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1. INTRODUCTION

The dilemma of missing value is very usual in a sample survey and its
presence can spoil the traditional results. Therefore, it becomes essential to re-
solve the problem of missing values in a data set. The well-known imputation
technique is used to replace the missing values. Three basic concepts on missing
values were suggested by Rubin ([23]), such as missing at random (MAR), ob-
served at random (OAR), and parameter distribution (PD). Several renowned
authors like Lee et al. ([17]), Singh and Horn ([30]), Singh and Deo ([27]), Singh
([28]), and Singh and Valdes ([31]) introduced various imputation methods in the
presence of missing values. Heitzan and Basu ([14]) exhibited a difference be-
tween missing at random and missing completely at random (MCAR) approach.
Thereafter, Ahmed et al. ([1]), Kadilar and Cingi ([15]), Diana and Perri ([13])
and Bhushan and Pandey ([4, 5]), Mohamed et al. ([21]), Prasad ([22]), Bouza
et al. ([9]), Bouza-Herrera and Viada ([10]), and Bhushan et al. ([6, 7]) utilized
MCAR strategy in their study for the imputation of missing values.
In real life, situations may emerge where it is either difficult to measure the study
variable or indeed expensive but can be ranked either visually or by any cost free
method. In such circumstances, McIntyre ([20]) proposed the idea of ranked
set sampling (RSS), which is superior to simple random sampling but did not
furnish any mathematical support. Takahasi and Wakimoto ([33]) extended the
idea of McIntyre ([20]) and provided the obligatory mathematical foundation to
the theory of RSS. Samawi ([25]) envisaged the idea of SRSS superior to StRS.
Samawi and Siam ([26]) introduced combined and separate ratio estimators under
SRSS. Mandowara and Mehta ([19]) considered modified ratio estimators under
SRSS. Linder et al. ([18]) investigated the regression estimator under SRSS.
Khan and Shabbir ([16]) suggested Hartley-Ross type unbiased estimators under
RSS and SRSS. Recently, Saini and Kumar ([24]) suggested the ratio estimator
using quartile as an auxiliary information under SRSS.
In sample surveys, when each group contains very small observations, then each
observation becomes essential to draw conclusions. Further use of such kind of
data set consisting of missing values may vitiate the final conclusion and decrease
the efficiency of the estimator as well. In order to tackle with such kind of prob-
lems, Bouza and Al-Omari ([8]) suggested mean imputation and ratio methods
for the median estimator under RSS. Al-Omari and Bouza ([2]) introduced ratio
estimators of the population mean with missing values under RSS. Sohail et al.
([32]) suggested ratio type imputation methods under RSS.
In this paper, we suggest some imputation methods in the presence of missing
data under SRSS. The rest paper is arranged in subsequent sections. In the
next section, we discuss the sampling methodology along with the notations used
throughout the manuscript. In Section 3, the combined and separate imputation
methods are reviewed. In Section 4, we have suggested combined and separate
classes of imputation methods. The theoretical comparisons of combined and
separate imputation methods are given in Section 5, whereas Section 6 deals
with the simulation study conducted in favour of theoretical findings. Lastly, the
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conclusion is given in Section 7.

2. Methodology and notations

The procedure of ranked set sampling consists of drawing m simple random
samples of size m from the population. These m units are now ranked within
each set with respect to the variable of interest, say x. The first smallest unit is
quantified from the first set for the measurement of the auxiliary variable along
with the associated study variables. The unit with the second smallest rank is
quantified from the second ranked set for the measurement of the auxiliary vari-
ables along with the associated study variable and the process is carried on as
far as the mth smallest unit is quantified from the last set. The above process is
known as a cycle. The repetition of this whole procedure up to k times furnishes
n = mk ranked set samples.
The stratified ranked set sampling is a sampling procedure analogous to strati-
fied random sampling, which is based on splitting a population into L mutually
exclusive and exhaustive strata and a ranked set sample of nh = mhk units are
measured within each stratum such that h = 1, 2, ..., L. The sampling is accom-
plished independently across the strata. Thus, SRSS scheme can be supposed
to a collection of L separate ranked set samples.
Consider a finite population U comprised of N measurable units with values yi,
i ∈ U . Let a stratified ranked set sample of size n = mhk be chosen from U to
estimate the population mean of the study variable y. Let r be the number of
responding elements out of n sampled elements. Let P be the probability that ith

respondent associated with a responding class A and (1− P ) be the probability
that ith respondent associated with the non-responding class Ā. Moreover, note
that s = A∪ Ā and let the values yi, i ∈ A be observable for each characteristic,
but for the characteristic i ∈ Ā the values are missing and require imputation
in order to establish the complete frame of data to draw a reasonable inference.
The auxiliary variable x will be used to execute the imputation of missing values
and let the ranking be performed over the auxiliary variables as well.
The succeeding notations would be used from the beginning to end in the case of
combined estimators.
Let ȳr,srss = Ȳ (1 + ε0), x̄r,srss = X̄(1 + ε1), x̄n,srss = X̄(1 + ε2) such that
E(ε0) = E(ε1) = E(ε2) = 0 and

E(ε20) =

L∑
h=1

W 2
h

(
C2
yh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
yh

Ȳ 2

)
=

L∑
h=1

W 2
h

(
γ∗C2

yh
−D2∗

yh

)
= I∗0

E(ε21) =
L∑
h=1

W 2
h

(
C2
xh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γ∗C2

xh
−D2∗

xh

)
= I∗1
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E(ε22) =

L∑
h=1

W 2
h

(
C2
xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γC2

xh
−D2

xh

)
= I1

E(ε0, ε1) =
L∑
h=1

W 2
h

(
ρxhyhCxhCyh

mhkP
− 1

m2
hkP

mh∑
i=1

τxhyh
X̄Ȳ

)

=

L∑
h=1

W 2
h

(
γ∗ρxhyhCxhCyh −D

∗
xhyh

)
= I∗01

E(ε0, ε2) =
L∑
h=1

W 2
h

(
ρxhyhCxhCyh

mhk
− 1

m2
hk

mh∑
i=1

τxhyh
X̄Ȳ

)

=

L∑
h=1

W 2
h (γρxhyhCxhCyh −Dxhyh) = I01

E(ε1, ε2) =
L∑
h=1

W 2
h

(
C2
xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2

)
=

L∑
h=1

W 2
h

(
γC2

xh
−D2

xh

)
= I1

where γ∗ = 1/mhkP , γ = 1/mhk, τyh = (µyh − Ȳh), τxh = (µxh − X̄h) and
τxhyh = (µxh − X̄h)(µyh − Ȳh). Also, Cxh = Sxh/X̄ and Cyh = Syh/Ȳ are the
coefficients of variation of auxiliary variable x and study variable y, respectively.
In the case of separate estimators, the following notations will be used throughout
the paper.
Let ȳr,h[rss] = Ȳh(1 + e0h), x̄r,h(rss) = X̄h(1 + e1h), x̄n,h(rss) = X̄h(1 + e2h) such
that E(e0h) = E(e1h) = E(e2h) = 0 and

E(e2
0h

) =

(
C2
yh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
yh

Ȳ 2
h

)
=
(
γ∗C2

yh
−M2∗

yh

)
= J∗

0

E(e2
1h

) =

(
C2
xh

mhkP
− 1

m2
hkP

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γ∗C2

xh
−M2∗

xh

)
= J∗

1

E(e2
2h

) =

(
C2
xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γC2

xh
−M2

xh

)
= J1

E(e0h , e1h) =

(
ρxhyhCxhCyh

mhkP
− 1

m2
hkP

mh∑
i=1

τxhyh
X̄hȲh

)
=
(
γ∗ρxhyhCxhCyh −M

∗
xhyh

)
= J∗

01

E(e0h , e2h) =

(
ρxhyhCxhCyh

mhk
− 1

m2
hk

mh∑
i=1

τxhyh
X̄hȲh

)
= (γρxhyhCxhCyh −Mxhyh) = J01

E(ε1h , ε2h) =

(
C2
xh

mhk
− 1

m2
hk

mh∑
i=1

τ2
xh

X̄2
h

)
=
(
γC2

xh
−M2

xh

)
= J1

where τyh = (µyh − Ȳh), τxh = (µxh − X̄h) and τxhyh = (µxh − X̄h)(µyh − Ȳh),
Cxh = Sxh/X̄h and Cyh = Syh/Ȳh.



Optimal Imputation Methods under SRSS 5

3. Recap of imputation methods

In this section, we consider a concise recap of existing prominent combined
and separate imputation methods under SRSS.

3.1. Combined imputation methods

The mean method of imputation under SRSS is given by

yc.im =

{
yi for i ∈ A
ȳr,srss for i ∈ Ā

The sequent estimator is given by

T cm = ȳr,srss

where ȳr,srss =
L∑
h=1

Whȳh[rss] is the stratified ranked set sample mean of study

variable y. Also, Wh = Nh/N is the weight of stratum h and Nh and N are the
size of stratum h and total population size, respectively.
The imputation methods are categorized into three situations under the avail-
ability of auxiliary informations.
Situation I: When X̄ is known and x̄n,srss is utilized.
Situation II: When X̄ is known and x̄r,srss is utilized.
Situation III: When X̄ is unknown and x̄n,srss, x̄r,srss are utilized.
The classical combined ratio type imputation methods are defined under SRSS
as
Situation I

yc.iR1
=

{
yi for i ∈ A

1
n−r

[
nȳr,rss

(
X̄

x̄n,srss

)
− rȳr,srss

]
for i ∈ Ā

Situation II

yc.iR2
=

{
yi for i ∈ A

1
n−r

[
nȳr,rss

(
X̄

x̄r,srss

)
− rȳr,srss

]
for i ∈ Ā

Situation III

yc.iR3
=

{
yi for i ∈ A

1
n−r

[
nȳr,rss

(
x̄n,srss

x̄r,srss

)
− rȳr,srss

]
for i ∈ Ā
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The sequent estimators are

T cR1
= ȳr,srss

(
X̄

x̄n,srss

)
T cR2

= ȳr,srss

(
X̄

x̄r,srss

)
T cR3

= ȳr,srss

(
x̄n,srss
x̄r,srss

)
where x̄n,srss =

L∑
h=1

Whx̄h(rss) is the stratified ranked set sample mean of auxiliary

variable x.
Following Diana and Perri ([13]), we define the regression imputation methods
to impute the missing value under SRSS as
Situation I

yc.iDP1
=

{
yi for i ∈ A
ȳr+

n
n−r b1(X̄ − x̄n,srss)yr,srss for i ∈ Ā

Situation II

yc.iDP2
=

{
yi for i ∈ A
ȳr+

n
n−r b2(X̄ − x̄r,srss)yr,srss for i ∈ Ā

Situation III

yc.iDP3
=

{
yi for i ∈ A
ȳr + n

n−r b3(x̄n,srss − x̄r,srss)yr,srss for i ∈ Ā

The sequent combined estimators under the above situations are given by

T cDP1
= ȳr,srss + b1(X̄ − x̄n,srss)

T cDP2
= ȳr,srss + b2(X̄ − x̄r,srss)

T cDP3
= ȳr,srss + b3(x̄n,srss − x̄r,srss)

Following Sohail et al. ([32]), one may envisage a combined class of ratio type
imputation methods under SRSS for the imputation of missing values as
Situation I

yc.iS1
=

yi for i ∈ A
n
n−r

[
ȳr,srss

(
X̄

x̄n,srss

)β1
− ȳr,srss

]
for i ∈ Ā

yc.iS4
=

{
yi for i ∈ A
n
n−r

[
ȳr,srss

(
X̄

β4x̄n,srss+(1−β4)X̄

)
− ȳr,srss

]
for i ∈ Ā

Situation II

yc.iS2
=

yi for i ∈ A
n
n−r

[
ȳr,srss

(
X̄

x̄r,srss

)β2
− ȳr,srss

]
for i ∈ Ā

yc.iS5
=

{
yi for i ∈ A
n
n−r

[
ȳr,srss

(
X̄

β5x̄r,srss+(1−β5)X̄

)
− ȳr,srss

]
for i ∈ Ā
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Situation III

yc.iS3
=

yi for i ∈ A
n
n−r

[
ȳr,srss

(
x̄n,srss

x̄r,srss

)β3
− ȳr,srss

]
for i ∈ Ā

yc.iS6
=

{
yi for i ∈ A
n
n−r

[
ȳr,srss

(
X̄

β6x̄r,srss+(1−β6)x̄n,srss

)
− ȳr,srss

]
for i ∈ Ā

The sequent estimators are given by

T cS1
= ȳr,srss

(
X̄

x̄n,srss

)β1
T cS2

= ȳr,srss

(
X̄

x̄r,srss

)β2
T cS3

= ȳr,srss

(
x̄n,srss
x̄r,srss

)β3
T cS4

= ȳr,srss

(
X̄

β4x̄n,srss + (1− β4)X̄

)
T cS5

= ȳr,srss

(
X̄

β5x̄r,srss + (1− β5)X̄

)
T cS6

= ȳr,srss

(
X̄

β6x̄r,srss + (1− β6)x̄n,srss

)
where βi; i = 1, 2, ..., 6 are suitably chosen optimizing scalars.
Appendix A of supplementary file contains the minimum mean square error
(MSE) of the sequent estimators consisting of different imputation methods.

3.2. Separate imputation methods

The separate mean method of imputation under SRSS is given by

ys.im =

{
yi for i ∈ Ah
ȳr,h[rss] for i ∈ Āh

The sequent estimator is given by

T sm =
L∑
h=1

Whȳr,h[rss]

where ȳr,h[rss] = 1
mhk

mh∑
i=1

k∑
j=1

yh[i]j is the ranked set sample mean of study variable

in stratum h.
The separate imputation methods are categorized into three situations under the
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availability of auxiliary informations.
Situation I: When X̄ is known and x̄n,h(rss) is utilized.
Situation II: When X̄ is known and x̄r,h(rss) is utilized.
Situation III: When X̄ is unknown and x̄n,h(rss), x̄r,h(rss) are utilized.
The classical separate ratio type imputation method is described under SRSS as
Situation I

ys.iR1
=

{
yi for i ∈ Ah

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄n,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh

Situation II

ys.iR2
=

{
yi for i ∈ Ah

1
n−r

[
nȳr,h[rss]

(
X̄h

x̄r,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh

Situation III

ys.iR3
=

{
yi for i ∈ Ah

1
n−r

[
nȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh

The sequent estimators are given by

T sR1
=

L∑
h=1

Wh

[
ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)]

T sR2
=

L∑
h=1

Wh

[
ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)]

T sR3
=

L∑
h=1

Wh

[
ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)]
On the lines of Diana and Perri ([13]), we define a separate regression imputation
method under SRSS as
Situation I

ys.iDP1
=

{
yi for i ∈ Ah
yr,h[rss] + n

n−r b1(X̄ − x̄n,h(rss)) for i ∈ Āh

Situation II

ys.iDP2
=

{
yi for i ∈ Ah
yr,h[rss] + n

n−r b2(X̄ − x̄r,h(rss)) for i ∈ Āh

Situation III

ys.iDP3
=

{
yi for i ∈ Ah
yr,h[rss] + n

n−r b3(x̄n,h(rss) − x̄r,h(rss)) for i ∈ Āh
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The sequent separate estimators under the above situations are given by

T sDP1
=

L∑
h=1

Wh[ȳr,h[rss] + b1h(X̄h − x̄n,h(rss))]

T sDP2
=

L∑
h=1

Wh[ȳr,h[rss] + b2h(X̄h − x̄r,h(rss))]

T sDP3
=

L∑
h=1

Wh[ȳr,h[rss] + b3h(x̄n,h(rss) − x̄r,h(rss))]

Motivated by Sohail et al. ([32]), we define a separate class of ratio type impu-
tation methods under SRSS as
Situation I

ys.is1 =

yi for i ∈ Ah
1

n−r

[
nȳr,h[rss]

(
X̄h

x̄n,h(rss)

)β1h − rȳr,h[rss]

]
for i ∈ Āh

ys.is4 =

yi for i ∈ Ah
1

n−r

[
nȳr,h[rss]

(
X̄h

β4h x̄n,h(rss)+(1−β4h )X̄h

)
− rȳr,h[rss]

]
for i ∈ Āh

Situation II

ys.is2 =

yi for i ∈ Ah
1

n−r

[
nȳr,h[rss]

(
X̄h

x̄r,h(rss)

)β2h − rȳr,h[rss]

]
for i ∈ Āh

ys.is5 =

yi for i ∈ Ah
1

n−r

[
nȳr,h[rss]

(
X̄h

β5h x̄r,h(rss)+(1−β5h )X̄h

)
− rȳr,h[rss]

]
for i ∈ Āh

Situation III

ys.is3 =

yi for i ∈ Ah
1

n−r

[
nȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)β3h − rȳr,h[rss]

]
for i ∈ Āh

ys.is6 =

{
yi for i ∈ Ah

1
n−r

[
nȳr,h[rss]

(
X̄h

β6h x̄r,h(rss)+(1−β6h )x̄n,h(rss)

)
− rȳr,h[rss]

]
for i ∈ Āh

The sequent estimators are given by

T sS1
=

L∑
h=1

Whȳr,h[rss]

(
X̄h

x̄n,h(rss)

)β1h
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T sS2
=

L∑
h=1

Whȳr,h[rss]

(
X̄h

x̄r,h(rss)

)β2h
T sS3

=
L∑
h=1

Whȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)β3h
T sS4

=

L∑
h=1

Whȳr,h[rss]

(
X̄h

β4h x̄n,h(rss) + (1− β4h)X̄h

)

T sS5
=

L∑
h=1

Whȳr,h[rss]

(
X̄h

β5h x̄r,h(rss) + (1− β5h)X̄h

)

T sS6
=

L∑
h=1

Whȳr,h[rss]

(
X̄h

β6h x̄r,h(rss) + (1− β6h)x̄n,h(rss)

)
where βih ; i = 1, 2, ..., 6 are suitably opted scalars.
Appendix B of supplementary file contains the minimum mean square error
(MSE) of the sequent estimators consisting of different imputation methods.

4. Proposed imputation methods

The crux of this paper is binary:

1. To propose some efficient combined and separate imputation methods for
the estimation of population mean Ȳ .

2. To determine the effect of the correlation coefficient, coefficient of skewness,
and coefficient of kurtosis over the efficiency of the imputation procedures.

4.1. Combined imputation methods

Following Bhushan and Pandey ([4, 5]), we envisage nine new imputation
methods under the three situations specified in the former section as
Situation I

yc.iSA1
=

{
α1yi for i ∈ A
α1ȳr,srss + nθ1

n−r (x̄n,srss − X̄) for i ∈ Ā

yc.iSA4
=

yi for i ∈ A
1

n−r

[
nα4ȳr,srss

(
X̄

x̄n,srss

)θ4
− rȳr,srss

]
for i ∈ Ā

yc.iSA7
=

{
yi for i ∈ A

1
n−r

[
nα7ȳr,srss

(
X̄

X̄+θ7(x̄n,srss−X̄)

)
− rȳr,srss

]
for i ∈ Ā
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Situation II

yc.iSA2
=

{
α2yi for i ∈ A
α2ȳr,srss + nθ2

n−r (x̄r,srss − X̄) for i ∈ Ā

yc.iSA5
=

yi for i ∈ A
1

n−r

[
nα5ȳr,srss

(
X̄

x̄r,srss

)θ5
− rȳr,srss

]
for i ∈ Ā

yc.iSA8
=

{
yi for i ∈ A

1
n−r

[
nα8ȳr,srss

(
X̄

X̄+θ8(x̄r,srss−X̄)

)
− rȳr,srss

]
for i ∈ Ā

Situation III

yc.iSA3
=

{
α3yi for i ∈ A
α3ȳr,srss + nθ3

n−r (x̄r,srss − x̄n,srss) for i ∈ Ā

yc.iSA6
=

yi for i ∈ A
1

n−r

[
nα6ȳr,srss

(
x̄n,srss

x̄r,srss

)θ6
− rȳr,srss

]
for i ∈ Ā

yc.iSA9
=

{
yi for i ∈ A

1
n−r

[
nα9ȳr,srss

(
x̄n,srss

x̄n,srss+θ9(x̄n,srss−x̄r,srss)

)
− rȳr,srss

]
for i ∈ Ā

Under the above situations, the sequent estimators are given by

T cSA1
= α1ȳr,srss + θ1(x̄n,srss − X̄)

T cSA2
= α2ȳr,srss + θ2(x̄r,srss − X̄)

T cSA3
= α3ȳr,srss + θ3(x̄r,srss − x̄n,srss)

T cSA4
= α4ȳr,srss

(
X̄

x̄n,srss

)θ4
T cSA5

= α5ȳr,srss

(
X̄

x̄r,srss

)θ5
T cSA6

= α6ȳr,srss

(
x̄n,srss
x̄r,srss

)θ6
T cSA7

= α7ȳr,srss

[
X̄

X̄ + θ7(x̄n,srss − X̄)

]
T cSA8

= α8ȳr,srss

[
X̄

X̄ + θ8(x̄r,srss − X̄)

]
T cSA9

= α9ȳr,srss

[
x̄n,srss

x̄n,srss + θ9(x̄r,srss − x̄n,srss)

]
where α1, α2, ..., α9 and θ1, θ2, ..., θ9 are the suitably chosen scalars.

Theorem 4.1. The MSE of the sequent estimators consisting of the
proposed imputation methods is given by

MSE(T cSA1
) = (α1 − 1)2Ȳ 2 + α2

1Ȳ
2I∗0 + θ2

1X̄
2I1 + 2α1θ1X̄Ȳ I01
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MSE(T cSA2
) = (α2 − 1)2Ȳ 2 + α2

2Ȳ
2I∗0 + θ2

2X̄
2I∗1 + 2α2θ2X̄Ȳ I

∗
01

MSE(T cSA3
) =

[
(α3 − 1)2Ȳ 2 + α2

3Ȳ
2I∗0 + θ2

3X̄
2 {I∗1 − I1}

+2α3θ3X̄Ȳ {I∗01 − I01}

]
MSE(T cSA4

) = Ȳ 2

[
1 + α2

4

{
1 + I∗0 + θ4(2θ4 + 1)I1 − 4θ4I01

}
−2α4

{
1− θ4I01 + θ4(θ4+1)

2 I1

} ]

MSE(T cSA5
) = Ȳ 2

[
1 + α2

5

{
1 + I∗0 + θ5(2θ5 + 1)I∗1 − 4θ5I

∗
01

}
−2α5

{
1− θ5I

∗
01 + θ5(θ5+1)

2 I∗1

} ]

MSE(T cSA6
) = Ȳ 2

[
1 + α2

6

{
1 + I∗0 + θ6(2θ6 + 1)(I∗1 − I1)− 4θ6(I∗01 − I01)

}
−2α6

{
1− θ6(I∗01 − I01) + θ6(θ6+1)

2 (I∗1 − I1)
} ]

MSE(T cSA7
) = Ȳ 2

[
1 + α2

7

{
1 + I∗0 + 3θ2

7I1 − 4θ7I01

}
−2α7

{
1 + θ2

7I1 − θ7I01

} ]
MSE(T cSA8

) = Ȳ 2

[
1 + α2

8

{
1 + I∗0 + 3θ2

8I
∗
1 − 4θ8I

∗
01

}
−2α8

{
1 + θ2

8I
∗
1 − θ8I

∗
01

} ]
MSE(T cSA9

) = Ȳ 2

[
1 + α2

9

{
1 + I∗0 + 3θ2

9( I∗1 − I1 )− 4θ9(I∗01 − I01)
}

−2α9

{
1 + θ2

9(I∗1 − I1)− θ9(I∗01 − I01)
} ]

Proof: Appendix C of supplementary file contains a summary of the
derivations. The derivations can easily be done using Taylor series expansion.

Theorem 4.2. The minimumMSE of the sequent estimators consisting
of the proposed imputation methods are

minMSE(T cSAi
) = Ȳ 2(1− αi(opt)) = Ȳ 2

(
1− A2

i

Bi

)
; i = 1, 2, 3(4.1)

minMSE(T cSAj
) = Ȳ 2

(
1−

A2
j

Bj

)
; j = 4, 5, 6(4.2)

minMSE(T cSAk
) = Ȳ 2

(
1−

A2
k

Bk

)
; k = 7, 8, 9(4.3)

Proof: Appendix C of supplementary file contains a summary of the
derivations.

Corollary 4.1. The proposed sequent estimators T cSAi
, i = 1, 2, 3 dom-

inate the proposed sequent estimators T cSAj
, j = 4, 5, 6, iff

αi(opt) >
A2
j

Bj
(4.4)

and contrariwise. Otherwise, both are equally efficient when the equality holds
in (4.4).
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Proof: By comparing the minimum MSEs of the proposed estimators
from (4.1) and (4.2), we get (4.4).

Corollary 4.2. The proposed sequent estimators T cSAi
, i = 1, 2, 3 dom-

inate the proposed sequent estimators T cSAk
, k = 7, 8, 9, iff

αi(opt) >
A2
k

Bk
(4.5)

and contrariwise. Otherwise, both are equally efficient when the equality holds
in (4.5).

Proof: On comparing the minimum MSEs of the proposed estimators
from (4.1) and (4.3), we get (4.5).

Corollary 4.3. The proposed sequent estimators T cSAj
, i = 4, 5, 6 dom-

inate the proposed sequent estimators T cSAk
, k = 7, 8, 9, iff

A2
j

Bj
>
A2
k

Bk
(4.6)

and contrariwise. Otherwise, both are equally efficient when the equality holds
in (4.6).

Proof: On comparing the minimum MSEs of the proposed estimators
from (4.2) and (4.3), we get (4.6).

The only way to determine if (4.4), (4.5), and (4.6) are true in practise is through
the computational analysis done in Section 6.

4.2. Separate imputation methods

On the lines of Bhushan and Pandey ([4, 5]), we suggest nine new separate
imputation methods under the three situations discussed in the earlier section as
Situation I

ys.iSA1
=

{
α1hyi for i ∈ Ah
α1h ȳr,h[rss] +

nθ1h
n−r (x̄n,h(rss) − X̄h) for i ∈ Āh

ys.iSA4
=

yi for i ∈ Ah
1

n−r

[
nα4h ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)θ4h − rȳr,h[rss]

]
for i ∈ Āh

ys.iSA7
=

yi for i ∈ Ah
1

n−r

[
nα7h ȳr,h[rss]

(
X̄h

X̄h+θ7h (x̄n,h(rss)−X̄h)

)
− rȳr,h[rss]

]
for i ∈ Āh
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Situation II

ys.iSA2
=

{
α2hyi for i ∈ Ah
α2h ȳr,h[rss] +

nθ2h
n−r (x̄r,h(rss) − X̄h) for i ∈ Āh

ys.iSA5
=

yi for i ∈ Ah
1

n−r

[
nα5h ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)θ5h − rȳr,h[rss]

]
for i ∈ Āh

ys.iSA8
=

yi for i ∈ Ah
1

n−r

[
nα8h ȳr,h[rss]

(
X̄h

X̄+θ8h (x̄r,h(rss)−X̄h)

)
− rȳr,h[rss]

]
for i ∈ Āh

Situation III

ys.iSA3
=

{
α3hyi for i ∈ Ah
α3h ȳr,h[rss] +

nθ3h
n−r (x̄r,h(rss) − x̄n,h(rss)) for i ∈ Āh

ys.iSA6
=

yi for i ∈ Ah
1

n−r

[
nα6h ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)θ6h − rȳr,h[rss]

]
for i ∈ Āh

ys.iSA9
=

{
yi for i ∈ Ah

1
n−r

[
nα9h ȳr,h[rss]

(
x̄n,h(rss)

x̄n,h(rss)+θ9h (x̄n,h(rss)−x̄r,h(rss))

)
− rȳr,h[rss]

]
for i ∈ Āh

The sequent estimators consisting of the above imputation methods are

T sSA1
=

L∑
h=1

Wh[α1h ȳr,h[rss] + θ1h(x̄n,h(rss) − X̄h)]

T sSA2
=

L∑
h=1

Wh[α2h ȳr,h[rss] + θ2h(x̄r,h(rss) − X̄h)]

T sSA3
=

L∑
h=1

Wh[α3h ȳr,h[rss] + θ3h(x̄r,h(rss) − x̄n,h(rss))]

T sSA4
=

L∑
h=1

Whα4h ȳr,h[rss]

(
X̄h

x̄n,h(rss)

)θ4h
T sSA5

=
L∑
h=1

Whα5h ȳr,h[rss]

(
X̄h

x̄r,h(rss)

)θ5h
T sSA6

=
L∑
h=1

Whα6h ȳr,h[rss]

(
x̄n,h(rss)

x̄r,h(rss)

)θ6h
T sSA7

=
L∑
h=1

Whα7h ȳr,h[rss]

[
X̄h

X̄h + θ7h(x̄n,h(rss) − X̄h)

]
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T sSA8
=

L∑
h=1

Whα8h ȳr,h[rss]

[
X̄h

X̄h + θ8h(x̄r,h(rss) − X̄h)

]

T sSA9
=

L∑
h=1

Whα9h ȳr,h[rss]

[
x̄n,h(rss)

x̄n,h(rss) + θ9h(x̄r,h(rss) − x̄n,h(rss))

]
where α1h , α2h , ..., α9h and θ1h , θ2h , ..., θ9h are suitably chosen scalars.

Theorem 4.3. The MSE of the sequent estimators consisting of the
proposed imputation methods is given by

MSE(T sSA1
) =

L∑
h=1

W 2
h

[
(α1h − 1)2Ȳ 2

h + α2
1h
Ȳ 2
h J

∗
0 + θ2

1h
X̄2
hJ1 + 2α1hθ1hX̄hȲhJ01

]
MSE(T sSA2

) =
L∑
h=1

W 2
h

[
(α2h − 1)2Ȳ 2

h + α2
2h
Ȳ 2
h J

∗
0 + θ2

2h
X̄2
hJ

∗
1 + 2α2hθ2hX̄hȲhJ

∗
01

]
MSE(T sSA3

) =

L∑
h=1

W 2
h

[
(α3h − 1)2Ȳ 2

h + α2
3h
Ȳ 2
h J

∗
0 + θ2

3h
X̄2
h {J∗

1 − J1}
+2α3hθ3hX̄hȲh {J∗

01 − J01}

]

MSE(T sSA4
) =

L∑
h=1

W 2
h Ȳ

2
h

[
1 + α2

4h

{
1 + J∗

0 + θ4h(2θ4h + 1)J1 − 4θ4hJ01

}
−2α4h

{
1− θ4hJ01 +

θ4h (θ4h+1)

2 J1

} ]

MSE(T sSA5
) =

L∑
h=1

W 2
h Ȳ

2
h

[
1 + α2

5h

{
1 + J∗

0 + θ5h(2θ5h + 1)J∗
1 − 4θ5hJ

∗
01

}
−2α5h

{
1− θ5hJ

∗
01 +

θ5h (θ5h+1)

2 J∗
1

} ]

MSE(T sSA6
) =

L∑
h=1

W 2
h Ȳ

2
h

[
1 + α2

6h

{
1 + J∗

0 + θ6h(2θ6h + 1)(J∗
1 − J1)− 4θ6h(J∗

01 − J01)
}

−2α6h

{
1− θ6h(J∗

01 − J01) +
θ6h (θ6h+1)

2 (J∗
1 − J1)

} ]

MSE(T sSA7
) =

L∑
h=1

W 2
h Ȳ

2
h

[
1 + α2

7h

{
1 + J∗

0 + 3θ2
7h
J1 − 4θ7hJ01

}
−2α7h

{
1 + θ2

7h
J1 − θ7hJ01

} ]

MSE(T sSA8
) =

L∑
h=1

W 2
h Ȳ

2
h

[
1 + α2

8h

{
1 + J∗

0 + 3θ2
8h
J∗

1 − 4θ8hJ
∗
01

}
−2α8h

{
1 + θ2

8h
J∗

1 − θ8hJ
∗
01

} ]

MSE(T sSA9
) =

L∑
h=1

W 2
h Ȳ

2
h

[
1 + α2

9h

{
1 + J∗

0 + 3θ2
9h

( J∗
1 − J1 )− 4θ9h(J∗

01 − J01)
}

−2α9h

{
1 + θ2

9h
(J∗

1 − J1)− θ9h(J∗
01 − J01)

} ]

Proof: Appendix C of supplementary file contains a summary of the
derivations. The derivations can easily be done using Taylor series expansion.

Theorem 4.4. The minimumMSE of the sequent estimators consisting
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of the proposed imputation methods is given by

minMSE(T sSAi
) =

L∑
h=1

W 2
h Ȳ

2
h (1− αih(opt)) =

L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
; i = 1, 2, 3

(4.7)

minMSE(T sSAj
) =

L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
jh

Bjh

)
; j = 4, 5, 6

(4.8)

minMSE(T sSAk
) =

L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
kh

Bkh

)
; k = 7, 8, 9

(4.9)

Proof: Appendix C of supplementary file contains a summary of the
derivations.

Corollary 4.4. The proposed sequent estimators T sSAi
, i = 1, 2, 3 dom-

inate the proposed sequent estimators T sSAj
, j = 4, 5, 6, iff

L∑
h=1

W 2
h Ȳ

2
h αih(opt) >

L∑
h=1

W 2
h Ȳ

2
h

(
A2
ih

Bih

)
(4.10)

and contrariwise. Otherwise, both are equally efficient when the equality holds
in (4.10).

Proof: On comparing the minimum MSEs of the proposed estimators
from (4.7) and (4.8), we get (4.10).

Corollary 4.5. The proposed sequent estimators T sSAi
, i = 1, 2, 3 dom-

inate the proposed sequent estimators T sSAk
, k = 4, 5, 6, iff

L∑
h=1

W 2
h Ȳ

2
h αih(opt) >

L∑
h=1

W 2
h Ȳ

2
h

(
A2
kh

Bkh

)
(4.11)

and contrariwise. Otherwise, both are equally efficient when the equality holds
in (4.11).

Proof: By comparing the minimum MSEs of the proposed estimators
from (4.7) and (4.9), we get (4.11).
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Corollary 4.6. The proposed sequent estimators T sSAj
, j = 4, 5, 6 dom-

inate the proposed sequent estimators T sSAk
, k = 7, 8, 9, iff

L∑
h=1

W 2
h Ȳ

2
h

(
A2
jh

Bjh

)
>

L∑
h=1

W 2
h Ȳ

2
h

(
A2
kh

Bkh

)
(4.12)

and contrariwise. Otherwise, both are equally efficient when the equality holds
in (4.12).

Proof: By comparing the minimum MSEs of the proposed estimators
from (4.8) and (4.9), we get (4.12).

The only way to determine if (4.10), (4.11), and (4.12) are true in practise is
through the computational analysis done in Section 6.

5. Optimality conditions

In this section, we obtain the optimality conditions under two heads, namely,
optimality conditions for combined imputation methods and the optimality con-
ditions for separate imputation methods.

5.1. Optimality conditions for the combined imputation methods

By comparing the minimum MSE of the suggested combined imputation
methods yc.iSAi

, i = 1, 2, ..., 9 from (4.1) and (4.2) with the minimum MSE of

the other existing combined imputation methods from (A.1), (A.2), (A.3), (A.4),
(A.8), (A.9), (A.10), (A.14), (A.15), and (A.16), respectively, given in Appendix
A of supplementary file, we get the following optimality conditions.

MSE(T cm) > MSE(T cSAi
) =⇒ A2

i

Bi
> 1− I∗0

MSE(T cR1
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 − I1 + 2I01

MSE(T cR2
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 − I∗1 + 2I∗01

MSE(T cR3
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 − I1 − I∗1 + 2I∗01

MSE(T cDP1
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I2
01

I1



18 Shashi Bhushan and Anoop Kumar

MSE(T cDP2
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I∗
2

01

I∗1

MSE(T cDP3
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 +

(I∗01 − I01)2

(I∗1 − I1)

MSE(T cS1
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I2
01

I1

MSE(T cS2
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 +

I∗
2

01

I∗1

MSE(T cS3
) > MSE(T cSAi

) =⇒ A2
i

Bi
> 1− I∗0 +

(I∗01 − I01)2

(I∗1 − I1)

The optimality of the suggested combined imputation methods can be justified
under the above conditions.

5.2. Optimality conditions for the separate imputation methods

By comparing the minimum MSE of the proposed imputation methods
ys.iSAi

, i = 1, 2, ..., 9 given in (4.7) and (4.8) with the minimum MSE of the other

existing imputation methods given in (B.17), (B.18), (B.19), (B.20), (B.24),
(B.25), (B.26), (B.30), (B.31), and (B.32), respectively, given in Appendix B of
supplementary file, we get the following optimality conditions.

MSE(T sm) > MSE(T sSAi
) =⇒

L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h J

∗
1

MSE(T sR1
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h [J∗

0 + J1 − 2J01]

MSE(T sR2
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h [J∗

0 + J∗
1 − 2J∗

01]

MSE(T sR3
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h [J∗

0 + J∗
1 + J1 − 2J∗

01]

MSE(T sDP1
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h

[
J∗

0 −
J2

01

J1

]

MSE(T sDP2
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h

[
J∗

0 −
J∗2

01

J∗
1

]

MSE(T sDP3
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h

[
J∗

0 −
(J∗

01−J01)
2(

J∗
1 − J1

) ]
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MSE(T sS1
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h

[
J∗

0 −
J2

01

J1

]

MSE(T sS2
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h

[
J∗

0 −
J∗2

01

J∗
1

]

MSE(T sS3
) > MSE(T sSAi

) =⇒
L∑
h=1

W 2
h Ȳ

2
h

(
1−

A2
ih

Bih

)
<

L∑
h=1

W 2
h Ȳ

2
h

[
J∗

0 −
(J∗

01−J01)
2(

J∗
1 − J1

) ]
Under the above conditions, the optimality of the proposed separate imputation
methods can be ascertained.

5.3. Comparison of proposed combined and separate imputation meth-
ods

By comparing the minimum MSE of the proposed combined and separate
classes of imputation methods from (4.1), (4.2) and (4.7), (4.8), we get

minMSE(T cSAi
)−minMSE(T sSAi

) =
L∑
h=1

[
(Ȳ 2 −W 2

h Ȳ
2
h )−

(
Ȳ 2A

2
i

Bi
−W 2

h Ȳ
2
h

A2
ih

Bih

)](5.1)

If the sequent estimators are conclusive and the relationship between auxiliary
and study variables within each stratum is a straight line passing through the
origine, then the last term of (5.1) is miniscule and it vanished.
In addition, except Rh becomes invariant from stratum to stratum, the separate
estimators perform better in each stratum provided the sample in each stratum
is to be sufficiently large so that the approximate formula for MSE(T sSAi

), i =
1, 2, ..., 9 is valid and the cumulative bias that can affect the proposed estimators is
negligible, whereas the proposed combined estimators are to be highly advocated
with only a small sample in each stratum (see, Cochran ([11])).

6. Simulation Study

To highlight the properties and to access the performance of the proposed
imputation methods, motivated by Singh and Horn ([29]), simulations were car-
ried out over two artificially generated asymmetric populations such as gamma
and exponential of size N = 2100 units each with variables X and Y whose values
are given by

yi = 8.2 +
√

(1− ρ2
xy) y

∗
i + ρxy

(
Sy
Sx

)
x∗i

xi = 4.2 + x∗i
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where x∗i and y∗i are independent variates of proportional distribution. Each
population is divided into three equal strata and a stratified ranked set sample
of size 9 with set size 3 and number of cycles 3 is drawn from each stratum with
the help of the methodology described in Section 2. With 10000 iterations, the
percent relative efficiency (PRE) of the sequent estimators with respect to the
conventional mean estimator was obtained as

PRE =
1

10000

∑10000
i=1 (Tm − Ȳ )2

1
10000

∑10000
i=1 (T ∗ − Ȳ )2

× 100

where T ∗ is the existing and proposed combined and separate class of estimators.
The findings of the simulation are disclosed from Table 1 to Table 4 through
PRE for reasonably chosen values of correlation coefficient ρxy = 0.6, 0.7, 0.8, 0.9
and fair choice of response probability P = 0.4, 0.6.
From Table 1 to Table 4, consisting of the simulation results of two asymmetric
populations, namely, gamma and exponential, we have seen that the proposed
combined and separate imputation methods yc.iSAj

and ys.iSAj
, j = 1, 2, ..., 9 dom-

inate the other existing imputation methods for reasonably chosen values of the
correlation coefficient. We have also seen that the proposed combined and sepa-
rate imputation methods yc.iSAj

and ys.iSAj
, j = 4, 5, 6 perform better among the

proposed class of imputation methods under situations I, II and III. Moreover, it
is also seen that the PRE of the proposed imputation methods under situations
I, II and III in both populations decreases with the increase in asymmetry.

7. Conclusion

This paper is the outset to suggest some combined and separate classes of
imputation methods along with their properties for the estimation of population
mean in the presence of missing data using SRSS. The theoretical conditions
are derived under which the proposed combined and separate classes of imputa-
tion methods are justified. In order to enhance the theoretical findings and to
determine the effect of skewness and kurtosis over PRE, a simulation study is
accomplished on two asymmetric populations viz. gamma and exponential with
reasonable choice of correlation coefficient ρxy and probability of non responding
units P . It is noticed from the perusal of theoretical and simulation results that:

1. The proposed combined and separate of imputation methods yc.iSAj
and

ys.iSAj
, j = 1, 2, ..., 9 always perform better than the combined and separate

mean imputation method yc.im and ys.im , ratio imputation methods yc.iRj

and ys.iRj
, j = 1, 2, 3 and their own conventional counterparts for different

values of correlation coefficient ρxy, coefficient of skewness β1 and coefficient
of kurtosis β2.

2. The proposed combined and separate imputation methods yc.iSAj
and ys.iSAj

,
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Table 1: PRE of proposed combined estimators at P=0.4

ρxy 0.6 0.7 0.8 0.9

T cm 100 100 100 100
x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693
Situation I
T cSAi

, i = 1, 7 106.0998 105.5777 105.4108 104.7131

Tc
SA4

106.1067 105.5846 105.4176 104.7198

T cR1
100.2267 99.3709 98.3220 95.5744

T cDP1
/T cSi

, i = 1, 4 105.983 105.46 105.3005 104.6141

Situation II
T cSAi

, i = 2, 8 115.0805 113.7576 113.4881 111.7679

Tc
SA5

115.1003 113.7771 113.5075 111.7865

T cR1
97.5580 95.7573 93.4999 87.5916

T cDP2
/T cSi

, i = 2, 5 114.9637 113.6399 113.3778 111.6689

Situation III
T cSAi

, i = 3, 9 108.1050 107.4685 107.3868 106.5397

Tc
SA6

108.1161 107.4795 107.3977 106.5502

T cR1
97.3431 96.3414 95.0160 91.2945

T cDP3
/T cSi

, i = 3, 6 107.9882 107.3508 107.2765 106.4406

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395
Situation I
T cSAi

, i = 1, 7 106.2035 106.5419 106.7350 105.8748

Tc
SA4

106.2096 106.5481 106.7411 105.8808

T cR1
99.7239 100.2227 100.2960 98.5947

T cDP1
/T cSi

, i = 1, 4 106.1075 106.4467 106.6419 105.7829

Situation II
T cSAi

, i = 2, 8 112.9619 112.5542 112.8376 111.6621

Tc
SA5

112.9805 112.5726 112.856 111.6799

T cR2
89.3047 88.4097 88.1260 85.9139

T cDP2
/T cSi

, i = 2, 5 112.8659 112.4590 112.7445 111.5702

Situation III
T cSAi

, i = 3, 9 105.3578 105.7988 105.8817 105.2694

Tc
SA6

105.3684 105.8092 105.8920 105.2796

T cR3
87.5260 88.2363 87.8974 86.9790

T cDP3
/T cSi

, i = 3, 6 105.2617 105.7036 105.7886 105.1775

j = 4, 5, 6 are best among the proposed classes of imputation methods under
situations I, II and III.
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Table 2: PRE of proposed combined estimators at P=0.6

ρxy 0.6 0.7 0.8 0.9

T cm 100 100 100 100
x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693
Situation I
T cSAi

, i = 1, 7 109.3365 108.5032 108.2434 107.1516

Tc
SA4

109.3437 108.5104 108.2505 107.1584

T cR1
100.3407 99.0588 97.5032 93.5045

T cDP1
/T cSi

, i = 1, 4 109.2587 108.4248 108.1698 107.0855

Situation II
T cSAi

, i = 2, 8 115.3909 114.0088 113.6905 111.9040

Tc
SA5

115.4041 114.0218 113.7034 111.9163

T cR2
98.2571 96.3813 94.0605 88.0659

T cDP2
/T cSi

, i = 2, 5 115.3131 113.9304 113.6170 111.8379

Situation III
T cSAi

, i = 3, 9 105.1641 104.7748 104.7360 104.2151

Tc
SA6

105.1690 104.7796 104.7407 104.2197

T cR3
97.9303 97.2720 96.3820 93.8046

T cDP3
/T cSi

, i = 3, 6 105.0863 104.6964 104.6625 104.1491

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395
Situation I
T cSAi

, i = 1, 7 109.5194 110.0755 110.3901 109.0041

Tc
SA4

109.5258 110.0819 110.3965 109.0104

T cR1
99.5862 100.3351 100.4455 97.9046

T cDP1
/T cSi

, i = 1, 4 109.4554 110.0121 110.3281 108.9429

Situation II
T cSAi

, i = 2, 8 113.7547 113.6404 113.9884 112.5204

Tc
SA5

113.7669 113.6525 114.0006 112.5322

T cR2
91.4958 91.0133 90.8178 88.2189

T cDP2
/T cSi

, i = 2, 5 113.6907 113.577 113.9264 112.4592

Situation III
T cSA3

103.4189 103.5222 103.5633 103.3902

Tc
SA6

103.4436 103.5267 103.5677 103.4246

T cR3
90.6449 90.7375 90.4534 89.9166

T cDP3
/T cSi

, i = 3, 6 103.3749 103.4588 103.5013 103.3590

3. The PRE of the proposed combined and separate classes of imputation
methods yc.iSAj

, ys.iSAj
, j = 1, 2, ..., 9 and their conventional counterparts

under situations I, II and III are contrary to the asymmetry which is similar
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Table 3: PRE of proposed separate estimators at P=0.4

ρxy 0.6 0.7 0.8 0.9

T sm 100 100 100 100
x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693
Situation I
T sSAi

, i = 1, 7 106.0962 105.5742 105.4076 104.7104

Ts
SA4

106.1027 105.5807 105.4141 104.7167

T sR1
100.6188 99.7795 98.7804 96.1227

T sDP1
/T sSi

, i = 1, 4 105.983 105.4600 105.3005 104.6141

Situation II
T sSAi

, i = 2, 8 115.0769 113.7541 113.4850 111.7652

Ts
SA5

115.0954 113.7724 113.5031 111.7826

T sR2
98.5741 96.7889 94.6180 88.8216

T sDP2
/T sSi

, i = 2, 5 114.9637 113.6399 113.3778 111.6689

Situation III
T sSAi

, i = 3, 9 108.1014 107.4650 107.3836 106.5370

Ts
SA6

108.1119 107.4753 107.3939 106.5469

T sR3
81.4466 80.3429 77.9883 72.6504

T sDP3
/T sSi

, i = 3, 6 107.9882 107.3508 107.2765 106.4406

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395
Situation I
T sSAi

, i = 1, 7 106.2010 106.5393 106.7324 105.8724

Ts
SA4

106.2067 106.5451 106.7382 105.8781

T sR1
100.0305 100.5150 100.5927 98.9217

T sDP1
/T sSi

, i = 1, 4 106.1075 106.4467 106.6419 105.7829

Situation II
T sSAi

, i = 2, 8 112.4594 112.5516 112.8350 111.6596

Ts
SA5

112.4770 112.5691 112.8525 111.6766

T sR2
90.1295 89.1992 88.9243 86.7481

T sDP2
/T sSi

, i = 2, 5 112.8659 112.4590 112.7445 111.5702

Situation III
T sSAi

, i = 3, 9 105.3552 105.7962 105.8791 105.2670

Ts
SA6

105.3654 105.8061 105.889 105.2767

T sR3
74.6746 73.9110 73.4349 71.8010

T sDP3
/T sSi

, i = 3, 6 105.2617 105.7036 105.7886 105.1775

to the results of McIntyre ([20]), Dell and Clutter ([12]) and Bhushan and
Kumar ([3]) where they chose a wide range of skewed distributions and
concluded that the asymmetry shows adverse effect over the efficiency of
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Table 4: PRE of proposed separate estimators at P=0.6

ρxy 0.6 0.7 0.8 0.9

T sm 100 100 100 100
x∗ ∼ Γ(0.5, 1.5)
y∗ ∼ Γ(1.5, 2)
Skewness of y 1.3292 1.4081 1.6083 1.9768
Kurtosis of y 5.4000 5.6181 6.5418 8.4693
Situation I
T sSAi

, i = 1, 7 109.3341 108.5009 108.2413 107.1498

Ts
SA4

109.3409 108.5076 108.2479 107.1562

T sR1
100.9318 99.6695 98.1811 94.2940

T sDP1
/T sSi

, i = 1, 4 109.2587 108.4248 108.1698 107.0855

Situation II
T sSAi

, i = 2, 8 115.3885 114.0065 113.6884 111.9022

Ts
SA5

115.4008 114.0187 113.7005 111.9138

T sR2
99.2688 97.4083 95.1744 89.2927

T sDP2
/T sSi

, i = 2, 5 115.3131 113.9304 113.6170 111.8379

Situation III
T sSAi

, i = 3, 9 105.1618 104.7725 104.7339 104.2133

Ts
SA6

105.1663 104.7770 104.7383 104.2176

T sR3
75.3238 74.4041 72.0020 66.8509

T sDP3
/T sSi

, i = 3, 6 105.0863 104.6964 104.6625 104.1491

x∗ ∼ Exp(3.0)
y∗ ∼ Exp(2.0)
Skewness of y 1.4612 1.3814 1.3734 1.4769
Kurtosis of y 5.9268 5.4885 5.4119 5.8395
Situation I
T sSAi

, i = 1, 7 109.5177 110.0737 110.3884 109.0025

Ts
SA4

109.5238 110.0798 110.3944 109.0084

T sR1
100.0457 100.7759 100.8935 98.3895

T sDP1
/T sSi

, i = 1, 4 109.4554 110.0121 110.3281 108.9429

Situation II
T sSAi

, i = 2, 8 113.7531 113.8386 113.9867 112.5188

Ts
SA5

113.7646 113.8502 113.9983 112.5300

T sR2
92.3101 91.7963 91.6107 89.0465

T sDP2
/T sSi

, i = 2, 5 113.6907 113.7770 113.9264 112.4592

Situation III
T sSAi

, i = 3, 9 103.4372 103.5205 103.5615 103.4185

Ts
SA6

103.4417 103.5247 103.5658 103.4228

T sR3
70.0312 69.5489 69.0562 67.4148

T sDP3
/T sSi

, i = 3, 6 103.3749 103.4588 103.5013 103.3590

the estimators.

4. The suggested combined classes of imputation methods yc.iSAj
, j = 1, 2, ..., 9
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are superior than the suggested separate classes of imputation methods
ys.iSAj

, j = 1, 2, ..., 9 in situations I, II and III.

Therefore, due to the dominance of the proposed imputation methods over the
existing imputation methods, we recommend them to survey persons for their
real life problems.
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