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Abstract:

• The main purpose of this paper is to look at the extremal properties of

Xk =

∞
∑

j=1

(

j−1
∏

s=1

Ak−s

)

Bk−j , k ∈ Z ,

where (Ak, Bk)k∈Z is a periodic sequence of independent R
2
+-valued random pairs.

The so-called complete convergence theorem we prove enable us to give in detail the
weak limiting behavior of various functional of the underlying process including the
asymptotic distribution of upper and lower order statistics. In particular, we inves-
tigate the limiting distribution of the maximum and its corresponding extremal index.
An application to a particular class of bilinear processes is included. These results
generalize the ones obtained for the stationary case.
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1. INTRODUCTION

A general approach to look at the extremal properties of non-linear pro-

cesses is through the analysis of stochastic difference equations (SDEs hereafter)

of the form

Xk = AkXk−1 + Bk , k ∈ Z ,(1.1)

where (Ak) are d×d random matrices with possibly negative entries, (Bk) are

[0,∞)d-valued random (column) vectors such that (Ak,Bk) are independent and

identically distributed (i.i.d.), and independent of the random column vector

X0 ∈ [0,∞)d. The literature of SDEs is vast mainly for i.i.d. and stationary er-

godic sequences (Ak,Bk). The existence of a solution to (1.1) has been addressed

by Kesten [23], Vervaat [37], and Goldie [18]; for more general results see also

Brandt et al. [8], Bougerol and Picard [7], and Babillot et al. [2]. SDEs play a

central role in fields such as finance, economics, insurance mathematics and bi-

ology. Examples can be found in Dufresne [12], Embrechts et al. [13], Baxendale

and Khasminskii [6], Stărică [36], Mikosch [28], and Konstantinides and Mikosch

[24]. The interest in these equations is generally justified by the fact that many

non-linear processes, including (G)ARCH, threshold, and bilinear processes can

be embedded in SDEs.

Extremal properties of the solution of one-dimensional SDEs were first stud-

ied by de Haan et al . [11] and then by Perfekt [31]. de Haan et al . [11] proved

the convergence of the point processes of exceedances to a compound Poisson

process. As an application, these authors obtained the extremal behavior of the

ARCH(1) process. Perfekt [31] extended de Haan et al .’s results to Markov pro-

cesses including SDEs as special cases with possibly negative Ak and Bk. More

recently, Scotto [35] derived the extremal behavior of stationary solutions of SDEs

where (Ak, Bk)k∈Z are i.i.d. R
2
+-valued random pairs, the distribution of B1 being

heavy-tailed and the distribution of A1 having relatively lighter tails compared

to the one of B1 (cf. Grincevic̆ius, [20] and Grey, [19]).

The primary objective of this paper is to derive the extremal properties

of one-dimensional SDEs when (Xk)k∈Z forms a periodic sequence, i.e., when

there exists an integer M ≥ 1 such that for every choice of integers i1, ..., in,

(Xi1 , ..., Xin) and (Xi1+M , ..., Xin+M ) are identically distributed. We will refer to

such a sequence as an M -periodic sequence if M is the smallest integer as above.

Note that if M = 1 then (Xk)k∈Z is a stationary sequence. The study of the ex-

tremal properties of non-stationary (periodic) stochastic processes plays a central

role when modelling environmental time series, because of its wide applicability to

the analysis of phenomena such as extreme concentration of air pollution, floods,

wind storms, and extreme temperatures. Extreme value theory of non-stationary

processes has been discussed under certain conditions. Horowitz [21] considered

the model log(Yk) = g(k) + Xk, for daily ozone maxima (Yk)k∈Z, where g(k) is a
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deterministic function and (Xk)k∈Z is a normal stationary autoregressive process.

Ballerini and McCormick [4] discussed limit theory for non-stationary random se-

quences of the form Yk = g(k) + h(k)Xk, where (Xk)k∈Z is a stationary random

sequence, satisfying some mixing conditions, and h(k) is a positive, periodic func-

tion with integer period p > 1 as the variance function. The authors derived the

limiting distribution of the maximum term based on the assumption that the

distribution of Xk belongs to the domain of attraction of an extreme value dis-

tribution. The results were applied in a rainfall study; see also Ballerini and

Waylen [5] and Ballerini [3]. Niu [29] introduced a class of nonlinear additive

time series models for daily maxima of ozone concentrations in which both mean

levels and variances are nonlinear functions of relevant meteorological variables.

As an alternative approach to analyze tropospheric ozone data Niu [30] focus on

estimating probabilities of monthly maximum ozone observations exceeding some

specific levels, calculating the mean rate of exceedances of daily maximum ozone

over the national standard level 120 ppb (parts per billion). For further examples

see Coles [9].

Extreme value theory for periodic sequences was first considered by Alpuim

[1] who showed that under Leadbetter’s D condition (Leadbetter et al., [26]) the

only possible limit laws for the normalized maxima of the periodic sequence are

the three extreme value distributions. Extensions for randomly indexed periodic

sequences under long range dependence conditions were established by Ferreira

[16]. Further results can be found in Ferreira [15] who studied the extremal be-

havior of periodic sequences under local mixing conditions. Generalizations under

weaker local mixing conditions have been considered by Ferreira and Martins [17].

More recently, Martins and Ferreira [27] derived the expression of the extremal

index (and hence the limiting distribution of the maximum) of a periodic moving

average sequence driven by heavy-tailed innovations.

The rest of the paper is organized as follows: Section 2 deals with the tail

behavior of Xr, r = 1, ..., M . Section 3 is devoted to a detailed point process

analysis of asymptotic properties of the periodic sequence (Xk)k∈Z. In particular

we deduce the maximum limiting distribution and the extremal index. Finally,

in Section 4 the results are applied to a particular class of bilinear processes.

2. TAIL BEHAVIOR

Let (Ak, Bk)k∈Z be a one-dimensional M -periodic sequence of independent

R
2
+-valued random pairs, such that F̄Br

(x) = P (Br >x), r = 1, ..., M , are regu-

larly varying with tail index −α, for some α > 0, i.e.,

F̄Br
(x) = x−αLr(x) , r = 1, ..., M ,(2.1)

for some slowly varying functions Lr : R+→ R+ (r = 1, ..., M) at infinity.
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We further assume that the tails are equivalent in the sense that

lim
x→∞

F̄Bl
(x)

F̄Bk
(x)

= γl,k , (0<γl,k <∞) l, k ∈ Z .(2.2)

Note that γl,k = γl+M,k and γl,k = γl,k+M . In addition, we assume that for

r = 1, ..., M

EAα
r < 1 , and EAα+δ

r < ∞ , for some δ > 0 .(2.3)

Note that no further assumptions are needed since the central role in determining

the tail behavior of Xr is played by the distributions FBr
. Furthermore, we

assume that Xk admits the representation

Xk =

∞
∑

j=1

(

j−1
∏

s=1

Ak−s

)

Bk−j ,(2.4)

where we use the convention
∏0

s=1 = 1. This series representation is possible

a.s. by virtude of the assumptions on Ak and Bk. Clearly, (Xk)k∈Z forms an

M -periodic sequence and satisfies the SDEs

Xk = Ak Xk−1 + Bk .

We start with the analysis of the tail behavior of Xr, r = 1, ..., M . In doing so,

the following alternative representation of Xr is very useful.

Proposition 2.1. For the process defined in (2.4), it holds that for

r = 1, ..., M

Xr =
M−1
∑

i=0

X(i)
r ,

with

X(i)
r =

∞
∑

j=1

(

M(j−1)+i
∏

s=1

Ar−s

)

Br−(j−1)M−i−1 .

We now begin with a series of results designed to understand the tail be-

havior of X
(i)
r as well as sums of these variables. The tail behavior of X

(i)
r will

be derived in two stages: first we obtain the tail behavior of the approximation

X
(i)
r,m, with m = KM (K ≥ 1), defined as

X(i)
r,m =

m
∑

j=1

W
(j)
r,i ,

with

W
(j)
r,i =

(

M(j−1)+i
∏

s=1

Ar−s

)

Br−(j−1)M−i−1 ;

then the results are extended so that the number of summands can be infinite.
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Lemma 2.1. Let (Ak, Bk)k∈Z be an M-periodic sequence of independ-

ent R
2
+-valued random pairs satisfying (2.1), (2.2), and (2.3). For a fixed value

0 ≤ i ≤ M −1 and 1 ≤ j ≤ m, we have as x → ∞

(2.5) P
(

W
(j)
r,i >x

)

∼ γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

P
(

Br>x
)

.

Furthermore, for all fixed values 1≤ j1 < j2 ≤m and 0≤ i≤M−1, as x → ∞

P
(

W
(j1)
r,i > x, W

(j2)
r,i > x

)

P
(

Br > x
) → 0 , r = 1, ..., M .(2.6)

Proof: The first statement follows as an application of Breiman’s result

(cf. Davis and Resnick [10], p. 1197). Let Cs,jh
=
∏M(jh−1)+i

s=1 Ar−s, for h = 1, 2.

In proving (2.6) observe that

P
(

W
(j1)
r,i > x, W

(j2)
r,i > x

)

=

= P
(

Cs,j1Br−(j1−1)M−i−1 > x, Cs,j1Cs,j2 Br−(j2−1)M−i−1 > x
)

≤ P
(

Cs,j1 ≤ ǫ, Cs,j1Br−(j1−1)M−i−1 > x
)

+ P
(

Cs,j1 > ǫ, Cs,j1Br−(j1−1)M−i−1 > x, Cs,j1Cs,j2 Br−(j2−1)M−i−1 > x
)

≤ P
(

Cs,j11[Cs,j1
≤ǫ] Br−(j1−1)M−i−1 > x

)

+ P
(

Br−(j1−1)M−i−1 >
x

ǫ
, Cs,j2 Br−(j2−1)M−i−1 >

x

ǫ

)

.

Now, by Breiman’s result

lim sup
x→∞

P
(

Cs,j1 1[Cs,j1
≤ǫ] Br−(j1−1)M−i−1 > x

)

P
(

Br > x
) = γr+M−i−1,r E

(

Cs,j1 1[Cs,j1
≤ǫ]

)α

→ 0 ,

as ǫ → 0. Moreover,

P
(

Br−(j1−1)M−i−1 > x
ǫ , Cs,j2 Br−(j2−1)M−i−1 > x

ǫ

)

P
(

Br > x
) ∼

∼ ǫ2α γr+M−i−1,r E(Cs,j2)
α P
(

Br−(j2−1)M−i−1 > x
)

,

as x→∞. Note that as ǫ→ 0, the right-hand side converges to 0. This completes

the proof.
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Lemma 2.2. Let (Ak, Bk)k∈Z be an M-periodic sequence of independent

R
2
+-valued random pairs satisfying (2.1), (2.2), and (2.3). For a fixed value of

0 ≤ i ≤ M −1

lim
x→∞

P
(

X
(i)
r,m > x

)

P
(

Br > x
) =

(

i
∏

s=1

EAα
r−s

)

1 −
(

∏M
s=1 EAα

r−s

)m

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r ,(2.7)

for r = 1, ..., M . Moreover, as m → ∞

lim
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) =

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .(2.8)

Proof: The first statement follows as an application of Lemma 2.1 in Davis

and Resnick [10] and Lemma 2.1. The proof is complete upon showing that by

letting m → ∞ we obtain (2.8). First note that the first statement implies that

lim inf
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≥ lim inf

x→∞

P
(

X
(i)
r,m > x

)

P
(

Br > x
)

=

(

i
∏

s=1

EAα
r−s

)

1 −
(

∏M
s=1 EAα

r−s

)m

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .

Hence, as m → ∞

lim inf
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≥

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .

The arguments needed to get the upper bound follow closely the arguments

outlined in Resnick ([33], p. 228): decompose the event
[

X
(i)
r > x

]

according to

whether
[

maxj∈N W
(j)
r,i > x

]

or
[

maxj∈N W
(j)
r,i ≤ x

]

P
(

X(i)
r > x

)

= P
(

X(i)
r > x, max

j∈N

W
(j)
r,i > x

)

+ P
(

X(i)
r > x, max

j∈N

W
(j)
r,i ≤ x

)

≤ P

(

⋃

j∈N

W
(j)
r,i > x

)

+ P

(

∞
∑

j=1

W
(j)
r,i 1

{W
(j)
r,i ≤x}

> x, max
j∈N

W
(j)
r,i ≤ x

)

≤
∞
∑

j=1

P
(

W
(j)
r,i > x

)

+ P

(

∞
∑

j=1

W
(j)
r,i 1

{W
(j)
r,i ≤x}

> x

)

.

By Markov’s inequality

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

∑∞
j=1 P

(

W
(j)
r,i > x

)

P
(

Br > x
) +

∑∞
j=1 EW

(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

Br > x
)

= I(x) + J(x) .
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To handle I(x), note that by Kamarata’s Theorem quoted in Resnick ([33], p. 17),

the result in (2.5) along with condition (2.3) and dominated convergence, lead us

to obtain

lim
x→∞

I(x) =

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .

For J(x) let us start by considering the case 0 < α < 1. By Lemma 2.1, the

distribution tail of W
(j)
r,i is regularly varying with index −α. Now

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

Br > x
) =

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

W
(j)
r,i > x

)

P
(

W
(j)
r,i > x

)

P
(

Br > x
) .

From an integration by parts along with the result in (2.5), and Kamarata’s

Theorem

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

W
(j)
r,i > x

)

→ α(1− α)−1 , x → ∞ .(2.9)

Since P (Br > x) is regularly varying with index −α we can use its Kamarata

representation and (2.5) to obtain that for sufficiently large x and some constant

K > 0

P
(

W
(j)
r,i > x

)

P
(

Br > x
) ≤ K γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

,(2.10)

for r = 1, ..., M . Combining (2.9) and (2.10), we conclude, for sufficiently large x

EW
(j)
r,i 1

{W
(j)
r,i ≤x}

x P
(

Br > x
) ≤ K1 γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

,

for some constant K1 > 0. This bound is summable providing, by dominated

convergence

lim sup
x→∞

J(x) ≤ K1

∞
∑

j=1

γr+M−i−1,r

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

= K1

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r

and hence

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤ (K1 +1)

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r .(2.11)
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If α ≥ 1, we proceed as follows:

pick β ∈ (α, αδ−1) and consider A(i) =
∑∞

j=1

∏M(j−1)+i
s=1 Ar−s, (i=1, ..., M)

and P
(i)
j =

(
∏M(j−1)+i

s=1 Ar−s

)

{A(i)}−1, (i=1, ..., M, j ∈N).

By Jensen’s inequality

(

X(i)
r

)β
=
{

A(i)
}β





∞
∑

j=1

P
(i)
j Br−(j−1)M−i−1





β

≤
{

A(i)
}β

∞
∑

j=1

P
(i)
j Bβ

r−(j−1)M−i−1

=
{

A(i)
}β−1

∞
∑

j=1

(

M(j−1)+i
∏

s=1

Ar−s

)

Bβ
r−(j−1)M−i−1 ,

providing

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

P

(

{

A(i)
}β−1 ∑∞

j=1

(

∏M(j−1)+i
s=1 Ar−s

)

Bβ
r−(j−1)M−i−1 > xβ

)

P
(

Bβ
r > xβ

)
.

Using the fact that P (Bβ
r > x) ∈ RV−αβ−1 with δ < αβ−1, for r = 1, ..., M and

i = 0, ..., M−1 it follows that

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤ (K1+1)

∞
∑

j=1

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

(2.12)
×
{

EA(i)
}α(1−β−1)

γr+M−i−1,r < ∞ .

On the other hand, for any ǫ > 0

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

P
(

∑m
j=1W

(j)
r,i > (1− ǫ)x

)

P
(

Br > x
) +

P
(

∑∞
j=m+1W

(j)
r,i > ǫ x

)

P
(

Br > x
) ,

and for (2.7) and (2.11)

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤ (1− ǫ)−α

(

i
∏

s=1

EAα
r−s

)

1 −
(

∏M
s=1 EAα

r−s

)m

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r

+ K1 ǫ−α

×

∞
∑

j=m+1

(

i
∏

s=1

E(Aα
r−s)

j

)(

M
∏

s=i+1

E(Aα
r−s)

j−1

)

γr+M−i−1,r ,

for the case 0 ≤ α ≤ 1 with a similar bound for the second piece provided by

(2.12) when α ≥ 1. Let m → ∞ and then send ǫ → 0 to obtain

lim sup
x→∞

P
(

X
(i)
r > x

)

P
(

Br > x
) ≤

∏i
s=1 EAα

r−s

1 −
∏M

s=1 EAα
r−s

γr+M−i−1,r

and this combined with the liminf statement concludes the proof.
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Combining Lemmas 2.1 and 2.2 yields the following result.

Theorem 2.1. Let (Xk)k∈Z be the M-periodic sequence defined in (2.4).

Let (Ak, Bk)k∈Z be an M-periodic sequence of independent R
2
+-valued random

pairs satisfying (2.1), (2.2), and (2.3). For r = 1, ..., M

lim
x→∞

P
(

Xr > x
)

P
(

Br > x
) =

1

1 −
∏M

s=1 EAα
r−s

M−1
∑

i=0

γr+M−i−1,r

(

i
∏

s=1

EAα
r−s

)

.(2.13)

Proof: Note that by Lemma 2.1 in Davis and Resnick [10] it is sufficient

to show that for 0 ≤ i1 < i2 ≤ M−1, as x → ∞

P
(

X
(i1)
r > x, X

(i2)
r > x

)

P
(

Br > x
) ∼ 0 , r = 1, ..., M .(2.14)

Now an argument similar to the one in the proof of Lemma 2.1 shows that (2.14)

holds.

3. POINT PROCESS APPROACH

In this section we investigate the limit behavior of a sequence of point

processes based on the periodic sequence (Xk)k∈Z. Since our results are based

on point process theory, we briefly discuss some notation and background about

point processes; for further details see Kallenberg [22] and Resnick [33].

Let (Ω,F ,P) be a probability space and E a state space where points reside

and assume that E is Euclidian. Let E be the σ-algebra on E generated by open

sets of E. For x ∈ E, define ǫx(·) on E as the simple point measure with unit

mass at x. Let {xj} be a countable collection of points on E. A point measure

N on E is defined to be

N(·) =
∞
∑

j=1

ǫxj
(·) ,

which is a non-negative integer valued Radon measure on compact subsets of E.

Let Mp(E) be the class of such Radon measures on E and Mp(E) the smallest

σ-algebra, making maps N → N(A∗) measurable, where N ∈ Mp(E) and A∗ ∈ E .

Mp(E) can be made into a complete separable metric space, hence we assume that

it is a metric space with vague metric d. A point process on E is a measurable map

from (Ω,F) to
(

Mp(E),Mp(E)
)

. Let C+
K(E) be the set of all continuous, non-

negative functions on the state space E with compact support. If Nn ∈ Mp(E)

then Nn converges vaguely to N (Nn ⇒N) if Nn(f) converges to N(f) for every
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f ∈ C+
K(E), where N(f) =

∫

f dN . A Poisson process on (E, E) with mean mea-

sure µ is a point process N such that, for every A∗∈ E , N(A∗) is a Poisson random

variable with mean measure µ(A∗). If A∗
1, ..., A

∗
m are mutually independent sets

then N(A∗
1), ..., N(A∗

m) are independent random variables. We call N a Poisson

random measure with mean measure µ or PRM(µ) for short.

In this section, we investigate the limiting behavior of a sequence of point

processes (Nn)n∈N defined as

Nn =
∞
∑

k=1

ǫ{k/n, a−1
n Xk}

,

based on (a−1
n Xk)k∈Z with the sequence of norming constants (an)n∈N satisfying

lim
n→∞

nP
(

Br > anx
)

= τr , (τr > 0), r = 1, ..., M .

Note that such a sequence exists by the assumption of regular variation of each

F̄Br
, (r = 1, ..., M), and implies that

nP
(

Xr > anx
)

→ τr

{

1

1 −
∏M

s=1 EAα
r−s

M−1
∑

i=0

(

i
∏

s=1

EAα
r−s

)

γr+M−i−1,r

}

,

as n → ∞. It is important to point out the fact that τr = τhγr,l, for r, l ∈

{1, ..., M}. Hence, without lost of generality it will be assumed that τr = τ1γr,1

with τ1 = x−α.

The main result of this section is formalized through the following the-

orem, which discusses the weak convergence of the sequence of point processes

(Nn)n∈N to a function of PRM. For simplicity of notation we define Eh = (0,∞)×

[−∞,∞]h\{0}, with h ∈ N.

Theorem 3.1. Let (Xk)k∈Z be an M-periodic sequence defined as in (2.4)

where (Ak, Bk)k∈Z is an M -periodic sequence of independent R
2
+-valued random

pairs satisfying (2.1), (2.2), and (2.3). Then, as n → ∞

Nn =
∞
∑

k=1

ǫ{ k
n

, a−1
n Xk} ⇒ N =

M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i−1,r

o ,

in the space Mp(E1), where
∑∞

k=1 ǫn
T

(i)
k,r

, J
(i)
k,r

o are PRM (dt×dνr,i) with

νr,i =
1

M
γr,1 γr+M−i−1,r µ(dx) ,

where µ(dx) = α x−α−11(0,∞](x) dx and (Uk,1,r, ..., Uk,M,r) having the same dis-

tribution as (A1, ..., AM ).
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Proof: First note that

∞
∑

k=1

ǫ{ k
n

, a−1
n Xk} =

M
∑

r=1

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X(k−1)M+r

o .

As an application of Proposition 3.2 in Feigin et al. [14], for fixed values of

r = 1..., M and i = 0, ..., M−1, it follows that

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n (Bk−(j−1)M−i−1), j=1,...,m), Ak−s, s=1,...,M(j−1)+i
o ⇒

⇒
∞
∑

k=1

ǫn
T

(i)
k,r

, J
(i)
k,r

e1,∞, Uk,1,r, ..., UkM(j−1)+i,r

o
+

∞
∑

k=1

ǫn
T

(i)
k,r

, J
(i)
k

e2, Uk,1,r,∞, ..., Uk,M(j−1)+i,r

o
...

+

∞
∑

k=1

ǫn
T

(i)
k,r

, J
(i)
k,r

em, Uk,1,r, ..., Uk,M(j−1)+i,r,∞
o ,

in Mp

(

Em×(0,∞)M(j−1)+i
)

, where es is the unit vector in R
m with 1 in the s-th

component and the rest zero. By the lines of reasoning given in Resnick and Van

den Berg ([34], Theorem 4.1) it follows that, for a fixed value of r = 1..., M and

i = 0, ..., M−1

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

o ⇒
∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o ,

in Mp(E1). Next we have to show that the point processes

N (1)
n =

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n

�
X

(0)
(k−1)M+r

, ...,X
(M−1)
(k−1)M+r

�o
and

N (2)
n =

M−1
∑

i=0

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

vi

o ,

where vs is the unit vector in R
M with 1 in the s-th component and the rest zero,

differ negligibly, as n → ∞. In doing so we must prove that

d
(

N (1)
n , N (2)

n

)

→ 0 ,(3.1)

in probability, where d is the vague metric on the space of point measures in which

N
(1)
n and N

(2)
n live. Here N

(2)
n concentrates all its points on the axes vs, and (3.1)

is expressing the fact that, for each k, at most one of the M components X
(i)
k
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is non-negligible as compared to an. From the definition of vague convergence,

(3.1) follows if

N (1)
n (f) − N (2)

n (f) → 0 ,(3.2)

in probability for each f ∈ C+
K(EM ), the space of continuous non-negative func-

tions with compact support on EM . To prove (3.2), suppose that f is such a

function. Because of compactness, the support of f is contained in the set

[0, ξ] ×
{

x : x ∈ [0,∞]M\{0}, max
0≤i≤M−1

xi > δ
}

,

for some ξ > 0 and δ > 0. Note therefore that f vanishes in [0, ξ]× [0, δ]M . For an

arbitrary y ∈ (0, δ) we define Sy as

Sy

{

x : x ∈ [0,∞]M\{0}, at most one component xi > y
}

,

and

N (h)
n (f) =

∫

[0,ξ]×Sy

f dN (h)
n +

∫

[0,ξ]×Sc
y

f dN (h)
n , h = 1, 2 .

Note that

E

(

∫

[0,ξ]×Sc
y

f dN (1)
n

)

≤

≤
(

sup f
)

E
(

N (1)
n

(

[0, ξ]×Sc
y

)

)

≤
(

sup f
)

[

n

M

]

ξ P
[

2 or more X
(0)
M(k−1)+r, ..., X

(M−1)
M(k−1)+r > any

]

≤
(

sup f
)

[

n

M

]

ξ

(

M
2

)

P
(

X
(i1)
M(k−1)+r > any, X

(i2)
M(k−1)+r > any

)

→ 0, n→∞ ,

which follows by (2.14). Furthermore, it is also true that
∫

[0,ξ]×Sc
y

f dN (2)
n = 0 .

Thus, in proving (3.2) it is enough to show that
∫

[0,ξ]×Sy

f dN (1)
n −

∫

[0,ξ]×Sy

f dN (2)
n → 0 ,

in probability. This last statement follows by the same arguments used in the

proof of Proposition 4.26 in Resnick [33]. We skip the details. Consider now the

map T : (Mp(E1))
M → Mp(EM ) such that, for a fixed value of r = 1..., M

T





∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o, i = 0, ..., M−1



 =

=
M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r vi

o .
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Note that this map is continuous and hence by the continuous mapping theorem

T

(

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

o, i = 0, ..., M−1

)

=

=
M−1
∑

i=0

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X
(i)
(k−1)M+r

vi

o =⇒

(3.3)

=⇒ T

(

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o, i = 0, ..., M−1

)

=

=
M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,rvi

o ,

in Mp(EM ). Finally the map T : Mp(EM ) → Mp(E1) defined by

T

(

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n

�
X

(0)
(k−1)M+r

,...,X
(M−1)
(k−1)M+r

�o) =
∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X(k−1)M+r

o ,

is almost surely continuous with respect to the distribution of (3.3). Hence ap-

plying the continuous mapping theorem we obtain

T

(

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n

�
X

(0)
(k−1)M+r

,...,X
(M−1)
(k−1)M+r

�o)=

=

∞
∑

k=1

ǫn (k−1)M+r

n
, a−1

n X(k−1)M+r

o =⇒

=⇒ T





M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r vi

o
=

=

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o ,

providing

∞
∑

k=1

ǫ{ k
n

, a−1
n Xk} =⇒

M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o .

The distribution of Mn = max1≤k≤n(Xk) and its corresponding extremal

index can now be obtained.
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Corollary 3.1. Under the conditions of the above theorem,

1. as n → ∞

P
(

Mn ≤ anx
)

→ exp

{

−
1

M
EWαx−α

}

,(3.4)

with

W =
M
∨

r=1

γr,1

M−1
∨

i=0

(

γr+M−i−1,r

∞
∨

j=1

{

U1,1,r · · · U1,M(j−1)+i,r

}

)

;

2. the periodic sequence (Xk)k∈Z has extremal index

θ =

{

1 −
∏M

s=1 EAα
r−s

}

EWα

∑M
r=1γr,1

∑M−1
i=0

(

∏i
s=1 EAα

r−s

)

γr+M−i−1,r

.

Proof:

P
(

Mn ≤ anx
)

= P

(

∞
∑

k=1

ǫ{ k
n

, a−1
n Xk}

(

(0, 1]×(x,∞]
)

= 0

)

=⇒

=⇒ P





M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
T

(i)
k,r

, J
(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o((0, 1]×(x,∞]
)

= 0



 .

The event






M
∑

r=1

M−1
∑

i=0

∞
∑

k=1

∞
∑

j=1

ǫn
J

(i)
k,r

Uk,1,r ···Uk,M(j−1)+i,r

o(x,∞] = 0







,

is equivalent to the event that none of the points

{

J
(i)
k,rUk,1,r · · · Uk,M(j−1)+i,r , r = 1, ..., M, i = 0, ..., M−1, k, j ∈N

}

,

exceeds x. The latter can be expressed as the set

M
⋂

r=1

M−1
⋂

i=0

∞
⋂

k=1

{

J
(i)
k,rV

(i)
k,r ≤ x

}

,(3.5)

where

V
(i)
k,r =

∞
∨

j=1

{

Uk,1,r · · · Uk,M(j−1)+i,r

}

.

For a fixed value of r = 1..., M and i = 0, ..., M− 1 it follows that
{

J
(i)
k,rV

(i)
k,r

}

k∈N

are the points of a PRM on (0,∞] with mean measure

(1/M) γr,1 γr+M−i−1,r E
(

V
(i)
1,r

)α
x−α ,
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(cf. Resnick, [32]). Since the set in (3.5) can be expressed as

{

J
(i)
k,rW ≤ x, r = 1, ..., M, i = 0, ..., M−1, k ∈ N

}

,

with

W =
M
∨

r=1

M−1
∨

i=0

V
(i)
1,r ,

the set
{

J
(i)
k,rW, r = 1, ..., M, i = 0, ..., M−1, k ∈ N

}

contains the points of

a PRM on (0,∞) with mean measure EWαx−α and the result follows.

Finally, we concentrate on the examination of the extremal index. Define

(X̂k)k∈Z as the associated independent M -periodic sequence of (Xk)k∈Z, i.e.,

X̂1, X̂2..., are independent random variables being the tail distribution of X̂r as

in (2.13), for r = 1, ..., M . Further we define M X̂
n = maxk(X̂k). From Theorem 2.1

and classical extreme value theory we obtain that

P
(

M X̂
n ≤ anx

)

→

(3.6)

→ exp

{

−
1

M

M
∑

r=1

τr

(

1

1−
∏M

s=1EAα
r−s

M−1
∑

i=0

(

i
∏

s=1

EAα
r−s

)

γr+M−i−1,r

)}

.

By comparing (3.4) with (3.6) the expression of the extremal index is obtained;

see Leadbetter et al. [26].

4. EXAMPLES

Consider that Xk is given in the form

Xk =
∞
∑

j=1

(

j−1
∏

s=1

bZk−s

)

bZ2
k−j , k ∈ Z ,

with b > 0 a positive constant. Note that the process (Yk)k∈Z defined as

Yk = Xk + Zk ,

satisfies the bilinear recursion

Yk = b Yk−1Zk−1 + Zk , k ∈ Z .

The reason in considering the tail behavior of Xk rather that Yk itself is due to

the fact that the contribution of the term Zk on the extremal behavior of Yk is

negligible.
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For deriving probabilistic and extremal properties of this process we will

make extensive use of the fact that Xk can be embedded in the form (2.4) if

(Ak, Bk) = (bZk, bZ
2
k). We further assume that

F̄r(x) = P
(

Z2
r > x

)

= x−α/2Lr(x) , r = 1, ..., M ,

and that

bα/2EZα/2
r < 1 , r = 1, ..., M .

It follows by Lemma 2.2 and the fact that

P
(

Br > x
)

= P
(

bZ2
r > x

)

= bα/2 x−α/2Lr(x) ,

for r = 1, ..., M and i = 0, ..., M−1

lim
x→∞

P
(

X
(i)
r > x

)

P
(

Z2
r > x

) =
b(i+1)α/2

∏i
s=1EZ

α/2
r−s

1 − bMα/2
∏M

s=1EZ
α/2
r−s

γr+M−i−1,r .

Furthermore, by Theorem 2.1, for r = 1, ..., M

lim
x→∞

P
(

Xr > x
)

P
(

Z2
r > x

) =
bα/2

1 − bMα/2
∏M

s=1 EZ
α/2
r−s

M−1
∑

i=0

(

i
∏

s=1

EZ
α/2
r−s

)

bαi/2 γr+M−i−1,r .

The expression of the extremal index can be calculated from Corollary 3.1,

providing

θ =

(

1 − bMα/2
∏M

s=1EZ
α/2
r−s

)

EWα/2

bα/2
∑M

r=1 γr,1
∑M−1

i=0

(

∏i
s=1 EZ

α/2
r−s

)

γr+M−i−1,r bαi/2
.

Extensions for bivariate bilinear models can be easily obtained from the previous

results; see Kumar [25] for details.
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[13] Embrechts, P.; Klüppelberg, C. and Mikosch, T. (1997). Modelling Ex-

tremal Events for Insurance and Finance, Springer-Verlag, Heildelberg.

[14] Feigin, P.; Kratz, M. and Resnick, S.I. (1996). Parameter estimation for
moving averages with positive innovations, Ann. Appl. Probab., 6, 1157–1190.

[15] Ferreira, H. (1994). Multivariate extreme values in T -periodic random se-
quences under mild oscilation restrictions, Stoch. Process. Appl., 49, 111–125.

[16] Ferreira, H. (1995). Extremes of a random number of variables from periodic
sequences, J. Stat. Plann. Inf., 45, 133–141.

[17] Ferreira, H. and Martins, A.P. (2003). The extremal index of sub-sampled
periodic sequences with strong local dependence, Revstat – Statistical Journal, 1,
15–24.

[18] Goldie, C.M. (1991). Implicit renewal theory and tails of solutions of random
equations, Ann. Appl. Probab., 1, 126–166.

[19] Grey, D.R. (1994). Regular variation in the tail behavior of solutions of random
difference equations, Ann. Appl. Probab., 4, 169–183.



Extremes for Solutions to Stochastic Difference Equations... 247

[20] Grincevic̆ius, A. K. (1975). One limit distribution for a random walk on the
line, Lithuanian Math. J., 15, 580–589.

[21] Horowitz, J. (1980). Extreme values for a nonstationary processes: an appli-
cation to air quality analysis, Technometrics, 22, 469–478.

[22] Kallenberg, O. (1983). Random Measures, Akademie-Verlag, Berlin.

[23] Kesten, H. (1973). Random difference equations and renewal theory for prod-
ucts of random matrices, Acta Math., 131, 207–248.

[24] Konstantinides, D.G. and Mikosch, T. (2005). Large deviations and ruin
probabilities for solutions to stochastic recurrence equations with heavy-tailed
innovations, Ann. Probab., 33, 1992–2035.

[25] Kumar, K. (1988). Bivariate bilinear models and their specification. In “Non-
Linear Time Series and Signal Processing” (R. Mohler, Ed.), Springer-Verlag,
U.S.A., 59–74.

[26] Leadbetter, M.R.; Lindgren, G. and Rootzén, H. (1983). Extremes

and Related Properties of Random Sequences and Processes, Springer-Verlag,
New York.

[27] Martins, A.P. and Ferreira, H. (2004). Extremes of periodic moving averages
of random variables with varying tail probabilities, Sort, 28, 161–176.

[28] Mikosch, T. (2003). Modeling dependence and tails of financial time series.
In “Extreme Values in Finance, Telecommunications, and the Environment”
(B. Finkenstaedt and H. Rootzén, Eds.), Chapman and Hall, 185–286.

[29] Niu, X.F. (1996). Nonlinear additive models for environmental time series, with
applications to ground-level ozone data analysis, J. Amer. Statist. Soc., 91, 1310–
1321.

[30] Niu, X.F. (1997). Extreme value for a class of nonstationary time series with
applications, Ann. Appl. Probab., 7, 508–522.

[31] Perfekt, R. (1994). Extremal behaviour of stationary Markov chains with ap-
plications, Ann. Appl. Probab., 4, 529–548.

[32] Resnick, S.I. (1986). Point process, regular variation and weak convergence,
Adv. Appl. Probab., 18, 66–138.

[33] Resnick, S.I. (1987). Extreme Values, Point Processes and Regular Variation,
Springer-Verlag, New-York.

[34] Resnick, S.I. and Van den Berg, E. (2000). Sample correlation behavior for
the heavy tailed general bilinear process, Commun. Statist. – Stochastic Models,
16, 233–258.

[35] Scotto, M.G. (2005). Extremes of a class of deterministic sub-sampled pro-
cesses with applications to stochastic difference equations, Stoch. Proc. Appl.,
115, 417–434.
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