

2. The proposed combined and separate imputation methods yc
.iSAj

and ys
.iSAj

, j =
4, 5, 6 are best among the proposed classes of imputation methods under situations
I, II and III.

3. The PRE of the proposed combined and separate classes of imputation methods
yc

.iSAj
, ys

.iSAj
, j = 1, 2, ..., 9 and their conventional counterparts under situations I,

II and III are contrary to the asymmetry which is similar to the results of McIntyre
(1952), Dell and Clutter (1972) and Bhushan and Kumar (2022) where they chose
a wide range of skewed distributions and concluded that the asymmetry shows
adverse effect over the efficiency of the estimators.

4. The suggested combined classes of imputation methods yc
.iSAj

, j = 1, 2, ..., 9 are
superior than the suggested separate classes of imputation methods ys

.iSAj
, j =

1, 2, ..., 9 in situations I, II and III.

Therefore, due to the dominance of the proposed imputation methods over the existing
imputation methods, we recommend them to survey persons for their real life problems.

APPENDIXES A-B-C. Supplementary file

Supplementary data to this article can be found online.
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