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1. INTRODUCTION

The Rice distribution [17] is generally observed when the global magnitude of a vector
is related to its direction components, such as when wind speed is analyzed in two directions,
i.e., a two-dimensional component vector. If the components are independent and normally
distributed with equal variances, the general wind speed has a Rice distribution. It is also used
to model dispersion (or variability) of line-of-sight transmission between two stations which
applies to FM radio waves, microwaves, magnetic resonance images in the presence of noise
and satellite transmissions. It is also employed to model Rician fading, which describes how
the cancellation of signals affects the propagation of radio waves. In recent years, it has been
utilized by various authors for different applications. For example, [8] introduced a generalized
Rice distribution based on the linearity characteristics of a system to model situations where
the maximum amplitude is close to the signal’s mean amplitude; [12] presented a Bayesian
approach to estimate its parameters, and [26] studied a new approach to analyze images
based on the maximum likelihood method that permits obtaining simultaneous estimates of
the image and signal noise.

The Rice distribution is relatively unknown in the area of applied statistics. One of the
objectives of this paper is to generalize the Rice distribution to be applied in different research
areas. We emphasize that the papers mentioned previously do not provide regressions which
have been widely employed in many fields. A fundamental conjecture that should be examined
with caution regarding a data set is that when the covariates express nonlinear effects on the
response variable and adopting a parametric regression may not be a suitable alternative.
To overcome this circumstance, generalized semiparametric models have been proposed. For
example, [7] and [9] introduced the generalized additive model (GAM) which aggregates
the properties of generalized linear models with additive models; and [18] demonstrated
that nonparametric regression can be considered an interesting extension of the parametric
regression, and the two can be combined to produce the semiparametric regression. Another
model widely applied in recent years is the generalized additive model for location, scale,
and shape (GAMLSS) [19]. Various authors have published papers involving partially linear
regressions. [22] introduced the symmetric generalized partial linear model; [24] presented an
extension of the log-normal distribution from two perspectives, one of which was the partially
linear regression; and [11] proposed a new strategy to select Bayesian models and an efficient
estimation method for partially linear model.

Based on these contexts, the objectives of this paper are described below. We define the
odd log-logistic Rice (OLLRc) distribution that can be applied to model bimodal, trimodal
and asymmetric data. Based on this distribution, we introduce a parametric regression with
two systematic components and illustrate its flexibility using volumetric shrinkage wood data,
see for example [23]. We propose a new partially linear regression and show its utility by
analyzing milk production in the Northeast of Brazil. We prove that the empirical distribution
of the quantile residuals (qrs) for both regressions has approximately the standard normal
distribution. We provide two applications to real data (shrinkage volume of three wood
species and milk production data) to illustrate the flexibility of the OLLRc partially linear
regression model.
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The remaining sections are as follows. Section 2 defines the OLLRc distribution, and
provides some mathematical properties. Section 3 introduces a parametric regression based on
the new distribution. Section 4 proposes the OLLRc partially linear regression and performs
some simulations for the distribution of the penalized maximum likelihood estimators. Simu-
lation results for the residuals are reported in Section 5. The usefulness of the new regressions
is proved by means of two real data sets in Section 6. Section 7 ends with some concluding
remarks.

2. THE ODD LOG-LOGISTIC RICE DISTRIBUTION

If G denotes a baseline distribution, the cumulative distribution function (cdf) of the
the odd log-logistic-G (OLL-G) (OLL-G) generator [5] is defined by

F (y) =
∫ G(y)

Ḡ(y)

0

ν uν−1

(1 + uν)2
du =

G(y)ν

G(y)ν + [1−G(y)]ν
, y > 0,(2.1)

where ν > 0 is the shape parameter

This class of generalized distributions has been deeply investigated in the last years;
see, for example, the references in [16] and [24]. The probability density function (pdf)
corresponding to (2.1) can be expressed as

f(y) =
ν g(y){G(y)[1−G(y)]}ν−1

{G(y)ν + [1−G(y)]ν}2 ,(2.2)

where g(y) = d G(y)/d y is the baseline density.

The Rice cdf with two parameters µ > 0 and σ > 0 is (for y > 0)

(2.3) Gµ,σ(y) = 1−Q1

(
σ

µ
,
y

µ

)
,

where Q1(a, b) is the Marcum Q-function, namely

QM (a, b) =
∫ ∞

b
x
(x

a

)M−1
exp
(
−x2 + a2

2

)
IM−1(ax)dx,

IM−1 is the modified Bessel function of the first kind of order M − 1 (for η ∈ R, η 6= 0),

Iη(z) =
∞∑

m=0

(−1)m

m! Γ(m + η + 1)

(
z

η

)2m+η

,

and Γ(·) is the gamma function. The Marcum Q-function is defined in the VGAM package of
R software. For more details, see [27].

The pdf corresponding to (2.3) has the form

(2.4) gµ,σ(y) =
y

µ2
exp
(
−y2 + σ2

2µ2

)
I0

(
σy

µ2

)
,

where I0(z) =
∑∞

m=0 z2m/[4m (m!)2].
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The Rice distribution can be obtained following a simple extension of the Rayleigh
distribution. Let X =

√
T 2

1 + T 2
2 , where T1 ∼N(δ1, µ

2) and T2 ∼N(δ2, µ
2) are independent

random variables. Then, X has the Rice density (2.4), where σ =
√

δ2
1 + δ2

2 . If σ = 0, then
(2.4) is just the Rayleigh density. So, the parameter µ in the Rice distribution is the stan-
dard deviation of two Gaussian contributions and σ represents a distance term. The Rice
distributions tends to the N(σ, µ2) distribution if σy/µ2 goes to ∞.

The OLLRc cdf (for y > 0) is defined by taking G(x) in (2.1) as the Rice cdf (2.3)

F (y) =

[
1−Q1

(
σ
µ , y

µ

)]ν[
1−Q1

(
σ
µ , y

µ

)]ν
+ Q1

(
σ
µ , y

µ

)ν(2.5)

The OLLRc density function follows by inserting (2.3) and (2.4) in Equation (2.2)

f(y) =
ν y

µ2
exp
{
−(y2 + σ2)

2µ2

}
I0

(
y σ

µ2

)
×
{[

1−Q1

(
σ

µ
,
y

µ

)]
Q1

(
σ

µ
,
y

µ

)}ν−1

×
{[

1−Q1

(
σ

µ
,
y

µ

)]ν

+ Q1

(
σ

µ
,
y

µ

)ν}−2

,(2.6)

where all parameters are positive. The OLLRc density function can be expressed as a com-
bination of exponentiated Rice densities (see Appendix A).

Henceforth, let Y ∼ OLLRc(µ, σ, ν) be a random variable with density (2.6). Some
shapes of (2.6) reported in Figure 1 reveal that the density of Y is very flexible for bimodal
and trimodal data.
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Figure 1: Plots of the OLLRc density. (a) For σ = 1 and ν = 0.18 varying µ.
(b) For µ = 0.16 and ν = 0.17 varying σ. (c) For µ = 0.25 and σ = 2
varying ν.

By inverting Equation (2.5), the quantile function (qf) of Y , say y = H(u) = F−1(u),
is

y = H(u) = HRice

{
u1/ν

u1/ν + (1− u)1/ν

}
, u ∈ (0, 1),(2.7)

where HRice(u) = G−1
µ,σ(u) is the Rice qf.
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Figure 2 displays plots of the density of Y and histograms from two simulated data
sets with 100, 000 replications. They show that the simulated values are consistent with the
OLLRc distribution, where we note trimodal and bimodal shapes.
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Figure 2: Histograms and plots of the OLLRc density.

The influence of the shape parameter ν on the skewness and kurtosis of Y can be easily
investigated based on quantile measures. Figure 3(a) displays the Bowley skewness

B =
H(3/4) + H(1/4)− 2 H(2/4)

H(3/4)−H(1/4)
,

whereas Figure 3(b) provides the Moors kurtosis

M =
H(3/8)−H(1/8) + H(7/8)−H(5/8)

H(6/8)−H(2/8)
.

(a) (b)

Figure 3: (a) Bowley’s skewness. (b) Moors kurtosis.

By varying ν ∈ [0.1, 1], Figure 3(a) displays the Bowley skewness of Y for µ = 0.1 and
σ ∈ [0.1, 1], whereas Figure 3(b) reports the Moors kurtosis of Y for µ = 0.1 and σ ∈ [0.1, 0.3].
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3. THE OLLRC REGRESSION

The OLLRc regression is defined by two systematic components considering that the
parameters µi and σi in the density (2.6) are given by (for i = 1, ..., n)

µi = exp(x>i β1) and σi = exp(x>i β2),(3.1)

where β1 = (β11, ···, β1p)> and β2 = (β21, ···, β2p)> are vectors of unknown coefficients and
x>i = (xi1, ···, xip) is a vector of covariates associated with the ith observation.

The OLLRc regression includes two special models: the Rice (for ν = 1) and Rayleigh
(for ν = 1 and σi = 0) regressions.

The log-likelihood function for the vector θ = (β>1 ,β>2 , ν)> from a random sample
(y1,x1), ···, (yn,xn) has the form

l(θ) = n log(ν) +
n∑

i=1

log
(

yi

µi

)
−

n∑
i=1

(
y2

i + σ2
i

2µ2
i

)
+

n∑
i=1

log
[
I0

(
yiσi

µi

)]
+

(ν − 1)
n∑

i=1

log
{[

1−Q1

(
σi

µi
,
yi

µi

)]
Q1

(
σi

µi
,
yi

µi

)}
−

2
n∑

i=1

log
{[

1−Q1

(
σi

µi
,
yi

µi

)]ν

+ Q1

(
σi

µi
,
yi

µi

)ν}
.(3.2)

The maximum likelihood estimate (MLE) θ̂ of θ can be calculated by maximizing
(3.2) using the R software and standard likelihood techniques can be adopted for inference
purposes. Initial values for β1 and β2 can be taken from the fitted Rice regression model
(when ν = 1).

Under conditions that are fulfilled for the parameter vector θ in the interior of the pa-
rameter space but not on the boundary, the asymptotic distribution of (θ̂− θ) is multivariate
normal N2p+1(0,K(θ)−1), where K(θ) is the information matrix. The asymptotic covariance
matrix K(θ)−1 of θ̂ can be approximated by the inverse of the (2p + 1)× (2p + 1) observed
information matrix −L̈(θ), whose elements can be calculated numerically. The approximate
multivariate normal distribution N2p+1(0,−L̈(θ)−1) for θ̂ can be used in the classical way to
construct approximate confidence regions for some parameters in θ.

We can use likelihood ratio (LR) statistics for comparing some special models with the
OLLRc regression model in the usual way. Further details are given by [14].

3.1. Simulation studies

Five thousands Monte Carlo simulations are carried out in the R software to exam-
ine the consistency of the MLEs under two scenarios: the OLLRc distribution and the
OLLRc regression. By setting n = 25, 80, 160 and 320, a random sample is drawn from
the OLLRc(µ, σ, ν) distribution, and the MLEs are calculated in each of these replications.
For the regression scenario, we also consider 700.
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The OLLRc distribution

We generate observations from the OLLRc distribution using (2.7) and u ∼ U(0, 1) with
µ = 0.15, σ = 1 and ν = 0.2. We calculate the MLEs in each of the 5, 000 simulations and
then the average estimates (AEs), biases, and means squared errors (MSEs). The results in
Table 1 indicate that the estimates are accurate since their biases and MSEs converge to zero
when n increases.

Table 1: Simulation findings from the OLLRc distribution.

n = 25 n = 80
Parameter

AE Bias MSE AE Bias MSE

µ 0.177 0.027 0.017 0.160 0.010 0.004
σ 0.971 −0.029 0.024 0.994 −0.006 0.003
ν 0.269 0.069 0.073 0.227 0.027 0.018

n = 160 n = 320
Parameter

AE Bias MSE AE Bias MSE

µ 0.154 0.004 0.001 0.152 0.002 0.000
σ 0.998 −0.002 0.001 0.998 −0.002 0.000
ν 0.211 0.011 0.006 0.208 0.008 0.002

The OLLRc regression

Consider the OLLRc regression with µi = exp(β10 +β11xi1 +β12xi2) and σi = exp(β20 +
β21xi1 + β22xi2) and fixed parameters β10 = −2, β11 = 0.7, β12 = 1.8, β20 = 0.6, β21 = −0.8
and β22 = 0.4.

For the generation process, we consider: Yi ∼ OLLRc(µi, σi, ν), xi1 ∼ Bernoulli(0.5)
and xi2 ∼ U(0, 1). The simulation results from the fitted OLLRc regression in Table 2 indicate
that the AEs go to the true parameters and that the biases and MSEs tend to vanish when
n increases in agreement with first-order asymptotic theory.

4. THE OLLRC PARTIALLY LINEAR REGRESSION

The dependent variables can be influenced by explanatory variables with linear and
non-linear effects in many areas. Recently, several works have been published related to
regression models, for example, [2], [28], [13], [24], [22], [4], [25], among others.

In this context, considering the penalized smoothing based on the cubic-spline, we
construct the partially linear regression based on the OLLRc distribution. The systematic
component for the parameter µi in terms of the explanatory variables x1, ...,xp (linear effects)
and t = (ti) (non-linear effect) has the form (for i = 1, ..., n)

µi = exp
{
x>i β1 + h(ti)

}
,(4.1)

where β1 = (β11, ..., β1p)> is the unknown parameter vector and h(·) is an unknown smooth
function of ti.
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Table 2: Simulation findings from the OLLRc regression with ν = 0.6 and ν = 2.

ν = 0.6 ν = 2
n Parameter

AE Bias MSE AE Bias MSE

β10 −2.438 −0.438 0.530 −2.439 −0.439 0.632
β11 0.671 −0.029 0.141 0.736 0.036 0.159
β12 2.075 0.275 0.625 2.142 0.342 0.625

25 β20 0.580 −0.020 0.008 0.596 −0.004 0.002
β21 −0.681 0.119 0.046 −0.737 0.063 0.018
β22 0.434 1.234 0.041 0.406 1.206 0.012
ν 0.546 −0.054 0.086 1.951 −0.049 0.387

β10 −2.118 −0.118 0.088 −2.081 −0.081 0.113
β11 0.673 −0.027 0.032 0.700 <0.001 0.036
β12 1.836 0.036 0.092 1.859 0.059 0.099

80 β20 0.597 −0.003 0.002 0.600 <0.001 <0.001
β21 −0.747 0.053 0.020 −0.800 <0.001 0.006
β22 0.405 1.205 0.016 0.400 1.200 0.003
ν 0.568 −0.032 0.023 2.023 0.023 0.161

β10 −2.050 −0.050 0.035 −2.016 −0.016 0.051
β11 0.691 −0.009 0.015 0.699 −0.001 0.018
β12 1.819 0.019 0.041 1.811 0.011 0.049

160 β20 0.600 0.000 0.001 0.600 <0.001 <0.001
β21 −0.781 0.019 0.012 −0.807 −0.007 0.004
β22 0.399 1.199 0.008 0.398 1.198 0.001
ν 0.590 −0.010 0.009 2.036 0.036 0.078

β10 −2.021 −0.021 0.016 −2.007 −0.007 0.025
β11 0.697 −0.003 0.007 0.703 0.003 0.008
β12 1.809 0.009 0.019 1.803 0.003 0.023

320 β20 0.600 <0.001 0.001 0.600 <0.001 <0.001
β21 −0.796 0.004 0.007 −0.804 −0.004 0.002
β22 0.400 1.200 0.004 0.400 1.200 0.001
ν 0.597 −0.003 0.004 2.020 0.020 0.038

β10 −2.007 −0.007 0.007 −2.002 −0.002 0.011
β11 0.702 0.002 0.003 0.701 0.001 0.004
β12 1.803 0.003 0.009 1.802 0.002 0.011

700 β20 0.600 <0.001 <0.001 0.600 <0.001 <0.001
β21 −0.805 −0.005 0.004 −0.803 −0.003 0.001
β22 0.400 1.200 0.002 0.400 1.200 <0.001
ν 0.601 0.001 0.002 2.011 0.011 0.017

For the partially linear regression (4.1), we consider the penalty based on the second
order derivative of the function h(·) [15].

Let θ = (β>1 , σ, ν)> be the parameter vector related to the parametric part and λ > 0
be the smoothing parameter that controls the smoothness of the curve. Consider a smooth
function h(t) (second order differentiable function in the interval [a, b]), such that it is a cubic
smoothing splines where the nodes are the ordered values of t1, ..., tn, say t01 < t02 < ... < t0q ,
and q indicates the amount of distinct values for the explanatory variable ti that is controlled
in a non-parametric way.

The penalty described above can be expressed in matrix notation [6]. Let di be the
distance between two subsequent and different control points called nodes i and i+1, i.e., di =
t0i+1 − t0i (for i = 1, ..., q − 1). We define the elements qij (for i = 1, ..., q and j = 2, ..., q − 1)
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of the q × (q − 2) tridiagonal matrix A by

qj−1,j = d−1
j−1, qjj = −d−1

j−1 − d−1
j , qj+1,j = d−1

j and qij = 0 for |i− j| ≥ 2.

The elements rij (for i = 2, ..., q − 1 and j = 2, ..., q − 1) of the (q − 2)× (q − 2) symmetric
matrix B are

rii =
1
3
(di−1 + di) for i = 2, ..., q − 1,

ri,i+1 = ri+1,i =
1
6
di for i = 2, ..., q − 2 and

rij = 0 for |i− j| ≥ 2.

Further, let K = AB−1AT be a q×q positive definite matrix. The parameters associated with
the covariates in the linear and nonlinear effects (θ and h = (h(t01), ..., h(t0q)), respectively)
are determined by maximizing the penalized log-likelihood function

lp(θ,h) = n log(ν) +
n∑

i=1

log
(

yi

µi

)
−

n∑
i=1

(
y2

i + σ2

2µ2
i

)
+

n∑
i=1

log
[
I0

(
yiσ

µi

)]
+

(ν − 1)
n∑

i=1

log
{[

1−Q1

(
σ

µi
,
yi

µi

)]
Q1

(
σ

µi
,
yi

µi

)}
−

2
n∑

i=1

log
{[

1−Q1

(
σ

µi
,
yi

µi

)]ν

+ Q1

(
σ

µi
,
yi

µi

)ν}
− λ

2
hT Kh,(4.2)

where λ is the unknown smoothing parameter. The maximization of (4.2) is equivalent to
the cubic smoothing spline. We use the gamlss(·) function from the gamlss [20] package to
implement the OLLRc regression, and calculate the penalized maximum likelihood estimates
(PMLEs). The cs(·) function is used to model the nonlinear effect based on cubic smoothing
splines function [21].

4.1. Simulations for the OLLRc partially linear regression

We present a Monte Carlo study with a smooth function to verify the adequacy of the
PMLEs in this regression. The covariates (linear and non-linear effects) and the response vari-
able are generated as follows: xi1 ∼ U(0, 1), xi2 ∼ Bernoulli(0.5), ti3 ∼ U(0, 0.045) (scenario
1), ti3 ∼ U(0, 0.03) (scenario 2) and yi ∼ OLLRc(µi, σ, ν).

Further, the systematic component is µi = exp{0.5xi1 − 0.4xi2 + h(ti3)}, where β11 =
0.5, β12 = −0.4, σ = 0.1 and ν = 0.7 (for n = 60, 180, 400 and 700). In addition, 1, 000
Monte Carlo samples are generated and, for each sample size, the PMLEs of the parameters
are found for each replication, and then the AEs, biases and MSEs are calculated. The
numbers in Table 3 indicate that the AEs tend to the true parameters and the biases and
MSEs converge to zero when n increases. Thus, the sample distribution of the PMLEs is
approximately normal.

Regarding the analysis of the nonlinear effect (ti3), the true smooth curves h(ti3) =
sin(−50ti3π) + cos(30πti3) and h(ti3) = cos(100ti3π) + tan(15πti3 − 1) and their respective
estimated curves (based on 1, 000 simulations) are displayed in Figure 4 for both scenario 1.
We note that the estimated curves approach to the true curve for large sample sizes (as
expected).
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Table 3: Findings for the OLLRc partially linear regression.

Scenario 1 Scenario 2
n Parameter

AE Bias MSE AE Bias MSE

β11 0.508 0.008 0.186 0.495 0.005 0.171

60
β12 −0.415 −0.015 0.064 −0.407 −0.007 0.055
σ 0.186 0.086 0.016 0.134 0.034 0.004
ν 0.636 −0.064 0.028 0.700 0.000 0.024

β11 0.518 0.018 0.047 0.498 −0.002 0.048

180
β12 −0.409 −0.009 0.015 −0.405 −0.005 0.014
σ 0.136 0.036 0.004 0.104 0.004 0.001
ν 0.687 −0.013 0.005 0.730 0.030 0.007

β11 0.510 0.010 0.018 0.504 0.004 0.019

400
β12 −0.404 −0.004 0.006 −0.403 −0.003 0.006
σ 0.112 0.012 0.002 0.095 −0.005 0.001
ν 0.703 0.003 0.002 0.737 0.037 0.004

β11 0.505 0.005 0.011 0.494 −0.006 0.011

700
β12 −0.406 −0.006 0.004 −0.405 −0.005 0.003
σ 0.100 0.000 0.001 0.090 −0.010 0.001
ν 0.710 0.010 0.001 0.740 0.040 0.003

(a) (b) (c) (d)

Figure 4: The generated and estimated curves for h(ti3) (scenario 1):
(a) n = 60, (b) n = 180. (c) n = 400. (d) n = 700.

5. RESIDUAL ANALYSIS AND SIMULATIONS

We define the quantile residuals (qrs) [3] for the OLLRc regression as

qri = Φ−1


[
1−Q1

(
σi
µi

, yi

µi

)]ν[
1−Q1

(
σi
µi

, yi

µi

)]ν
+ Q1

(
σi
µi

, yi

µi

)ν

,(5.1)

where Φ(·)−1 is the inverse of the standard normal cdf and µi and σi are given in Equation
(3.1).

Simulations for the OLLRc regression

Some simulations of sizes 25, 80, 160, 320 and 700 are performed using the algorithm
of Section 3.1 to examine the empirical distribution of these residuals. Figure 5 (for ν = 0.6)
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show that this distribution becomes closer to the standard normal distribution when n in-
creases.

(a) (b) (c) (d) (e)

Figure 5: Normal probability plots of the qrs (ν = 0.6). (a) n = 25.
(b) n = 80. (c) n = 160. (d) n = 320. (e) n = 700.

Simulations for the OLLRc partially linear regression

Consider a simulation study to investigate the empirical distribution of the qrs for
the OLLRc partially linear regression by generating 60, 180, 400 and 700 observations from
Equation (4.1). Normal probability plots in Figure 6 reveal that the empirical distribution
of the qrs is close to the standard normal for all samples, and the approximation becomes
better when n increases.

(a) (b) (c) (d)

Figure 6: Normal probability plots of the qrs (scenario 1).
(a) n = 60. (b) n = 180. (c) n = 400. (d) 700.

Thus, we use normal probability plots for the residuals (qri) with simulated envelopes
for both models, as suggested by [1], as follows:

1. Fit the model and generate a sample of n independent observations using the fitted
model as if it were the true model;

2. Fit the model to the generated sample using the data set (xi) and compute the
values of the residuals;

3. Repeat steps (1) and (2) m times;

4. Obtain ordered values of the residuals, qr∗(i)v, i = 1, ..., n and v = 1, ...,m;

5. Consider n sets of the m ordered statistics and for each set compute the mean,
minimum and maximum values;
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6. Plot these values and the ordered residuals of the original sample against the normal
scores. The minimum and maximum values of the m ordered statistics provide the
envelope.

The residuals outside the limits provided by the simulated envelope require further investiga-
tion. Additionally, if a considerable proportion of points falls outside the envelope, we have
evidence against the adequacy of the fitted model. Plots of the residuals against the fitted
values can also be useful.

6. APPLICATIONS

We present two applications of the new regressions: the first for the OLLRc regression,
and the second for the OLLRc partially linear regression.

6.1. Shrinkage volume data

We consider a data set referring to the shrinkage volume of three wood species: Cedrilho
(Erismauncinatum Warm), Morototoni (ScheffleramorotoniAubl) and Pinus (Pinus spp). The
shrinkage volume of wood is defined as the phenomenon related to the dimensional variation of
wood due to moisture exchange with the surrounding environment until a condition of balance
is attained, called the hygroscopic equilibrium moisture. The variations in the dimensions of
wood specimens occur when they lose or gain moisture in relation to the saturation point of
the fibers, which in general is in the range of 28% to 30% water. The dimensional variation
involves either shrinkage or swelling. The shrinkage volume of wood varies widely among
species, depending on the drying method and the behavior of the particular wood specimen,
occasionally leading to alterations of shape and the formation of cracks and warping. Special
precaution needs to be taken in situations that require wood stability. For structural frame-
work, flooring, doors, door/window frames and furniture, cracking and warping can cause
serious losses, requiring replacement. Thus correct drying methods to attain equilibrium
moisture are essential. There are various explanations for the increase of contraction with
higher temperature. One of them can be the reduction of the equilibrium moisture, but that
factor has been experimentally found to cause an increase in contraction of less than 1%,
when in reality the increase in contraction is much more than this. For these reasons, we
study the effects of drying temperature and wood species on the shrinkage volume of wood
specimens.

The experiment was carried out in the first half of 2020 at the School of Agronomic
Sciences of Paulista State University (UNESP), located in the city of Botucatu, São Paulo,
Brazil. The tests were carried out with wood specimens with volume of 20 cm3 dried in
a muffle furnace at final temperatures of 300 oC and 500 oC. A muffle furnace is type of
oven that operates at high temperatures used in laboratories. The final temperature was
applied for 10 minutes and the carbonization rate was 14.3 oC/min for each species. We used
a pachymeter to measure the dimensions of each specimen to calculate the volume before
and after carbonization in stable conditions. The variables involved are the following (for
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i = 1, ..., 36): yi: volumetric shrinkage (in cm3); xi1: temperature (0=300oC, 1=500oC) and
xi2: wood species (0=Cedrilho, 1=Morototoni, 2=Pinus) with two dummy variables (di1, di2).

First, we provide a marginal analysis of the response variable. Table 4 reports the
MLEs (their standard errors in parentheses) of the parameters from the fitted OLLRc, Rice
and Rayleigh distributions, and the statistics: Akaike Information Criterion (AIC) and Global
Deviance (GD). These results indicate that the OLLRc distribution is the best model to the
current data.

Table 4: Findings from the fitted distributions.

Distribution log(µ) log(σ) ν AIC GD

OLLRc −0.666 2.064 0.155 157.836 151.836
(0.109) (0.031) (0.024)

Rice 0.804 2.021 1 162.263 158.263
(0.124) (0.052) (—)

Model log(µ) σ ν

Rayleigh 1.756 0 1 181.017 179.017
(0.083) (—) (—)

The likelihood ratio (LR) statistics in Table 8 indicate that the OLLRc distribution
is the best model to these data among the three distributions. The estimated pdf of the
fitted models in Figure 7 show that the OLLRc distribution gives the best fit to the shrinkage
volume data.
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Figure 7: Estimated OLLRc, Rice and Rayleigh densities.

The OLLRc regression

The systematic components are given by

µi = exp(β10 + β11xi1 + β12di1 + β13di2)

and
σi = exp(β20 + β21xi1 + β22di1 + β23di2).
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The MLEs, SEs and p-values from the fitted OLLRc regression to the current data are
reported in Table 5. Some conclusions are addressed at the end of this application.

Table 5: Findings from the fitted OLLRc regression to the shrinkage volume data.

Parameter Estimate SE p-value

β10 −0.537 2.509 0.832
β11 −0.346 0.191 0.082
β12 −1.144 0.541 0.044
β13 −0.786 0.219 0.001

β20 1.687 0.135 <0.001
β21 0.448 0.129 0.002
β22 0.080 0.042 0.068
β23 0.286 0.037 <0.001

ν 0.236 0.908

The AIC and GD values in Table 6 confirm that the OLLRc regression is the best
model to the shrinkage volume data.

Table 6: Adequacy statistics.

Regression AIC GD

OLLRc 93.236 75.2356
Rice 95.164 79.164

Rayleigh 178.373 170.373

Table 9 compares the new regression with two special models fitted to the wood volu-
metric retraction data, whose figures indicate that the OLLRc regression is the best model
among the three.
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Figure 8: (a) Index plot of the qrs. (b) Normal probability plot for the qrs.
(c) Empirical and estimated cdf for the temperature (300oC, 500oC).
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Figures 8a and 8b display the index plot of the qrs and the normal probability plot
with generated envelope for the OLLRc regression, respectively. These plots do not provide
departure from the model assumptions. We report in Table 7 the presence of significant
effects of the levels of wood from the fitted OLLRc regression to the shrinkage volume data.

Table 7: Findings for the three wood levels from the fitted OLLRc regression.

Test for link µ

Hypotheses H0 Estimate SD p-value

Cedrilho = Morototoni −1.144 0.541 0.044
Cedrilho = Pinus −0.786 0.219 0.001

Morototoni = Pinus 0.358 0.563 0.531

Test for link σ

Hypotheses H0 Estimate SD p-value

Cedrilho = Morototoni 0.080 0.042 0.068
Cedrilho = Pinus 0.286 0.037 <0.001

Morototoni = Pinus 0.206 0.023 <0.001

Assessing covariate effects on parameter µ

For a 5% significance level, we conclude:

The temperature levels are not statistically different for µ (see Table 5). The Cedrilho
and Morototoni wood species and Cedrilho and Pinus wood species are statistically different
for µ (see Table 5). The Pinus and Morototoni wood species are statistically different for µ

(see Table 7).

Assessing covariate effects on parameter σ

The temperature levels are statistically different for σ (see Table 5 and Figure 8c). The
Cedrilho and Morototoni wood species are not statistically different for σ (see Table 5). The
Cedrilho and Pinus wood species are statistically different for σ (see Table 5). Morototoni
and Pinus wood species are statistically different for σ (see Table 7).

Finally, the empirical and estimated cdf of the OLLRc regression are displayed in
Figure 8c for different levels of temperatures, thus showing that this regression is suitable for
the shrinkage volume data.

Table 8: LR tests (Application 1 without considering covariates).

Distributions Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 6.428 0.011
OLLRc vs Rayleigh H0 : σ = 0 and ν = 1 vs H1 : H0 is false 27.182 <0.001

Table 9: LR statistics for three fitted regressions (Application 1).

Regressions Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 3.929 0.047
OLLRc vs Rayleigh H0 : σ = 0 and ν = 1 vs H1 : H0 is false 95.137 <0.001
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Table 10: LR tests (Application 2 without considering covariates).

Regressions Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 5.062 0.024
OLLRc vs Rayleigh H0 : ν = 0 and ν = 1 vs H1 : H0 is false 48.693 <0.001

Table 11: LR statistics for three fitted regressions (Application 2).

Models Hypotheses LR statistic p-value

OLLRc vs Rice H0 : ν = 1 vs H1 : H0 is false 96.007 <0.001
OLLRc vs Rayleigh H0 : σ = 0 and ν = 1 vs H1 : H0 is false 148.996 <0.001

6.2. Milk production data

In the second application, the data referred to the quantity of cold milk, raw or homog-
enized, acquired (thousand liters) between the first quarter of 2005 until the fourth quarter
of 2015 in Northeast Brazil. The Northeast is considered a new dairy farming region due
to the expanded market for milk and dairy products in Brazil, including the Northeast it-
self, in recent years, driven by increased consumption, in turn related to rising purchasing
power in the region, as well as stronger demand from other regions of Brazil and neighboring
countries. To understand the advance of dairy farming in the Northeast, it is necessary to
know something about the division of the region in terms of climate. Basically there are four
sub-regions: the forest zone, sub-humid zone (agreste), mid-north and hinterland (sertão).
Each of them has distinct physical characteristics that facilitate or hamper dairy farming. In
this paper we study the states of Bahia and Pernambuco. The data set is obtained from the
Brazilian Institute of Geography and Statistics [10]. The dependent variable is the produc-
tion of milk produced, while the explanatory variables are: (i) state of production (Bahia and
Pernambuco, two large producers of milk in the Northeast); and (ii) the quarter of produc-
tion, between the first quarter of 2005 to the last quarter of 2015. This last covariable has a
nonlinear effect on the quantity of cold milk. An option to analyze this data set is by means
of the OLLRc partially linear regression. The variables under study are: yi: production of
cold milk (raw or homogenized) (thousand liters) (this variable was divided by 10,000); xi1:
states (Bahia and Pernambuco) and ti2: quarter (from 1 to 44), for i = 1, ..., 88.

Table 12: Findings from the OLLRc partially linear regression.

Model log(µ) log(σ) ν AIC GD

OLLRc −0.146 1.905 0.326 372.189 366.189
(0.324) (0.028) (0.158)

Rice 0.722 1.870 1 375.251 371.251
(0.081) (0.036) (—)

Model log(µ) σ ν

Rayleigh 1.616 0 1 416.881 414.881
(0.053) (—) (—)
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We examine these data by studying the distribution of the response variable, that is,
making a marginal analysis. Table 12 reports the results from three fitted distributions, which
indicate that the OLLRc distribution can be chosen as the best model.

The numbers in Table 10 support the OLLRc distribution as the best fit model for
these data. Figure 9 displays the estimated pdfs of the fitted models and shows that the
wider distribution is the best for the current data.
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Figure 9: Estimated densities of the OLLRc, Rice and Rayleigh distributions.

Hence, the OLLRc distribution is a good candidate for modeling milk production data.

The OLLRc partially linear regression

Figure 10 displays the scatter plot between the response variable yi and the covariate
ti2. So, there is a non-linear trend between these two variables, which requires the OLLRc
partially linear regression model to analyze the current data.
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Figure 10: Scatter diagrams: production of cold milk versus quarter.
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We now consider the systematic component:

µi = exp[β10 + β11xi1 + h(ti2)],

where h(·) is an arbitrary smooth function associated with the explanatory variable ti2; for
more details, see Section 4.

Table 13 reports the generalized Akaike information criterion (GAIC), based on [19],
and confirms that the OLLRc partially linear regression can be chosen as the best model.

Table 13: Model selection measures.

Model GAIC

OLLRc 256.802
Rice 350.809

Rayleigh 401.797

Table 14 provides several quantities obtained from the fitted of this partially regression
to the milk production data. There is a significant difference between the states of Bahia and
Pernambuco in relation to milk production since the covariate xi1 is significant at a level of
5%.

Table 14: Findings from the fitted OLLRc partially linear regression.

Parameter Estimate SE p-Value

β10 1.882 0.036 <0.001
β11 −0.476 0.031 <0.001

log(σ) −11.080 398.130
ν 4.334 0.387

The figures in Table 11 from two LR tests indicate that the wider regression is the best
model for these data. Figure 11(a) provides the plots of the qrs against the observations index,
whereas Figure 11(b) reports the normal probability plot with generated envelope. These
plots support the wider linear regression for these data and that there are no observations
falling outside the envelope.

Finally, Figure 11c provides the estimate of the non-linear effect. The vertical axis
refers to the values of ti2 and the horizontal axis to the contribution of the estimated smooth
curve to the values of ti. We note from this plot that the amount of milk production is
non-linear in relation to the quarter effect. In addition, a greater amount of milk production
is achieved between quarters 20 to 35 (approximately).
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Figure 11: (a) Index plot of the qrs. (b) Normal probability plot for the qrs.
(c) Smooth curve fitted from the OLLRc partially linear regression.

7. CONCLUDING REMARKS

The article presented the odd log-logistic Rice (OLLRc) distribution and proposed two
regression models based on this distribution for the analysis of data that has no unimodal
shape. We believe that this paper shows the first use of the Rice distribution in the context
of a regression with two systematic components. We defined quantile residuals and provided
some simulation studies. We proved the utility of the distribution and of the regressions by
means of two data sets on the volumetric shrinkage of the wood and milk production. Future
work can be developed using the new OLLRc model in different areas of research. Further,
it may be of interest to propose a heteroscedastic semiparametric regression model based on
the OLLRc distribution.
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A. APPENDIX

Two power series follow for the numerator and denominator of (2.1) (for ν > 0 real):

G(y)ν =
∞∑

k=0

ak G(y)k and [1−G(y)]ν =
∞∑

k=0

(−1)k

(
ν

k

)
G(y)k,(A.1)

where

ak = ak(ν) =
∞∑

j=k

(−1)k+j

(
ν

j

)(
j

k

)
.

Inserting (A.1) in Equation (2.1) leads to

F (y) =
∑∞

k=0 ak G(y)k∑∞
k=0 bk G(y)k

=
∞∑

k=0

ck G(y)k(A.2)

where bk = ak + (−1)k
(
ν
k

)
(for k ≥ 0), c0 = a0/b0 and the coefficients ck’s (for k ≥ 1) are

calculated recursively as

ck = b−1
0

(
ak −

k∑
r=1

br ck−r

)
.

By differentiating ( A.2), the pdf of Y follows as

f(y) =
∞∑

k=0

ck+1 hk+1(y),(A.3)

where hk+1(x) = (k + 1) G(y)k g(y) is the exponentiated-G (exp-G) density function with
power parameter k + 1.

Hence, the exp-Rice density can be expressed from ( 2.3) and ( 2.4) as

hk+1(y) =
[
1−Q1

(
σ

µ
,
y

µ

)]k (k + 1)y
µ2

exp
(
−y2 + σ2

2µ2

)
I0

(
yσ

µ2

)
(A.4)

The mathematical properties of the OLLRc distribution can be determined numerically
by combining ( A.3) and ( A.4) for a given number of terms (say 10) in the linear combination.
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