REVSTAT – Statistical Journal Volume 23, Number 1, January 2025, 53–77 https://doi.org/10.57805/revstat.v23i1.501

Optimal Imputation Methods under Stratified Ranked Set Sampling

Authors: SHASHI BHUSHAN 🕩

 Department of Statistics, University of Lucknow, Lucknow, India, 226007
 shashi.py@gmail.com

Anoop Kumar 厄 🖂

 Department of Statistics, Central University of Haryana, Mahendergarh, India, 123031 anoop.asy@gmail.com

Received: September 2022

Revised: January 2023

Accepted: January 2023

Abstract:

• It is long familiar that the stratified ranked set sampling (SRSS) is more efficient than ranked set sampling (RSS) and stratified random sampling (StRS). The existence of missing values may alter the final inference of any study. This paper is a fundamental effort to suggest some combined and separate imputation methods in the presence of missing data under SRSS. The proposed imputation methods become superior than the mean imputation method, ratio imputation method, Diana and Perri (2010) type imputation method, and Sohail *et al.* (2018) type imputation methods. A simulation study is administered over two hypothetically drawn asymmetric populations.

Keywords:

• missing values; imputation; stratified ranked set sampling.

AMS Subject Classification:

• 62D05.

 $[\]boxtimes$ Corresponding author

1. INTRODUCTION

The dilemma of missing value is very usual in a sample survey and its presence can spoil the traditional results. Therefore, it becomes essential to resolve the problem of missing values in a data set. The well-known imputation technique is used to replace the missing values. Three basic concepts on missing values were suggested by Rubin (1976), such as missing at random (MAR), observed at random (OAR), and parameter distribution (PD). Several renowned authors like Lee *et al.* (1994), Singh and Horn (2000), Singh and Deo (2003), Singh (2009), and Singh and Valdes (2009) introduced various imputation methods in the presence of missing values. Heitjan and Basu (1996) exhibited a difference between missing at random and missing completely at random (MCAR) approach. Thereafter, Ahmed *et al.* (2006), Kadilar and Cingi (2008), Diana and Perri (2010) and Bhushan and Pandey (2016, 2018), Mohamed *et al.* (2016), Prasad (2017), Bouza *et al.* (2020), Bouza-Herrera and Viada (2021), and Bhushan *et al.* (2018, 2022) utilized MCAR strategy in their study for the imputation of missing values.

In real life, situations may emerge where it is either difficult to measure the study variable or indeed expensive but can be ranked either visually or by any cost free method. In such circumstances, McIntyre (1952) proposed the idea of ranked set sampling (RSS), which is superior to simple random sampling but did not furnish any mathematical support. Takahasi and Wakimoto (1968) extended the idea of McIntyre (1952) and provided the obligatory mathematical foundation to the theory of RSS. Samawi (1996) envisaged the idea of SRSS superior to StRS. Samawi and Siam (2003) introduced combined and separate ratio estimators under SRSS. Linder et al. (2015) investigated the regression estimator under SRSS. Khan and Shabbir (2016) suggested Hartley-Ross type unbiased estimators under RSS and SRSS. Recently, Saini and Kumar (2018) suggested the ratio estimator using quartile as an auxiliary information under SRSS.

In sample surveys, when each group contains very small observations, then each observation becomes essential to draw conclusions. Further use of such kind of data set consisting of missing values may vitiate the final conclusion and decrease the efficiency of the estimator as well. In order to tackle with such kind of problems, Bouza-Herrera and Al-Omari (2011) suggested mean imputation and ratio methods for the median estimator under RSS. Al-Omari and Bouza (2014) introduced ratio estimators of the population mean with missing values under RSS. Sohail *et al.* (2018) suggested ratio type imputation methods under RSS.

In this paper, we suggest some imputation methods in the presence of missing data under *SRSS*. The rest paper is arranged in subsequent sections. In the next section, we discuss the sampling methodology along with the notations used throughout the manuscript. In Section 3, the combined and separate imputation methods are reviewed. In Section 4, we have suggested combined and separate classes of imputation methods. The theoretical comparisons of combined and separate imputation methods are given in Section 5, whereas Section 6 deals with the simulation study conducted in favour of theoretical findings. Lastly, the conclusion is given in Section 7.

2. METHODOLOGY AND NOTATIONS

The procedure of ranked set sampling consists of drawing m simple random samples of size m from the population. These m units are now ranked within each set with respect to the variable of interest, say x. The first smallest unit is quantified from the first set for the measurement of the auxiliary variable along with the associated study variables. The unit with the second smallest rank is quantified from the second ranked set for the measurement of the auxiliary variables along with the associated study variable and the process is carried on as far as the m-th smallest unit is quantified from the last set. The above process is known as a cycle. The repetition of this whole procedure up to k times furnishes n = mk ranked set samples.

The stratified ranked set sampling is a sampling procedure analogous to stratified random sampling, which is based on splitting a population into L mutually exclusive and exhaustive strata and a ranked set sample of $n_h = m_h k$ units are measured within each stratum such that h = 1, 2, ..., L. The sampling is accomplished independently across the strata. Thus, SRSS scheme can be supposed to a collection of L separate ranked set samples.

Consider a finite population U comprised of N measurable units with values y_i , $i \in U$. Let a stratified ranked set sample of size $n = m_h k$ be chosen from U to estimate the population mean of the study variable y. Let r be the number of responding elements out of n sampled elements. Let P be the probability that *i*-th respondent associated with a responding class A and (1 - P) be the probability that *i*-th respondent associated with the non-responding class \overline{A} . Moreover, note that $s = A \cup \overline{A}$ and let the values y_i , $i \in A$ be observable for each characteristic, but for the characteristic $i \in \overline{A}$ the values are missing and require imputation in order to establish the complete frame of data to draw a reasonable inference. The auxiliary variable x will be used to execute the imputation of missing values and let the ranking be performed over the auxiliary variables as well.

The succeeding notations would be used from the beginning to end in the case of combined estimators.

Let $\bar{y}_{r,srss} = \bar{Y}(1+\epsilon_0)$, $\bar{x}_{r,srss} = \bar{X}(1+\epsilon_1)$, $\bar{x}_{n,srss} = \bar{X}(1+\epsilon_2)$ such that $E(\epsilon_0) = E(\epsilon_1) = E(\epsilon_2) = 0$ and

$$\begin{split} E(\epsilon_0^2) &= \sum_{h=1}^L W_h^2 \left(\frac{C_{y_h}^2}{m_h k P} - \frac{1}{m_h^2 k P} \sum_{i=1}^{m_h} \frac{\tau_{y_h}^2}{\bar{Y}^2} \right) = \sum_{h=1}^L W_h^2 \left(\gamma^* C_{y_h}^2 - D_{y_h}^{2^*} \right) = I_0^*, \\ E(\epsilon_1^2) &= \sum_{h=1}^L W_h^2 \left(\frac{C_{x_h}^2}{m_h k P} - \frac{1}{m_h^2 k P} \sum_{i=1}^{m_h} \frac{\tau_{x_h}^2}{\bar{X}^2} \right) = \sum_{h=1}^L W_h^2 \left(\gamma^* C_{x_h}^2 - D_{x_h}^{2^*} \right) = I_1^*, \\ E(\epsilon_2^2) &= \sum_{h=1}^L W_h^2 \left(\frac{C_{x_h}^2}{m_h k} - \frac{1}{m_h^2 k P} \sum_{i=1}^m \frac{\tau_{x_h}^2}{\bar{X}^2} \right) = \sum_{h=1}^L W_h^2 \left(\gamma C_{x_h}^2 - D_{x_h}^2 \right) = I_1, \\ E(\epsilon_0, \epsilon_1) &= \sum_{h=1}^L W_h^2 \left(\frac{\rho_{x_h y_h} C_{x_h} C_{y_h}}{m_h k P} - \frac{1}{m_h^2 k P} \sum_{i=1}^m \frac{\tau_{x_h y_h}}{\bar{X} \bar{Y}} \right) \\ &= \sum_{h=1}^L W_h^2 \left(\gamma^* \rho_{x_h y_h} C_{x_h} C_{y_h} - D_{x_h y_h}^* \right) = I_0^*, \end{split}$$

$$E(\epsilon_{0},\epsilon_{2}) = \sum_{h=1}^{L} W_{h}^{2} \left(\frac{\rho_{x_{h}y_{h}}C_{x_{h}}C_{y_{h}}}{m_{h}k} - \frac{1}{m_{h}^{2}k} \sum_{i=1}^{m_{h}} \frac{\tau_{x_{h}y_{h}}}{\bar{X}\bar{Y}} \right)$$
$$= \sum_{h=1}^{L} W_{h}^{2} (\gamma \rho_{x_{h}y_{h}}C_{x_{h}}C_{y_{h}} - D_{x_{h}y_{h}}) = I_{01},$$
$$E(\epsilon_{1},\epsilon_{2}) = \sum_{h=1}^{L} W_{h}^{2} \left(\frac{C_{x_{h}}^{2}}{m_{h}k} - \frac{1}{m_{h}^{2}k} \sum_{i=1}^{m_{h}} \frac{\tau_{x_{h}}^{2}}{\bar{X}^{2}} \right) = \sum_{h=1}^{L} W_{h}^{2} (\gamma C_{x_{h}}^{2} - D_{x_{h}}^{2}) = I_{1},$$

where $\gamma^* = 1/m_h kP$, $\gamma = 1/m_h k$, $\tau_{y_h} = (\mu_{y_h} - \bar{Y}_h)$, $\tau_{x_h} = (\mu_{x_h} - \bar{X}_h)$ and $\tau_{x_h y_h} = (\mu_{x_h} - \bar{X}_h) \cdot (\mu_{y_h} - \bar{Y}_h)$. Also, $C_{x_h} = S_{x_h}/\bar{X}$ and $C_{y_h} = S_{y_h}/\bar{Y}$ are the coefficients of variation of auxiliary variable x and study variable y, respectively.

In the case of separate estimators, the following notations will be used throughout the paper.

Let $\bar{y}_{r,h[rss]} = \bar{Y}_h(1 + e_{0_h}), \ \bar{x}_{r,h(rss)} = \bar{X}_h(1 + e_{1_h}), \ \bar{x}_{n,h(rss)} = \bar{X}_h(1 + e_{2_h})$ such that $E(e_{0_h}) = E(e_{1_h}) = E(e_{2_h}) = 0$ and

$$\begin{split} E(e_{0_{h}}^{2}) &= \left(\frac{C_{y_{h}}^{2}}{m_{h}kP} - \frac{1}{m_{h}^{2}kP}\sum_{i=1}^{m_{h}}\frac{\tau_{y_{h}}^{2}}{\bar{Y}_{h}^{2}}\right) = \left(\gamma^{*}C_{y_{h}}^{2} - M_{y_{h}}^{2^{*}}\right) = J_{0}^{*},\\ E(e_{1_{h}}^{2}) &= \left(\frac{C_{x_{h}}^{2}}{m_{h}kP} - \frac{1}{m_{h}^{2}kP}\sum_{i=1}^{m_{h}}\frac{\tau_{x_{h}}^{2}}{\bar{X}_{h}^{2}}\right) = \left(\gamma^{*}C_{x_{h}}^{2} - M_{x_{h}}^{2^{*}}\right) = J_{1}^{*},\\ E(e_{2_{h}}^{2}) &= \left(\frac{C_{x_{h}}^{2}}{m_{h}k} - \frac{1}{m_{h}^{2}kP}\sum_{i=1}^{m_{h}}\frac{\tau_{x_{h}}^{2}}{\bar{X}_{h}^{2}}\right) = \left(\gamma C_{x_{h}}^{2} - M_{x_{h}}^{2}\right) = J_{1},\\ E(e_{0_{h}}, e_{1_{h}}) &= \left(\frac{\rho_{x_{h}y_{h}}C_{x_{h}}C_{y_{h}}}{m_{h}kP} - \frac{1}{m_{h}^{2}kP}\sum_{i=1}^{m_{h}}\frac{\tau_{x_{h}y_{h}}}{\bar{X}_{h}\bar{Y}_{h}}\right) = \left(\gamma^{*}\rho_{x_{h}y_{h}}C_{x_{h}}C_{y_{h}} - M_{x_{h}y_{h}}^{*}\right) = J_{01}^{*},\\ E(e_{0_{h}}, e_{2_{h}}) &= \left(\frac{\rho_{x_{h}y_{h}}C_{x_{h}}C_{y_{h}}}{m_{h}k} - \frac{1}{m_{h}^{2}k}\sum_{i=1}^{m_{h}}\frac{\tau_{x_{h}y_{h}}}{\bar{X}_{h}\bar{Y}_{h}}\right) = \left(\gamma \rho_{x_{h}y_{h}}C_{x_{h}}C_{y_{h}} - M_{x_{h}y_{h}}\right) = J_{01},\\ E(e_{1_{h}}, e_{2_{h}}) &= \left(\frac{C_{x_{h}}^{2}}{m_{h}k} - \frac{1}{m_{h}^{2}k}\sum_{i=1}^{m_{h}}\frac{\tau_{x_{h}}}{\bar{X}_{h}}^{2}\right) = \left(\gamma C_{x_{h}}^{2} - M_{x_{h}}^{2}\right) = J_{1}, \end{split}$$

where $\tau_{y_h} = (\mu_{y_h} - \bar{Y}_h)$, $\tau_{x_h} = (\mu_{x_h} - \bar{X}_h)$ and $\tau_{x_h y_h} = (\mu_{x_h} - \bar{X}_h)(\mu_{y_h} - \bar{Y}_h)$, $C_{x_h} = S_{x_h}/\bar{X}_h$ and $C_{y_h} = S_{y_h}/\bar{Y}_h$.

3. RECAP OF IMPUTATION METHODS

In this section, we consider a concise recap of existing prominent combined and separate imputation methods under SRSS.

3.1. Combined imputation methods

The mean method of imputation under SRSS is given by

$$y_{i_m}^c = \begin{cases} y_i & \text{for } i \in A, \\ \bar{y}_{r,srss} & \text{for } i \in \bar{A}. \end{cases}$$

The sequent estimator is given by

$$T_m^c = \bar{y}_{r,srss}$$

where $\bar{y}_{r,srss} = \sum_{h=1}^{L} W_h \bar{y}_{h[rss]}$ is the stratified ranked set sample mean of study variable y. Also, $W_h = N_h/N$ is the weight of stratum h and N_h and N are the size of stratum h and total population size, respectively.

The imputation methods are categorized into three situations under the availability of auxiliary informations:

Situation I: When \bar{X} is known and $\bar{x}_{n,srss}$ is utilized.

Situation II: When \overline{X} is known and $\overline{x}_{r,srss}$ is utilized.

Situation III: When \bar{X} is unknown and $\bar{x}_{n,srss}$, $\bar{x}_{r,srss}$ are utilized.

The classical combined ratio type imputation methods are defined under SRSS as:

Situation I

$$y_{i_{R_1}}^c = \begin{cases} y_i & \text{for } i \in A, \\ \frac{1}{n-r} \left[n \bar{y}_{r,rss} \left(\frac{\bar{X}}{\bar{x}_{n,srss}} \right) - r \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}. \end{cases}$$

Situation II

$$y_{i_{R_2}}^c = \begin{cases} y_i & \text{for } i \in A, \\ \frac{1}{n-r} \left[n \bar{y}_{r,rss} \left(\frac{\bar{X}}{\bar{x}_{r,srss}} \right) - r \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}. \end{cases}$$

Situation III

$$y_{i_{R_3}}^c = \begin{cases} y_i & \text{for } i \in A, \\ \frac{1}{n-r} \left[n\bar{y}_{r,rss} \left(\frac{\bar{x}_{n,srss}}{\bar{x}_{r,srss}} \right) - r\bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}. \end{cases}$$

The sequent estimators are

$$\begin{split} T^c_{R_1} &= \bar{y}_{r,srss} \bigg(\frac{\bar{X}}{\bar{x}_{n,srss}} \bigg), \\ T^c_{R_2} &= \bar{y}_{r,srss} \bigg(\frac{\bar{X}}{\bar{x}_{r,srss}} \bigg), \\ T^c_{R_3} &= \bar{y}_{r,srss} \bigg(\frac{\bar{x}_{n,srss}}{\bar{x}_{r,srss}} \bigg), \end{split}$$

where $\bar{x}_{n,srss} = \sum_{h=1}^{L} W_h \bar{x}_{h(rss)}$ is the stratified ranked set sample mean of auxiliary variable x.

Following Diana and Perri (2010), we define the regression imputation methods to impute the missing value under SRSS as:

Situation I

$$y_{i_{DP_{1}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \bar{y}_{r+\frac{n}{n-r}} b_{1}(\bar{X} - \bar{x}_{n,srss}) y_{r,srss} & \text{for } i \in \bar{A}. \end{cases}$$

Situation II

$$y_{i_{DP_2}}^c = \begin{cases} y_i & \text{for } i \in A, \\ \bar{y}_{r+\frac{n}{n-r}} b_2(\bar{X} - \bar{x}_{r,srss}) y_{r,srss} & \text{for } i \in \bar{A}. \end{cases}$$

,

 $Situation \ III$

$$y_{i_{DP_{3}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \bar{y}_{r} + \frac{n}{n-r} b_{3}(\bar{x}_{n,srss} - \bar{x}_{r,srss}) y_{r,srss} & \text{for } i \in \bar{A}. \end{cases}$$

The sequent combined estimators under the above situations are given by

$$T_{DP_{1}}^{c} = \bar{y}_{r,srss} + b_{1}(X - \bar{x}_{n,srss}),$$

$$T_{DP_{2}}^{c} = \bar{y}_{r,srss} + b_{2}(\bar{X} - \bar{x}_{r,srss}),$$

$$T_{DP_{3}}^{c} = \bar{y}_{r,srss} + b_{3}(\bar{x}_{n,srss} - \bar{x}_{r,srss}).$$

Following Sohail *et al.* (2018), one may envisage a combined class of ratio type imputation methods under SRSS for the imputation of missing values as:

 $Situation \ I$

$$y_{.iS_{1}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{n}{n-r} \left[\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{n,srss}} \right)^{\beta_{1}} - \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$
$$y_{.iS_{4}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{n}{n-r} \left[\bar{y}_{r,srss} \left(\frac{\bar{X}}{\beta_{4}\bar{x}_{n,srss} + (1-\beta_{4})\bar{X}} \right) - \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}. \end{cases}$$

Situation II

$$y_{.iS_{2}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{n}{n-r} \left[\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{r,srss}} \right)^{\beta_{2}} - \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$
$$y_{.iS_{5}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{n}{n-r} \left[\bar{y}_{r,srss} \left(\frac{\bar{X}}{\beta_{5}\bar{x}_{r,srss} + (1-\beta_{5})\bar{X}} \right) - \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}. \end{cases}$$

Situation III

$$y_{iS_{3}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{n}{n-r} \left[\bar{y}_{r,srss} \left(\frac{\bar{x}_{n,srss}}{\bar{x}_{r,srss}} \right)^{\beta_{3}} - \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$
$$y_{iS_{6}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{n}{n-r} \left[\bar{y}_{r,srss} \left(\frac{\bar{X}}{\beta_{6}\bar{x}_{r,srss} + (1-\beta_{6})\bar{x}_{n,srss}} \right) - \bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}. \end{cases}$$

The sequent estimators are given by

$$T_{S_1}^c = \bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{n,srss}}\right)^{\beta_1},$$

$$T_{S_2}^c = \bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{r,srss}}\right)^{\beta_2},$$

$$T_{S_3}^c = \bar{y}_{r,srss} \left(\frac{\bar{x}_{n,srss}}{\bar{x}_{r,srss}}\right)^{\beta_3},$$

$$T_{S_4}^c = \bar{y}_{r,srss} \left(\frac{\bar{X}}{\beta_4 \bar{x}_{n,srss} + (1 - \beta_4) \bar{X}}\right),$$

$$T_{S_5}^c = \bar{y}_{r,srss} \left(\frac{\bar{X}}{\beta_5 \bar{x}_{r,srss} + (1 - \beta_5) \bar{X}}\right),$$

$$T_{S_6}^c = \bar{y}_{r,srss} \left(\frac{\bar{X}}{\beta_6 \bar{x}_{r,srss} + (1 - \beta_6) \bar{x}_{n,srss}}\right)$$

where β_i ; i = 1, 2, ..., 6 are suitably chosen optimizing scalars.

Appendix A of supplementary file contains the minimum mean square error (MSE) of the sequent estimators consisting of different imputation methods.

3.2. Separate imputation methods

The separate mean method of imputation under SRSS is given by

$$y_{.i_m}^s = \begin{cases} y_i & \text{for } i \in A_h, \\ \bar{y}_{r,h[rss]} & \text{for } i \in \bar{A}_h. \end{cases}$$

The sequent estimator is given by

$$T_m^s = \sum_{h=1}^L W_h \bar{y}_{r,h[rss]},$$

where $\bar{y}_{r,h[rss]} = \frac{1}{m_h k} \sum_{i=1}^{m_h} \sum_{j=1}^k y_{h[i]j}$ is the ranked set sample mean of study variable in stratum h.

The separate imputation methods are categorized into three situations under the availability of auxiliary informations:

Situation I: When \bar{X} is known and $\bar{x}_{n,h(rss)}$ is utilized.

Situation II: When \bar{X} is known and $\bar{x}_{r,h(rss)}$ is utilized.

Situation III: When \bar{X} is unknown and $\bar{x}_{n,h(rss)}$, $\bar{x}_{r,h(rss)}$ are utilized.

The classical separate ratio type imputation method is described under SRSS as:

Situation I

$$y_{.i_{R_1}}^s = \begin{cases} y_i & \text{for } i \in A_h, \\ \frac{1}{n-r} \left[n \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_h}{\bar{x}_{n,h(rss)}} \right) - r \bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_h. \end{cases}$$

 $Situation \ II$

$$y_{.i_{R_2}}^s = \begin{cases} y_i & \text{for } i \in A_h, \\ \frac{1}{n-r} \left[n\bar{y}_{r,h[rss]} \left(\frac{\bar{X}_h}{\bar{x}_{r,h(rss)}} \right) - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_h. \end{cases}$$

Situation III

$$y_{i_{R_3}}^s = \begin{cases} y_i & \text{for } i \in A_h, \\ \frac{1}{n-r} \left[n\bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{n,h(rss)}}{\bar{x}_{r,h(rss)}} \right) - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_h. \end{cases}$$

The sequent estimators are given by

$$T_{R_1}^s = \sum_{h=1}^{L} W_h \left[\bar{y}_{r,h[rss]} \left(\frac{\bar{X}_h}{\bar{x}_{n,h(rss)}} \right) \right],$$

$$T_{R_2}^s = \sum_{h=1}^{L} W_h \left[\bar{y}_{r,h[rss]} \left(\frac{\bar{X}_h}{\bar{x}_{r,h(rss)}} \right) \right],$$

$$T_{R_3}^s = \sum_{h=1}^{L} W_h \left[\bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{n,h(rss)}}{\bar{x}_{r,h(rss)}} \right) \right].$$

On the lines of Diana and Perri (2010), we define a separate regression imputation method under SRSS as:

Situation I

$$y_{i_{DP_{1}}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ y_{r,h[rss]} + \frac{n}{n-r} b_{1}(\bar{X} - \bar{x}_{n,h(rss)}) & \text{for } i \in \bar{A}_{h}. \end{cases}$$

 $Situation \ II$

$$y_{i_{DP_2}}^s = \begin{cases} y_i & \text{for } i \in A_h, \\ y_{r,h[rss]} + \frac{n}{n-r} b_2(\bar{X} - \bar{x}_{r,h(rss)}) & \text{for } i \in \bar{A}_h. \end{cases}$$

Situation III

$$y_{.i_{DP_3}}^s = \begin{cases} y_i & \text{for } i \in A_h, \\ y_{r,h[rss]} + \frac{n}{n-r} b_3(\bar{x}_{n,h(rss)} - \bar{x}_{r,h(rss)}) & \text{for } i \in \bar{A}_h. \end{cases}$$

The sequent separate estimators under the above situations are given by

$$T_{DP_1}^s = \sum_{h=1}^{L} W_h[\bar{y}_{r,h[rss]} + b_{1_h}(\bar{X}_h - \bar{x}_{n,h(rss)})],$$

$$T_{DP_2}^s = \sum_{h=1}^{L} W_h[\bar{y}_{r,h[rss]} + b_{2_h}(\bar{X}_h - \bar{x}_{r,h(rss)})],$$

$$T_{DP_3}^s = \sum_{h=1}^{L} W_h[\bar{y}_{r,h[rss]} + b_{3_h}(\bar{x}_{n,h(rss)} - \bar{x}_{r,h(rss)})].$$

Motivated by Sohail *et al.* (2018), we define a separate class of ratio type imputation methods under SRSS as:

Situation I

$$y_{.is_{1}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{x}_{n,h(rss)}} \right)^{\beta_{1_{h}}} - r \bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}. \end{cases}$$
$$y_{.is_{4}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\beta_{4_{h}} \bar{x}_{n,h(rss)} + (1-\beta_{4_{h}}) \bar{X}_{h}} \right) - r \bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}. \end{cases}$$

Situation II

$$y_{.is_{2}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{x}_{r,h(rss)}} \right)^{\beta_{2_{h}}} - r \bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}, \end{cases}$$
$$y_{.is_{5}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\beta_{5_{h}} \bar{x}_{r,h(rss)} + (1-\beta_{5_{h}}) \bar{X}_{h}} \right) - r \bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}. \end{cases}$$

Situation III

$$y_{.is_{3}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{n,h(rss)}}{\bar{x}_{r,h(rss)}} \right)^{\beta_{3_{h}}} - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}, \end{cases}$$
$$y_{.is_{6}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{h}}{\beta_{6_{h}}\bar{x}_{r,h(rss)} + (1-\beta_{6_{h}})\bar{x}_{n,h(rss)}} \right) - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}. \end{cases}$$

The sequent estimators are given by

$$\begin{split} T_{S_{1}}^{s} &= \sum_{h=1}^{L} W_{h} \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{x}_{n,h(rss)}} \right)^{\beta_{1_{h}}}, \\ T_{S_{2}}^{s} &= \sum_{h=1}^{L} W_{h} \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{x}_{r,h(rss)}} \right)^{\beta_{2_{h}}}, \\ T_{S_{3}}^{s} &= \sum_{h=1}^{L} W_{h} \bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{n,h(rss)}}{\bar{x}_{r,h(rss)}} \right)^{\beta_{3_{h}}}, \\ T_{S_{4}}^{s} &= \sum_{h=1}^{L} W_{h} \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\beta_{4_{h}} \bar{x}_{n,h(rss)} + (1 - \beta_{4_{h}}) \bar{X}_{h}} \right), \\ T_{S_{5}}^{s} &= \sum_{h=1}^{L} W_{h} \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\beta_{5_{h}} \bar{x}_{r,h(rss)} + (1 - \beta_{5_{h}}) \bar{X}_{h}} \right), \\ T_{S_{6}}^{s} &= \sum_{h=1}^{L} W_{h} \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\beta_{6_{h}} \bar{x}_{r,h(rss)} + (1 - \beta_{6_{h}}) \bar{x}_{n,h(rss)}} \right), \end{split}$$

where β_{i_h} ; i = 1, 2, ..., 6 are suitably opted scalars.

Appendix B of supplementary file contains the minimum mean square error (MSE) of the sequent estimators consisting of different imputation methods.

4. PROPOSED IMPUTATION METHODS

The crux of this paper is binary:

- 1. To propose some efficient combined and separate imputation methods for the estimation of population mean \bar{Y} .
- **2**. To determine the effect of the correlation coefficient, coefficient of skewness, and coefficient of kurtosis over the efficiency of the imputation procedures.

4.1. Combined imputation methods

Following Bhushan and Pandey (2016, 2018), we envisage nine new imputation methods under the three situations specified in the former section as:

Situation I

$$y_{.i_{SA_{1}}}^{c} = \begin{cases} \alpha_{1}y_{i} & \text{for } i \in A, \\ \alpha_{1}\bar{y}_{r,srss} + \frac{n\theta_{1}}{n-r}(\bar{x}_{n,srss} - \bar{X}) & \text{for } i \in \bar{A}, \end{cases}$$

$$y_{.i_{SA_{4}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{1}{n-r} \left[n\alpha_{4}\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{n,srss}} \right)^{\theta_{4}} - r\bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$

$$y_{.i_{SA_{7}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{1}{n-r} \left[n\alpha_{7}\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{X} + \theta_{7}(\bar{x}_{n,srss} - \bar{X})} \right) - r\bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$

Situation II

$$y_{i_{SA_{2}}}^{c} = \begin{cases} \alpha_{2}y_{i} & \text{for } i \in A, \\ \alpha_{2}\bar{y}_{r,srss} + \frac{n\theta_{2}}{n-r}(\bar{x}_{r,srss} - \bar{X}) & \text{for } i \in \bar{A}, \end{cases}$$

$$y_{i_{SA_{5}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{1}{n-r} \left[n\alpha_{5}\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{r,srss}} \right)^{\theta_{5}} - r\bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$

$$y_{i_{SA_{8}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{1}{n-r} \left[n\alpha_{8}\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{X} + \theta_{8}(\bar{x}_{r,srss} - \bar{X})} \right) - r\bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$

 $Situation \ III$

$$y_{i_{SA_{3}}}^{c} = \begin{cases} \alpha_{3}y_{i} & \text{for } i \in A, \\ \alpha_{3}\bar{y}_{r,srss} + \frac{n\theta_{3}}{n-r}(\bar{x}_{r,srss} - \bar{x}_{n,srss}) & \text{for } i \in \bar{A}, \end{cases}$$

$$y_{i_{SA_{6}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{1}{n-r} \left[n\alpha_{6}\bar{y}_{r,srss} \left(\frac{\bar{x}_{n,srss}}{\bar{x}_{r,srss}} \right)^{\theta_{6}} - r\bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}, \end{cases}$$

$$y_{i_{SA_{9}}}^{c} = \begin{cases} y_{i} & \text{for } i \in A, \\ \frac{1}{n-r} \left[n\alpha_{9}\bar{y}_{r,srss} \left(\frac{\bar{x}_{n,srss}}{\bar{x}_{n,srss} + \theta_{9}(\bar{x}_{n,srss} - \bar{x}_{r,srss})} \right) - r\bar{y}_{r,srss} \right] & \text{for } i \in \bar{A}. \end{cases}$$

Under the above situations, the sequent estimators are given by

$$\begin{split} T^{c}_{SA_{1}} &= \alpha_{1}\bar{y}_{r,srss} + \theta_{1}(\bar{x}_{n,srss} - \bar{X}), \\ T^{c}_{SA_{2}} &= \alpha_{2}\bar{y}_{r,srss} + \theta_{2}(\bar{x}_{r,srss} - \bar{X}), \\ T^{c}_{SA_{3}} &= \alpha_{3}\bar{y}_{r,srss} + \theta_{3}(\bar{x}_{r,srss} - \bar{x}_{n,srss}), \\ T^{c}_{SA_{4}} &= \alpha_{4}\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{n,srss}}\right)^{\theta_{4}}, \\ T^{c}_{SA_{5}} &= \alpha_{5}\bar{y}_{r,srss} \left(\frac{\bar{X}}{\bar{x}_{r,srss}}\right)^{\theta_{5}}, \\ T^{c}_{SA_{5}} &= \alpha_{6}\bar{y}_{r,srss} \left(\frac{\bar{x}_{n,srss}}{\bar{x}_{r,srss}}\right)^{\theta_{6}}, \\ T^{c}_{SA_{6}} &= \alpha_{6}\bar{y}_{r,srss} \left[\frac{\bar{X}}{\bar{X} + \theta_{7}(\bar{x}_{n,srss} - \bar{X})}\right], \\ T^{c}_{SA_{7}} &= \alpha_{8}\bar{y}_{r,srss} \left[\frac{\bar{X}}{\bar{X} + \theta_{8}(\bar{x}_{r,srss} - \bar{X})}\right], \\ T^{c}_{SA_{9}} &= \alpha_{9}\bar{y}_{r,srss} \left[\frac{\bar{x}_{n,srss}}{\bar{x}_{n,srss} + \theta_{9}(\bar{x}_{r,srss} - \bar{x}_{n,srss})}\right], \end{split}$$

where $\alpha_1, \alpha_2, ..., \alpha_9$ and $\theta_1, \theta_2, ..., \theta_9$ are the suitably chosen scalars.

Theorem 4.1. The MSE of the sequent estimators consisting of the proposed imputation methods is given by

$$\begin{split} MSE(T_{SA_{1}}^{c}) &= (\alpha_{1}-1)^{2}\bar{Y}^{2} + \alpha_{1}^{2}\bar{Y}^{2}I_{0}^{*} + \theta_{1}^{2}\bar{X}^{2}I_{1} + 2\alpha_{1}\theta_{1}\bar{X}\bar{Y}I_{01}, \\ MSE(T_{SA_{2}}^{c}) &= (\alpha_{2}-1)^{2}\bar{Y}^{2} + \alpha_{2}^{2}\bar{Y}^{2}I_{0}^{*} + \theta_{2}^{2}\bar{X}^{2}I_{1}^{*} + 2\alpha_{2}\theta_{2}\bar{X}\bar{Y}I_{01}^{*}, \\ MSE(T_{SA_{3}}^{c}) &= \begin{bmatrix} (\alpha_{3}-1)^{2}\bar{Y}^{2} + \alpha_{3}^{2}\bar{Y}^{2}I_{0}^{*} + \theta_{3}^{2}\bar{X}^{2}\{I_{1}^{*} - I_{1}\} \\ + 2\alpha_{3}\theta_{3}\bar{X}\bar{Y}\{I_{01}^{*} - I_{01}\} \end{bmatrix}, \\ MSE(T_{SA_{4}}^{c}) &= \bar{Y}^{2} \begin{bmatrix} 1 + \alpha_{4}^{2}\{1 + I_{0}^{*} + \theta_{4}(2\theta_{4} + 1)I_{1} - 4\theta_{4}I_{01}\} \\ -2\alpha_{4}\{1 - \theta_{4}I_{01} + \frac{\theta_{4}(\theta_{4} + 1)}{2}I_{1}\} \end{bmatrix}, \\ MSE(T_{SA_{5}}^{c}) &= \bar{Y}^{2} \begin{bmatrix} 1 + \alpha_{5}^{2}\{1 + I_{0}^{*} + \theta_{5}(2\theta_{5} + 1)I_{1}^{*} - 4\theta_{5}I_{01}^{*}\} \\ -2\alpha_{5}\{1 - \theta_{5}I_{01}^{*} + \frac{\theta_{5}(\theta_{5} + 1)}{2}I_{1}^{*}\} \end{bmatrix}, \\ MSE(T_{SA_{5}}^{c}) &= \bar{Y}^{2} \begin{bmatrix} 1 + \alpha_{6}^{2}\{1 + I_{0}^{*} + \theta_{6}(2\theta_{6} + 1)(I_{1}^{*} - I_{1}) - 4\theta_{6}(I_{01}^{*} - I_{01})\} \\ -2\alpha_{6}\{1 - \theta_{6}(I_{01}^{*} - I_{01}) + \frac{\theta_{6}(\theta_{6} + 1)}{2}(I_{1}^{*} - I_{1})\} \end{bmatrix}, \\ MSE(T_{SA_{7}}^{c}) &= \bar{Y}^{2} \begin{bmatrix} 1 + \alpha_{7}^{2}\{1 + I_{0}^{*} + 3\theta_{7}^{2}I_{1} - 4\theta_{7}I_{01}\} \\ -2\alpha_{7}\{1 + \theta_{7}^{2}I_{1} - \theta_{7}I_{01}\} \end{bmatrix}, \\ MSE(T_{SA_{8}}^{c}) &= \bar{Y}^{2} \begin{bmatrix} 1 + \alpha_{8}^{2}\{1 + I_{0}^{*} + 3\theta_{8}^{2}I_{1}^{*} - 4\theta_{8}I_{01}^{*}\} \\ -2\alpha_{8}\{1 + \theta_{8}^{2}I_{1}^{*} - \theta_{8}I_{01}^{*}\} \end{bmatrix}, \\ MSE(T_{SA_{9}}^{c}) &= \bar{Y}^{2} \begin{bmatrix} 1 + \alpha_{9}^{2}\{1 + I_{0}^{*} + 3\theta_{9}^{2}(I_{1}^{*} - I_{1}) - 4\theta_{9}(I_{01}^{*} - I_{01})\} \\ -2\alpha_{9}\{1 + \theta_{9}^{2}(I_{1}^{*} - I_{1}) - \theta_{9}(I_{01}^{*} - I_{01})\} \end{bmatrix}. \end{split}$$

Proof: Appendix C of supplementary file contains a summary of the derivations. The derivations can easily be done using Taylor series expansion. \Box

Theorem 4.2. The minimum MSE of the sequent estimators consisting of the proposed imputation methods are

(4.1)
$$minMSE(T_{SA_i}^c) = \bar{Y}^2(1 - \alpha_{i(opt)}) = \bar{Y}^2\left(1 - \frac{A_i^2}{B_i}\right); \ i = 1, 2, 3,$$

(4.2)
$$minMSE(T_{SA_j}^c) = \bar{Y}^2 \left(1 - \frac{A_j^2}{B_j}\right); \ j = 4, 5, 6,$$

(4.3)
$$minMSE(T_{SA_k}^c) = \bar{Y}^2 \left(1 - \frac{A_k^2}{B_k}\right); \ k = 7, 8, 9.$$

Proof: Appendix C of supplementary file contains a summary of the derivations. \Box

Corollary 4.1. The proposed sequent estimators $T_{SA_i}^c$, i = 1, 2, 3 dominate the proposed sequent estimators $T_{SA_i}^c$, j = 4, 5, 6, iff

(4.4)
$$\alpha_{i(opt)} > \frac{A_j^2}{B_j}$$

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.4).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.1) and (4.2), we get (4.4).

Corollary 4.2. The proposed sequent estimators $T_{SA_i}^c$, i = 1, 2, 3 dominate the proposed sequent estimators $T_{SA_k}^c$, k = 7, 8, 9, iff

(4.5)
$$\alpha_{i(opt)} > \frac{A_k^2}{B_k}$$

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.5).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.1) and (4.3), we get (4.5).

Corollary 4.3. The proposed sequent estimators $T_{SA_j}^c$, i = 4, 5, 6 dominate the proposed sequent estimators $T_{SA_k}^c$, k = 7, 8, 9, iff

(4.6)
$$\frac{A_j^2}{B_j} > \frac{A_k^2}{B_k}$$

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.6).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.2) and (4.3), we get (4.6).

The only way to determine if (4.4), (4.5), and (4.6) are true in practise is through the computational analysis done in Section 6.

4.2. Separate imputation methods

On the lines of Bhushan and Pandey (2016, 2018), we suggest nine new separate imputation methods under the three situations discussed in the earlier section as:

$Situation \ I$

$$y_{i_{SA_{1}}}^{s} = \begin{cases} \alpha_{1_{h}}y_{i} & \text{for } i \in A_{h}, \\ \alpha_{1_{h}}\bar{y}_{r,h[rss]} + \frac{n\theta_{1_{h}}}{n-r}(\bar{x}_{n,h(rss)} - \bar{X}_{h}) & \text{for } i \in \bar{A}_{h}, \end{cases}$$

$$y_{i_{SA_{4}}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\alpha_{4_{h}}\bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{x}_{n,h(rss)}} \right)^{\theta_{4_{h}}} - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}, \end{cases}$$

$$y_{i_{SA_{7}}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\alpha_{7_{h}}\bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{X}_{h} + \theta_{7_{h}}(\bar{x}_{n,h(rss)} - \bar{X}_{h})} \right) - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}. \end{cases}$$

Situation II

$$y_{.i_{SA_{2}}}^{s} = \begin{cases} \alpha_{2_{h}}y_{i} & \text{for } i \in A_{h}, \\ \alpha_{2_{h}}\bar{y}_{r,h[rss]} + \frac{n\theta_{2_{h}}}{n-r}(\bar{x}_{r,h(rss)} - \bar{X}_{h}) & \text{for } i \in \bar{A}_{h}, \end{cases}$$

$$y_{.i_{SA_{5}}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\alpha_{5_{h}}\bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{x}_{r,h(rss)}} \right)^{\theta_{5_{h}}} - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}, \end{cases}$$

$$y_{.i_{SA_{8}}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\alpha_{8_{h}}\bar{y}_{r,h[rss]} \left(\frac{\bar{X}_{h}}{\bar{X} + \theta_{8_{h}}(\bar{x}_{r,h(rss)} - \bar{X}_{h})} \right) - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}. \end{cases}$$

 $Situation \ III$

$$y_{i_{SA_{3}}}^{s} = \begin{cases} \alpha_{3_{h}}y_{i} & \text{for } i \in A_{h}, \\ \alpha_{3_{h}}\bar{y}_{r,h[rss]} + \frac{n\theta_{3_{h}}}{n-r}(\bar{x}_{r,h(rss)} - \bar{x}_{n,h(rss)})) & \text{for } i \in \bar{A}_{h}, \end{cases}$$

$$y_{i_{SA_{6}}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\alpha_{6_{h}}\bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{n,h(rss)}}{\bar{x}_{r,h(rss)}} \right)^{\theta_{6_{h}}} - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}, \end{cases}$$

$$y_{i_{SA_{9}}}^{s} = \begin{cases} y_{i} & \text{for } i \in A_{h}, \\ \frac{1}{n-r} \left[n\alpha_{9_{h}}\bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{n,h(rss)}}{\bar{x}_{n,h(rss)} + \theta_{9_{h}}(\bar{x}_{n,h(rss)} - \bar{x}_{r,h(rss)})} \right) - r\bar{y}_{r,h[rss]} \right] & \text{for } i \in \bar{A}_{h}. \end{cases}$$

The sequent estimators consisting of the above imputation methods are

$$\begin{split} T^{s}_{SA_{1}} &= \sum_{h=1}^{L} W_{h}[\alpha_{1_{h}}\bar{y}_{r,h[rss]} + \theta_{1_{h}}(\bar{x}_{n,h(rss)} - \bar{X}_{h})], \\ T^{s}_{SA_{2}} &= \sum_{h=1}^{L} W_{h}[\alpha_{2_{h}}\bar{y}_{r,h[rss]} + \theta_{2_{h}}(\bar{x}_{r,h(rss)} - \bar{X}_{h})], \\ T^{s}_{SA_{3}} &= \sum_{h=1}^{L} W_{h}[\alpha_{3_{h}}\bar{y}_{r,h[rss]} + \theta_{3_{h}}(\bar{x}_{r,h(rss)} - \bar{x}_{n,h(rss)})], \end{split}$$

$$\begin{split} T_{SA_4}^{s} &= \sum_{h=1}^{L} W_h \alpha_{4_h} \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_h}{\bar{x}_{n,h(rss)}} \right)^{\theta_{4_h}}, \\ T_{SA_5}^{s} &= \sum_{h=1}^{L} W_h \alpha_{5_h} \bar{y}_{r,h[rss]} \left(\frac{\bar{X}_h}{\bar{x}_{r,h(rss)}} \right)^{\theta_{5_h}}, \\ T_{SA_6}^{s} &= \sum_{h=1}^{L} W_h \alpha_{6_h} \bar{y}_{r,h[rss]} \left(\frac{\bar{x}_{n,h(rss)}}{\bar{x}_{r,h(rss)}} \right)^{\theta_{6_h}}, \\ T_{SA_7}^{s} &= \sum_{h=1}^{L} W_h \alpha_{7_h} \bar{y}_{r,h[rss]} \left[\frac{\bar{X}_h}{\bar{X}_h + \theta_{7_h}(\bar{x}_{n,h(rss)} - \bar{X}_h)} \right], \\ T_{SA_8}^{s} &= \sum_{h=1}^{L} W_h \alpha_{8_h} \bar{y}_{r,h[rss]} \left[\frac{\bar{X}_h}{\bar{X}_h + \theta_{8_h}(\bar{x}_{r,h(rss)} - \bar{X}_h)} \right], \\ T_{SA_9}^{s} &= \sum_{h=1}^{L} W_h \alpha_{9_h} \bar{y}_{r,h[rss]} \left[\frac{\bar{x}_{n,h(rss)} - \bar{x}_{n,h(rss)}}{\bar{x}_{n,h(rss)} + \theta_{9_h}(\bar{x}_{r,h(rss)} - \bar{x}_{n,h(rss)})} \right], \end{split}$$

where $\alpha_{1_h}, \alpha_{2_h}, ..., \alpha_{9_h}$ and $\theta_{1_h}, \theta_{2_h}, ..., \theta_{9_h}$ are suitably chosen scalars.

Theorem 4.3. The MSE of the sequent estimators consisting of the proposed imputation methods is given by

$$\begin{split} MSE(T_{SA_{1}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \Big[(\alpha_{1_{h}} - 1)^{2} \bar{Y}_{h}^{2} + \alpha_{1_{h}}^{2} \bar{Y}_{h}^{2} J_{0}^{*} + \theta_{1_{h}}^{2} \bar{X}_{h}^{2} J_{1} + 2\alpha_{1_{h}} \theta_{1_{h}} \bar{X}_{h} \bar{Y}_{h} J_{01} \Big], \\ MSE(T_{SA_{2}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \Big[(\alpha_{2_{h}} - 1)^{2} \bar{Y}_{h}^{2} + \alpha_{2_{h}}^{2} \bar{Y}_{h}^{2} J_{0}^{*} + \theta_{2_{h}}^{2} \bar{X}_{h}^{2} J_{1}^{*} + 2\alpha_{2_{h}} \theta_{2_{h}} \bar{X}_{h} \bar{Y}_{h} J_{01}^{*} \Big], \\ MSE(T_{SA_{3}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \Big[\frac{(\alpha_{3_{h}} - 1)^{2} \bar{Y}_{h}^{2} + \alpha_{3_{h}}^{2} \bar{Y}_{h}^{2} J_{0}^{*} + \theta_{3_{h}}^{2} \bar{X}_{h}^{2} J_{1}^{*} - J_{1} \Big\} \Big], \\ MSE(T_{SA_{3}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{4_{h}}^{2} \{ 1 + J_{0}^{*} + \theta_{4_{h}} (2\theta_{4_{h}} + 1) J_{1} - 4\theta_{4_{h}} J_{01} \} \right], \\ MSE(T_{SA_{4}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + \theta_{5_{h}} (2\theta_{5_{h}} + 1) J_{1}^{*} - 4\theta_{5_{h}} J_{01}^{*} \} \right], \\ MSE(T_{SA_{5}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + \theta_{6_{h}} (2\theta_{6_{h}} + 1) J_{1}^{*} - 4\theta_{5_{h}} J_{01}^{*} \} \right], \\ MSE(T_{SA_{6}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + \theta_{6_{h}} (2\theta_{6_{h}} + 1) (J_{1}^{*} - J_{1}) - 4\theta_{6_{h}} (J_{01}^{*} - J_{01}) \} \right], \\ MSE(T_{SA_{7}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + 3\theta_{2_{h}}^{*} J_{1} - 4\theta_{7_{h}} J_{01} \} \right], \\ MSE(T_{SA_{7}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + 3\theta_{2_{h}}^{*} J_{1} - 4\theta_{7_{h}} J_{01} \} \right], \\ MSE(T_{SA_{8}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + 3\theta_{2_{h}}^{*} J_{1} - 4\theta_{7_{h}} J_{01} \} \right], \\ MSE(T_{SA_{8}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + 3\theta_{2_{h}}^{2} J_{1}^{*} - 4\theta_{8_{h}} J_{01}^{*} \} \right], \\ MSE(T_{SA_{9}}^{s}) &= \sum_{h=1}^{L} W_{h}^{2} \bar{Y}_{h}^{2} \left[\frac{1 + \alpha_{2_{h}}^{2} \{ 1 + J_{0}^{*} + 3\theta_{2_{h}}^{2} J_{1}^{*} - \theta_{8_{h}} J_{01}^{*} - J_{0$$

Proof: Appendix C of supplementary file contains a summary of the derivations. The derivations can easily be done using Taylor series expansion. \Box

Theorem 4.4. The minimum MSE of the sequent estimators consisting of the proposed imputation methods is given by

(4.7)
$$minMSE(T_{SA_i}^s) = \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 (1 - \alpha_{i_h(opt)}) = \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}}\right); \ i = 1, 2, 3,$$

(4.8)
$$minMSE(T_{SA_j}^s) = \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{j_h}^2}{B_{j_h}}\right); \ j = 4, 5, 6$$

(4.9)
$$minMSE(T_{SA_k}^s) = \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{k_h}^2}{B_{k_h}}\right); \ k = 7, 8, 9.$$

Proof: Appendix C of supplementary file contains a summary of the derivations. \Box

Corollary 4.4. The proposed sequent estimators $T_{SA_i}^s$, i = 1, 2, 3 dominate the proposed sequent estimators $T_{SA_i}^s$, j = 4, 5, 6, iff

(4.10)
$$\sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \alpha_{i_h(opt)} > \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(\frac{A_{i_h}^2}{B_{i_h}}\right)$$

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.10).

Proof: On comparing the minimum MSEs of the proposed estimators from (4.7) and (4.8), we get (4.10).

Corollary 4.5. The proposed sequent estimators $T_{SA_i}^s$, i = 1, 2, 3 dominate the proposed sequent estimators $T_{SA_k}^s$, k = 4, 5, 6, iff

(4.11)
$$\sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \alpha_{i_h(opt)} > \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(\frac{A_{k_h}^2}{B_{k_h}}\right)$$

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.11).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.7) and (4.9), we get (4.11).

Corollary 4.6. The proposed sequent estimators $T^s_{SA_j}$, j = 4, 5, 6 dominate the proposed sequent estimators $T^s_{SA_k}$, k = 7, 8, 9, iff

(4.12)
$$\sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(\frac{A_{j_h}^2}{B_{j_h}}\right) > \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(\frac{A_{k_h}^2}{B_{k_h}}\right)$$

and contrariwise. Otherwise, both are equally efficient when the equality holds in (4.12).

Proof: By comparing the minimum MSEs of the proposed estimators from (4.8) and (4.9), we get (4.12).

The only way to determine if (4.10), (4.11), and (4.12) are true in practise is through the computational analysis done in Section 6.

5. OPTIMALITY CONDITIONS

In this section, we obtain the optimality conditions under two heads, namely, optimality conditions for combined imputation methods and the optimality conditions for separate imputation methods.

5.1. Optimality conditions for the combined imputation methods

By comparing the minimum MSE of the suggested combined imputation methods $y_{iSA_i}^c$, i = 1, 2, ..., 9 from (4.1) and (4.2) with the minimum MSE of the other existing combined imputation methods from (A.1), (A.2), (A.3), (A.4), (A.8), (A.9), (A.10), (A.14), (A.15), and (A.16), respectively, given in Appendix A of supplementary file, we get the following optimality conditions:

$$\begin{split} MSE(T_m^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^*, \\ MSE(T_{R_1}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* - I_1 + 2I_{01}, \\ MSE(T_{R_2}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* - I_1^* + 2I_{01}^*, \\ MSE(T_{R_3}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* - I_1 - I_1^* + 2I_{01}^*, \\ MSE(T_{DP_1}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* + \frac{I_{01}^2}{I_1}, \\ MSE(T_{DP_2}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* + \frac{I_{01}^{*2}}{I_1^*}, \\ MSE(T_{DP_3}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* + \frac{(I_{01}^* - I_{01})^2}{(I_1^* - I_1)}, \\ MSE(T_{S_1}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* + \frac{I_{01}^{*2}}{I_1^*}, \\ MSE(T_{S_2}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* + \frac{I_{01}^{*2}}{I_1}, \\ MSE(T_{S_2}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* + \frac{I_{01}^{*2}}{I_1^*}, \\ MSE(T_{S_3}^c) > MSE(T_{SA_i}^c) \implies \frac{A_i^2}{B_i} > 1 - I_0^* + \frac{(I_{01}^* - I_{01})^2}{(I_1^* - I_1)}. \\ \end{split}$$

The optimality of the suggested combined imputation methods can be justified under the above conditions.

5.2. Optimality conditions for the separate imputation methods

By comparing the minimum MSE of the proposed imputation methods $y_{i_{SA_i}}^s$, i = 1, 2, ..., 9 given in (4.7) and (4.8) with the minimum MSE of the other existing imputation methods given in (B.17), (B.18), (B.19), (B.20), (B.24), (B.25), (B.26), (B.30), (B.31), and (B.32), respectively, given in Appendix B of supplementary file, we get the following optimality conditions:

$$\begin{split} MSE(T_m^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 J_1^*, \\ MSE(T_{R_1}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 [J_0^* + J_1 - 2J_{01}], \\ MSE(T_{R_2}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 [J_0^* + J_1^* - 2J_{01}^*], \\ MSE(T_{R_3}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 [J_0^* + J_1^* - 2J_{01}^*], \\ MSE(T_{B_3}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 [J_0^* + J_1^* + J_1 - 2J_{01}^*], \\ MSE(T_{DP_2}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left[J_0^* - \frac{J_{01}^2}{J_1} \right], \\ MSE(T_{DP_3}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left[J_0^* - \frac{(J_{01}^* - J_{01})^2}{(J_1^* - J_1)} \right], \\ MSE(T_{S_1}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left[J_0^* - \frac{(J_{01}^* - J_{01})^2}{(J_1^* - J_1)} \right], \\ MSE(T_{S_2}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left[J_0^* - \frac{J_{01}^2}{(J_1^* - J_1)} \right], \\ MSE(T_{S_2}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left[J_0^* - \frac{J_{01}^2}{(J_1^* - J_1)} \right], \\ MSE(T_{S_3}^s) > MSE(T_{SA_i}^s) \implies \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left(1 - \frac{A_{i_h}^2}{B_{i_h}} \right) < \sum_{h=1}^{L} W_h^2 \bar{Y}_h^2 \left[J_0^* - \frac{J_{01}^2}{(J_1^* - J_1)} \right]. \end{aligned}$$

Under the above conditions, the optimality of the proposed separate imputation methods can be ascertained.

5.3. Comparison of proposed combined and separate imputation methods

By comparing the minimum MSE of the proposed combined and separate classes of imputation methods from (4.1), (4.2) and (4.7), (4.8), we get

(5.1)
$$minMSE(T_{SA_i}^c) - minMSE(T_{SA_i}^s) = \sum_{h=1}^{L} \left[(\bar{Y}^2 - W_h^2 \bar{Y}_h^2) - \left(\bar{Y}^2 \frac{A_i^2}{B_i} - W_h^2 \bar{Y}_h^2 \frac{A_{i_h}^2}{B_{i_h}} \right) \right].$$

If the sequent estimators are conclusive and the relationship between auxiliary and study variables within each stratum is a straight line passing through the origine, then the last term of (5.1) is miniscule and it vanished.

In addition, except R_h becomes invariant from stratum to stratum, the separate estimators perform better in each stratum provided the sample in each stratum is to be sufficiently large so that the approximate formula for $MSE(T_{SA_i}^s)$, i = 1, 2, ..., 9 is valid and the cumulative bias that can affect the proposed estimators is negligible, whereas the proposed combined estimators are to be highly advocated with only a small sample in each stratum (see, Cochran, 1977).

6. SIMULATION STUDY

To highlight the properties and to access the performance of the proposed imputation methods, motivated by Singh and Horn (1998), simulations were carried out over two artificially generated asymmetric populations such as gamma and exponential of size N = 2100units each with variables X and Y whose values are given by

$$y_i = 8.2 + \sqrt{(1 - \rho_{xy}^2)} y_i^* + \rho_{xy} \left(\frac{S_y}{S_x}\right) x_i^*,$$

$$x_i = 4.2 + x_i^*.$$

where x_i^* and y_i^* are independent variates of proportional distribution. Each population is divided into three equal strata and a stratified ranked set sample of size 9 with set size 3 and number of cycles 3 is drawn from each stratum with the help of the methodology described in Section 2. With 10000 iterations, the percent relative efficiency (*PRE*) of the sequent estimators with respect to the conventional mean estimator was obtained as

$$PRE = \frac{\frac{1}{10000} \sum_{i=1}^{10000} (T_m - \bar{Y})^2}{\frac{1}{10000} \sum_{i=1}^{10000} (T^* - \bar{Y})^2} \times 100,$$

where T^* is the existing and proposed combined and separate class of estimators.

The findings of the simulation are disclosed from Table 1 to Table 4 through PRE for reasonably chosen values of correlation coefficient $\rho_{xy} = 0.6, 0.7, 0.8, 0.9$ and fair choice of response probability P = 0.4, 0.6.

From Table 1 to Table 4, consisting of the simulation results of two asymmetric populations, namely, gamma and exponential, we have seen that the proposed combined and separate imputation methods $y_{.i_{SA_j}}^c$ and $y_{.i_{SA_j}}^s$, j = 1, 2, ..., 9 dominate the other existing imputation methods for reasonably chosen values of the correlation coefficient. We have also seen that the proposed combined and separate imputation methods $y_{.i_{SA_j}}^c$ and $y_{.i_{SA_j}}^s$, j = 4, 5, 6 perform better among the proposed class of imputation methods under situations I, II and III. Moreover, it is also seen that the *PRE* of the proposed imputation methods under situations I, II and III in both populations decreases with the increase in asymmetry.

ρ_{xy}	0.6	0.7	0.8	0.9
T_m^c	100	100	100	100
$x^* \sim \Gamma(0.5, 1.5)$ $y^* \sim \Gamma(1.5, 2)$ Skewness of y Kurtosis of y	$1.3292 \\ 5.4000$	$1.4081 \\ 5.6181$	$1.6083 \\ 6.5418$	$1.9768 \\ 8.4693$
Situation I $T_{SA_i}^c, i = 1, 7$ $\mathbf{T_{SA_4}^c}$ $T_{R_1}^c$ $T_{DP_1}^c/T_{S_i}^c, i = 1, 4$	106.0998 106.1067 100.2267 105.983	105.5777 105.5846 99.3709 105.46	105.4108 105.4176 98.3220 105.3005	104.7131 104.7198 95.5744 104.6141
Situation II $T_{SA_i}^c, i = 2, 8$ $\mathbf{T_{SA_5}^c}$ $T_{R_1}^c$ $T_{DP_2}^c/T_{S_i}^c, i = 2, 5$	115.0805 115.1003 97.5580 114.9637	113.7576 113.7771 95.7573 113.6399	113.4881 113.5075 93.4999 113.3778	111.7679 111.7865 87.5916 111.6689
Situation III $T_{SA_i}^c, i = 3,9$ $\mathbf{T_{SA_6}^c}$ $T_{R_1}^c$ $T_{DP_3}^c/T_{S_i}^c, i = 3,6$	108.1050 108.1161 97.3431 107.9882	107.4685 107.4795 96.3414 107.3508	107.3868 107.3977 95.0160 107.2765	106.5397 106.5502 91.2945 106.4406
$\begin{aligned} x^* &\sim Exp(3.0) \\ y^* &\sim Exp(2.0) \\ \text{Skewness of } y \\ \text{Kurtosis of } y \end{aligned}$	$1.4612 \\ 5.9268$	$1.3814 \\ 5.4885$	$1.3734 \\ 5.4119$	$1.4769 \\ 5.8395$
Situation I $T_{SA_i}^c, i = 1, 7$ $\mathbf{T_{SA_4}^c}$ $T_{R_1}^c$ $T_{DP_1}^c/T_{S_i}^c, i = 1, 4$	106.2035 106.2096 99.7239 106.1075	106.5419 106.5481 100.2227 106.4467	106.7350 106.7411 100.2960 106.6419	105.8748 105.8808 98.5947 105.7829
Situation II $T_{SA_i}^c$, $i = 2, 8$ $T_{SA_5}^c$ $T_{R_2}^c$ $T_{DP_2}^c/T_{S_i}^c$, $i = 2, 5$	112.9619 112.9805 89.3047 112.8659	112.5542 112.5726 88.4097 112.4590	112.8376 112.856 88.1260 112.7445	111.6621 111.6799 85.9139 111.5702
Situation III $T_{SA_i}^c, i = 3, 9$ $T_{SA_6}^c$ $T_{R_3}^c$ $T_{DP_3}^c/T_{S_i}^c, i = 3, 6$	105.3578 105.3684 87.5260 105.2617	105.7988 105.8092 88.2363 105.7036	105.8817 105.8920 87.8974 105.7886	105.2694 105.2796 86.9790 105.1775

Table 1: *PRE* of proposed combined estimators at P = 0.4.

ρ_{xy}	0.6	0.7	0.8	0.9
T_m^c	100	100	100	100
$x^* \sim \Gamma(0.5, 1.5)$ $y^* \sim \Gamma(1.5, 2)$				
Skewness of y Kurtosis of y	$1.3292 \\ 5.4000$	$\frac{1.4081}{5.6181}$	$1.6083 \\ 6.5418$	$\frac{1.9768}{8.4693}$
Situation I $T_{SA_i}^c, i = 1, 7$	109.3365	108.5032	108.2434 108.2505	107.1516 107.1584
$\begin{vmatrix} \mathbf{T_{SA_4}^c} \\ T_{R_1}^c \\ T_{DP_1}^c / T_{S_i}^c, \ i = 1,4 \end{vmatrix}$	109.3437 100.3407 109.2587	108.5104 99.0588 108.4248	97.5032 108.1698	93.5045 107.0855
Situation II $T_{SA_i}^c, i = 2, 8$	115.3909	114.0088	113.6905	111.9040
$\begin{bmatrix} \mathbf{T_{SA_5}^c} \\ T_{R_2}^c \end{bmatrix}$	115.4041 98.2571	114.0218 96.3813	113.7034 94.0605	111.9163 88.0659
$T_{DP_2}^{c}/T_{S_i}^{c}, \ i = 2,5$ Situation III	115.3131	113.9304	113.6170	111.8379
$\begin{array}{c} T_{SA_i}^c, \ i = 3,9 \\ \mathbf{T_{SA_6}^c} \\ \mathbf{T_{SA_6}^c} \end{array}$	105.1641 105.1690	104.7748 104.7796	104.7360 104.7407	104.2151 104.2197
$\begin{array}{c} T^{c}_{R_{3}} \\ T^{c}_{DP_{3}}/T^{c}_{S_{i}}, \ i=3,6 \end{array}$	97.9303 105.0863	$97.2720 \\ 104.6964$	$96.3820 \\ 104.6625$	$93.8046 \\ 104.1491$
$ \begin{array}{l} x^* \sim Exp(3.0) \\ y^* \sim Exp(2.0) \\ \text{Skewness of } y \end{array} $	1.4612	1.3814	1.3734	1.4769
Kurtosis of y	5.9268	5.4885	1.3734 5.4119	1.4709 5.8395
Situation I $T_{SA_i}^c, i = 1, 7$ $\mathbf{T_{SA_4}^c}$	109.5194 109.5258	110.0755 110.0819	110.3901 110.3965	109.0041 109.0104
$\begin{bmatrix} T_{R_1}^c \\ T_{DP_1}^c / T_{S_i}^c, \ i = 1, 4 \end{bmatrix}$	$\begin{array}{c} 99.5862 \\ 109.4554 \end{array}$	$100.3351 \\ 110.0121$	$\frac{100.4455}{110.3281}$	97.9046 108.9429
Situation II $T_{SA_i}^c, i = 2, 8$	113.7547	113.6404	113.9884	112.5204
$ \begin{array}{c} \mathbf{T_{SA_5}^c} \\ T_{R_2}^c \end{array} $	113.7669 91.4958	113.6525 91.0133	114.0006 90.8178	112.5322 88.2189
$T_{DP_2}^{c^2}/T_{S_i}^c, \ i = 2,5$ Situation III	113.6907	113.577	113.9264	112.4592
$\begin{bmatrix} T^c_{SA_3} \\ \mathbf{T^c_{SA_6}} \\ T^c \\ T^c \end{bmatrix}$	103.4189 103.4436	103.5222 103.5267	103.5633 103.5677	103.3902 103.4246
$\begin{array}{c} T^{c}_{R_{3}} \\ T^{c}_{DP_{3}}/T^{c}_{S_{i}}, \ i=3,6 \end{array}$	$90.6449 \\ 103.3749$	$90.7375 \\ 103.4588$	90.4534 103.5013	$89.9166 \\ 103.3590$

Table 2: *PRE* of proposed combined estimators at P = 0.6.

ρ_{xy}	0.6	0.7	0.8	0.9
T_m^s	100	100	100	100
$x^* \sim \Gamma(0.5, 1.5)$ $y^* \sim \Gamma(1.5, 2)$				
Skewness of y Kurtosis of y	$1.3292 \\ 5.4000$	$1.4081 \\ 5.6181$	$1.6083 \\ 6.5418$	$\frac{1.9768}{8.4693}$
Situation I	100.000			
$\begin{array}{l} T_{SA_i}^s, \ i=1,7\\ \mathbf{T_{SA_a}^s} \end{array}$	106.0962 106.1027	105.5742 105.5807	105.4076 105.4141	104.7104 104.7167
$T_{R_1}^{s}$	100.6188	99.7795	98.7804	96.1227
$T_{DP_1}^{R_1}/T_{S_i}^s, \ i=1,4$	105.983	105.4600	105.3005	104.6141
Situation II				
$T^s_{SA_i}, \ i=2,8$	115.0769	113.7541	113.4850	111.7652
$T_{SA_5}^s$	115.0954	113.7724	113.5031	111.7826
$T_{R_2}^s$	98.5741	96.7889	94.6180	88.8216
$T_{DP_2}^s/T_{S_i}^s, \ i=2,5$	114.9637	113.6399	113.3778	111.6689
Situation III $T^s_{SA_i}, \ i = 3,9$	108.1014	107.4650	107.3836	106.5370
$\mathbf{T}_{\mathbf{S}\mathbf{A}_{i}}^{s}, \ i=3, 9$ $\mathbf{T}_{\mathbf{S}\mathbf{A}_{6}}^{s}$	108.1014 108.1119	107.4050 107.4753	107.3939	100.5370 106.5469
$T_{R_3}^s$	81.4466	80.3429	77.9883	72.6504
$T_{DP_3}^{s}/T_{S_i}^{s}, \ i=3,6$	107.9882	107.3508	107.2765	106.4406
$\begin{aligned} x^* &\sim Exp(3.0) \\ y^* &\sim Exp(2.0) \end{aligned}$				
Skewness of y	1.4612	1.3814	1.3734	1.4769
Kurtosis of y	5.9268	5.4885	5.4119	5.8395
Situation I	106 0010	100 5909	106 7204	105 0504
$T^s_{SA_i}, \ i=1,7$	106.2010 106.2067	106.5393 106.5451	106.7324 106.7382	105.8724 105.8781
$\begin{array}{c} \mathbf{T^s_{SA_4}} \\ T^s_{R_1} \end{array}$	100.2007	100.5451 100.5150	100.7382	98.9217
$T_{DP_1}^{r_{R_1}}/T_{S_i}^s, \ i = 1, 4$	100.0305 106.1075	100.3150 106.4467	100.5927 106.6419	105.7829
Situation II				
$T^{s}_{SA_{i}}, \ i=2,8$	112.4594	112.5516	112.8350	111.6596
$\mathbf{T_{SA_5}^s}$	112.4770	112.5691	112.8525	111.6766
$T_{R_2}^s$	90.1295	89.1992	88.9243	86.7481
$T_{DP_2}^{s}/T_{S_i}^{s}, \ i=2,5$	112.8659	112.4590	112.7445	111.5702
Situation III	105 2550	105 5000	105 0501	105 0070
$T^s_{SA_i}, \ i=3,9$	105.3552	105.7962	105.8791	105.2670 105.2767
${f T}^{f s}_{{f S}{f A}_6}$	$\frac{105.3654}{74.6746}$	105.8061 73.9110	105.889 73.4349	105.2767 71.8010
$\begin{array}{l} T_{R_3}^s \\ T_{DP_3}^s / T_{S_i}^s, \ i = 3,6 \end{array}$	105.2617	105.7036	105.7886	105.1775
$1DP_3/1S_i, \ i=0,0$	100.2017	100.1000	100.1000	100.1110

Table 3: *PRE* of proposed separate estimators at P = 0.4.

ρ_{xy}	0.6	0.7	0.8	0.9
T_m^s	100	100	100	100
$x^* \sim \Gamma(0.5, 1.5)$ $y^* \sim \Gamma(1.5, 2)$				
Skewness of y Kurtosis of y	$1.3292 \\ 5.4000$	$1.4081 \\ 5.6181$	$1.6083 \\ 6.5418$	$\frac{1.9768}{8.4693}$
Situation I $T_{SA_i}^s, i = 1, 7$ $\mathbf{T_{SA_4}^s}$ $T_{R_1}^s$ $T_{DP_1}^s/T_{S_i}^s, i = 1, 4$	109.3341 109.3409 100.9318 109.2587	108.5009 108.5076 99.6695 108.4248	108.2413 108.2479 98.1811 108.1698	107.1498 107.1562 94.2940 107.0855
Situation II $T_{SA_i}^s, i = 2, 8$ $T_{SA_5}^s$ $T_{R_2}^s$ $T_{DP_2}^s/T_{S_i}^s, i = 2, 5$	115.3885 115.4008 99.2688 115.3131	114.0065 114.0187 97.4083 113.9304	113.6884 113.7005 95.1744 113.6170	111.9022 111.9138 89.2927 111.8379
Situation III $T_{SA_i}^s, i = 3, 9$ $T_{SA_6}^s$ $T_{R_3}^s$ $T_{DP_3}^s/T_{S_i}^s, i = 3, 6$	105.1618 105.1663 75.3238 105.0863	104.7725 104.7770 74.4041 104.6964	104.7339 104.7383 72.0020 104.6625	104.2133 104.2176 66.8509 104.1491
$\begin{aligned} x^* &\sim Exp(3.0) \\ y^* &\sim Exp(2.0) \\ \text{Skewness of } y \\ \text{Kurtosis of } y \end{aligned}$	$1.4612 \\ 5.9268$	$1.3814 \\ 5.4885$	1.3734 5.4119	$1.4769 \\ 5.8395$
Situation I $T_{SA_i}^s, i = 1, 7$ $\mathbf{T}_{SA_4}^s$ $T_{R_1}^s$ $T_{DP_1}^s/T_{S_i}^s, i = 1, 4$	109.5177 109.5238 100.0457 109.4554	110.0737 110.0798 100.7759 110.0121	110.3884 110.3944 100.8935 110.3281	109.0025 109.0084 98.3895 108.9429
Situation II $T_{SA_i}^s, i = 2, 8$ $\mathbf{T}_{SA_5}^s$ $T_{R_2}^s$ $T_{DP_2}^s/T_{S_i}^s, i = 2, 5$	113.7531 113.7646 92.3101 113.6907	113.8386 113.8502 91.7963 113.7770	113.9867 113.9983 91.6107 113.9264	112.5188 112.5300 89.0465 112.4592
Situation III $T_{SA_i}^{s}, i = 3, 9$ $T_{SA_6}^{s}$ $T_{R_3}^{s}$ $T_{DP_3}^{s}/T_{S_i}^{s}, i = 3, 6$	103.4372 103.4417 70.0312 103.3749	103.5205 103.5247 69.5489 103.4588	103.5615 103.5658 69.0562 103.5013	103.4185 103.4228 67.4148 103.3590

Table 4: *PRE* of proposed separate estimators at P = 0.6.

7. CONCLUSION

This paper is the outset to suggest some combined and separate classes of imputation methods along with their properties for the estimation of population mean in the presence of missing data using *SRSS*. The theoretical conditions are derived under which the proposed combined and separate classes of imputation methods are justified. In order to enhance the theoretical findings and to determine the effect of skewness and kurtosis over *PRE*, a simulation study is accomplished on two asymmetric populations viz. gamma and exponential with reasonable choice of correlation coefficient ρ_{xy} and probability of non responding units *P*. It is noticed from the perusal of theoretical and simulation results that:

- 1. The proposed combined and separate of imputation methods $y_{i_{SA_j}}^c$ and $y_{i_{SA_j}}^s$, j = 1, 2, ..., 9 always perform better than the combined and separate mean imputation method $y_{i_m}^c$ and $y_{i_m}^s$, ratio imputation methods $y_{i_{R_j}}^c$ and $y_{i_{R_j}}^s$, j = 1, 2, 3 and their own conventional counterparts for different values of correlation coefficient ρ_{xy} , coefficient of skewness β_1 and coefficient of kurtosis β_2 .
- 2. The proposed combined and separate imputation methods $y_{i_{SA_j}}^c$ and $y_{i_{SA_j}}^s$, j = 4, 5, 6 are best among the proposed classes of imputation methods under situations I, II and III.
- 3. The *PRE* of the proposed combined and separate classes of imputation methods $y_{i_{SA_j}}^c$, $y_{i_{SA_j}}^s$, j = 1, 2, ..., 9 and their conventional counterparts under situations I, II and III are contrary to the asymmetry which is similar to the results of McIntyre (1952), Dell and Clutter (1972) and Bhushan and Kumar (2022) where they chose a wide range of skewed distributions and concluded that the asymmetry shows adverse effect over the efficiency of the estimators.
- 4. The suggested combined classes of imputation methods $y_{.i_{SA_j}}^c$, j = 1, 2, ..., 9 are superior than the suggested separate classes of imputation methods $y_{.i_{SA_j}}^s$, j = 1, 2, ..., 9 in situations I, II and III.

Therefore, due to the dominance of the proposed imputation methods over the existing imputation methods, we recommend them to survey persons for their real life problems.

APPENDIXES A-B-C. Supplementary file

Supplementary data to this article can be found online.

ACKNOWLEDGMENTS

The authors are extremely grateful to the learned referee for his valuable comments and Editor-in-Chief.

REFERENCES

- Ahmed, M. S., Al-Titi, O., Al-Rawi, Z., and Abu-Dayyeh, W. (2006). Estimation of a population mean using different imputation methods. *Statistics in Transition*, 7(6):1247–1264.
- Al-Omari, A. and Bouza, C. (2014). Ratio estimators of the population mean with missing values using ranked set sampling. *Environmetrics*, 26(2):67–76.
- Bhushan, S. and Kumar, A. (2022). Novel log type class of estimators under ranked set sampling. Sankhya B, 84:421–447.
- Bhushan, S. and Pandey, A. P. (2016). Optimal imputation of missing data for estimation of population mean. Journal of Statistics and Management System, 19(6):755–769.
- Bhushan, S. and Pandey, A. P. (2018). Optimality of ratio type estimation methods for population mean in presence of missing data. Communication in Statistics – Theory and Methods, 47(11):2576– 2589.
- Bhushan, S., Pandey, A. P., and Pandey, A. (2018). On optimality of imputation methods for estimation of population mean using higher order moments of an auxiliary variable. *Communication* in Statistics – Simulation and Computation, DOI: 10.1080/03610918.2018.1500595
- Bhushan, S., Kumar, A., Pandey, A. P., and Singh, S. (2022). Estimation of population mean in presence of missing data under simple random sampling. *Communications in Statistics Simulation and Computation*, https://doi.org/10.1080/03610918.2021.2006713.
- Bouza-Herrera, C. N. and Al-Omari, A. I. (2011). Ranked set estimation with imputation of the missing observations: The median estimator. *Revista Investigation Operacional*, 32(1):30–37.
- Bouza, C. N., Viada, C., and Vishwakarma, G. K. (2020). Studying the total under missingness by guessing the value of a superpopulation model for imputation. *Revista Investigation Operacional*, 41(7):979–989.
- Bouza-Herrera, C. N. and Viada, C. E. (2021). Imputation of individual values of a variable using product predictors. Revista Investigation Operacional, 42(3):321–325.
- Cochran, W. G. (1977). Sampling Techniques. John Wiley and Sons, New York.
- Dell, T. R. and Clutter, J. L. (1972). Ranked set sampling theory with order statistics background. Biometrics, 28:545–555.
- Diana, G. and Perri, P. F. (2010). Improved estimators of the population mean for missing data. Communication in Statistics – Theory and Methods, 39:3245–3251.
- Heitjan, D. F. and Basu, S. (1996). Distinguishing 'Missing at Random' and 'Missing Completely at Random'. The American Statistician, 50:207–213.
- Kadilar, C. and Cingi, H. (2008). Estimators for the population mean in the case of missing data. Communication in Statistics – Theory and Methods, 37:2226–2236.
- Khan, L. and Shabbir, J. (2016). Hartley-Ross type unbiased estimators using ranked set sampling and stratified ranked set sampling. North Carolina Journal of Mathematics and Statistics, 2:10–22.
- Lee, H., Rancourt, E., and Sarndal, C. E. (1994). Experiments with variance estimation from survey data with imputed values. *Journal of Official Statistics*, 10:231–243.
- Linder, D. F., Samawi, H., Yu, L., Chatterjee, A., Huang, Y., and Vogel, R. (2015). On stratified ranked set sampling for regression estimators. *Journal of Applied Statistics*, 42(12):2571–2583.
- Mandowara, V. L. and Mehta, N. (2014). Modified ratio estimators using stratified ranked set sampling. Hacettepe Journal of Mathematics and Statistics, 43(3):461–471.
- McIntyre, G. A. (1952). A method of unbiased selective sampling using ranked set. Australian Journal Agricultural Research, 3:385–390.

- Mohamed, C., Sedory, S. A., and Singh, S. (2016). Imputation using higher order moments of an auxiliary variable. *Communication in Statistics Simulation and Computation*, 46:6588–6617.
- Prasad, S. (2017). Ratio exponential type estimators with imputation for missing data in sample surveys. Model Assisted Statistics and Applications, 12(2):95–106.
- Rubin, R. B. (1976). Inference and missing data. Biometrika, 63(3):581–592.
- Saini, M. and Kumar, A. (2018). Ratio estimators using stratified random sampling and stratified ranked set sampling. Life Cycle Reliability and Safety Engineering, 84(5):931–945.
- Samawi, H. M. (1996). Stratified ranked set sampling. Pakistan Journal of Statistics, 12(1):9–16.
- Samawi, H. M. and Siam, M. I. (2003). Ratio estimation using stratified ranked set sampling. Metron – International Journal of Statistics, LXI(1):75–90.
- Singh, S. and Deo, B. (2003). Imputation by power transformation. Statistical Papers, 44:555–579.
- Singh, S. (2009). A new method of imputation in survey sampling. Statistics: A Journal of Theoretical and Applied Statistics, 43(5):499–511.
- Singh, S. and Horn, S. (1998). An alternative survey in multi-character survey. Metrika, 48:99–107.
- Singh, S. and Horn, S. (2000). Compromised imputation in survey sampling. Metrika, 51:267–276.
- Singh, S. and Valdes, S. R. (2009). Optimal method of imputation in survey sampling. Applied Mathematical Sciences, 3(35):1727–1737.
- Sohail, M. U., Shabbir, J., and Ahmed, S. (2018). A class of ratio type estimators for imputing the missing values under rank set sampling. *Journal of Statistical Theory and Practice*, 1–31.
- Takahasi, K. and Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering. Annals of the Institute of Statistical Mathematics, 20:1–31.