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1. INTRODUCTION

Recent advances in computer science and engineering enable scientists to
collect and store datasets, typically characterized by high dimensionality. Such
data sets, also referred to as Big Data, consist of numerous measured variables,
the successful process of which aim to provide production of accurate predictions,
informative visualizations and foremost, the in-depth understanding of the un-
derlying patterns and relations between the variables of a dataset. However, the
complexity of Big Data raises new challenges in their effective handling. The mit-
igation of noise accumulation and multicollinearity are two of the most common
obstacles that the researcher is called upon to address and resolve. By noise, it is
meant the part of data that brings insignificant information, while the term mul-
ticollinearity is used to describe the existence of high intercorrelations between
variables. Further, in many cases, scientists have to deal with the existence of
a small number of available observations compared with the larger number of
measured variables, a situation referred as “small n, large p problem” (Ntotsis et
al. [15]).

Therefore, Dimensionality Reduction Techniques, hereafter DRT, have been
developed and utilized to overcome these potential situations that can severely
effect the modelling process when analyzing Big Data. DRT are defined as tech-
niques that process high-dimensional datasets to produce representations of lower
dimension, that retain as much as possible information from the original ones.
Dimensionality reduction is used in statistical tasks that serve various purposes,
such as classification, linear regression, etc, and it can be achieved either by
feature selection or by feature extraction.

Any technique that selects and subsets a number of the initial variables
-that are considered statistically significant, and formulates a new dataset con-
taining only these ones can be characterized as feature selection. By this pro-
cess, variables’ interpretation is preserved. Nevertheless, despite the advantage
of interpretability, information captured in interactions and correlations between
retained and removed variables is lost (Li and Zeng [13]). Some of the most fre-
quently used feature selection techniques, based either on wrapper methods (e.g.
Forward Feature Selection, Backward Feature Elimination), or either on regular-
ization methods (e.g. Least Absolute Shrinkage and Selection Operator). On the
contrary, in feature extraction the produced data set is consisted of transformed
variables and each variable is considered as a combination of all the initial ones,
that project data points to a low dimensional space. These transformations are
called components and they summarize information of initial variables by using
them to form linear combinations. Although, in this case the interpretability
of the initial variables is lost, feature extraction methods are very popular be-
cause they effectively replace initial variables by a few components that compress
the relevant information contained in the data and make visualizations feasible.
Among the most popular feature extraction techniques are Partial Least Squares
Method (PLS), Principal Component Analysis (PCA), and Linear Discriminant
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Analysis (LDA) and Canonical Correlation Analysis (CCA).

Despite their different approach, both types of dimensionality reduction
techniques can successfully mitigate noise accumulation and multicollinearity.
Further, analysis of data of reduced complexity leads to models with improved
accuracy/precision generated with less computational power and time, due to
the parsimonious descriptions of the available observations. As a result, their
implementation in Big Data is substantial and the increased scientific interest
about them has resulted in the proposal of various techniques.

In this article we attempt to evaluate the proficiency of a multilevel dimen-
sion reduction scheme: In the first place we estimate the regression coefficients of
original variables utilizing PLS method. Combining testing thresholds and model
assessment criteria, we are able to identify and remove uninformative variables
for the modelling of response variable. Further, the dimension reduction is com-
pleted with the integration of Partial Least Squares Regression on the modified
reduced data set. The efficiency of the proposed algorithm is investigated through
the implementation of Principal Component Regression (PCR) on the reduced
data set, independently from PLS, to compare the performance of the resulted
models, in terms of AIC, Adjusted R2 value and RMSECV information criteria.

In the past, many researchers have modified PLS and proposed refinements
of the classical algorithm in order to achive optimized results. Moving window
partial least squares regression (MWPLS; Jiang et al. [9]), group partial least
squares (gPLS; Liquet et al. [14]), sparse partial least squares (sPLS; Chung and
Keles [3] and Lé Cao et al. [11]) and sparse group partial least squares (sgPLS;
Liquet et al. [14]) are among these attempts. In our proposal, the main idea
is based on the fact that in linear regression those variables which are strongly
related with the outcome and valuable for its prediction are associated with a
large PLS regression (PLSR) coefficient (Wold et al. [18]).

In Section 2 the basics of PCA is presented while Section 3 discuss the pro-
posed feature selection PLS (FS-PLS) method. Some model assessment criteria
are provided in Section 4. The application of FS-PLS and its comparison with
PCA and PLS for the univariate and multivariate case is provided in Section 5.
The paper ends with the concluding remarks and possible future expansions of
this work.

2. PRINCIPAL COMPONENT ANALYSIS

Principal Components Analysis (PCA) is one of the most widespread di-
mensionality reduction techniques. It is a multivariate feature extraction method
through which it is achieved the transformation of a data matrix X into a low di-
mension matrix. The newly generated matrix contains the principal components,
i.e. the transformed variables of X matrix, that have been generated as linear
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combinations of the original variables. These components have the following de-
sirable properties: they are uncorrelated and their number is significantly reduced
compared to the corresponding number of the initial matrix. Thus, due to the
construction algorithm, they summary the majority of the initial information
discharged by noise.

Geometrically, through PCA data points are projected onto a low dimension
space, the coordinate system of which is oriented in the directions of maximized
variance of data points, the directions of Principal Components. The vectors
containing the weights of the original variables in the linear combinations that
define these directions are called loadings, while the coordinates of the available
observations in the new space are called scores.

Making use of these quantities, an X matrix of size n×p can be written as:

X = TmP ⊺
m + E

where T, P, E are correspondingly the matrices of scores, loadings and residual
errors. The latter expresses the information that is lost through this analysis and
it is the cost of the dimensionality reduction process. The index m indicates the
dimension of the new space -it is the number of selected Principal Components
and it is defined by the analyst.

Finally, the Principal Component Analysis of the original matrix is:

X = TmP ⊺
m.

This representation is an approximation of the initial matrix and can be used for
modelling.

2.1. Construction algorithm

The main elements of PCA are scores and loadings matrices and they can
be computed based on the Eigen-decomposition of either covariance matrix or
correlation matrix of the initial variables (Ntotsis and Karagrigoriou [16]).

Covariance matrix is used when all variables in X express the same mea-
surement unit. In opposite case, correlation matrix is used, since correlation is
independent from the scale of the variables. Regardless of the selected matrix,
data standardization is highly recommended in the presence of extreme multi-
collinearity. It is achieved by replacing each xij element in X matrix by:

xij − x̄j
sj

where sj indicates the standard deviation of the jth variable.
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The selection and computation of the selected matrix is followed by the
computation of its eigenvectors and its eigenvalues (λi). The latter are ordered
and based on them, the determination of the number of the retained PCs (m) in
the model is possible according to:

• Cumulative Percentage of total variation: The inclusion of PCs is inter-
rupted when the first m of them achieve to absorb 80%−90% of total vari-
ation of X. The cumulative percentage of the PCs variation is computed
by:

m∑
j=1

qj = 100

∑m
j=1 λj∑p
j=1 λj

.

• Kaiser’s rule: According to this rule the dimension of the summarized ma-
trix is equal to the number of eigenvalues that are larger than one.

• The scree graph: This graph illustrate the rank of eigenvalues against their
value. Usually, the curve that connects the points forms an elbow-like shape,
with the rank of the point located on its angle indicate the dimension of
the new matrix.

The formation of the p × m loadings matrix P follows, which consists of
the eigenvectors that correspond to the greatest m eigenvalues, set as columns.
This matrix is useful for the computation of the matrix T, the matrix of Principal
Components through the formula:

T = XP

where they constitute its columns, and they can be used in linear regression tasks
according to the following schema (Wehrens [17]):

Y = XB + E = (TP ⊺)B + E′ = T (P ⊺B) + E′ = TA+ E′

where A matrix indicates the regression coefficients of components and they arise
with the use of Ordinary Least Squares Method:

A = (T ⊺T )−1T ⊺Y.

These coefficients can be transformed to coefficients of the original variables:

B = PA = P (T ⊺T )−1T ⊺Y.

3. FEATURE SELECTION PARTIAL LEAST SQUARES (FS-PLS)

The FS-PLS procedure can be considered as an expansion of the original
Partial Least Squares Method (PLS). Thus, its definition arises through PLS.
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The PLS is a dimension reduction technique that achieves feature extraction. It
is quite popular in chemistry or chemometrics due to high correlations frequently
encountered among variables in those fields. It shares a common approach with
PCA: via its algorithm, few new uncorrelated variables that summarize the in-
formation in X matrix are produced. They are called latent variables and they
arise as linear combinations of the initial ones. The difference in this approach is
that these variables aim to summarize information that is directly related to the
response variables in a regression problem. To accomplish this, both X and Y
matrices are being analyzed through an iterative procedure that generates latent
variables (LV) oriented in the direction that maximizes the covariance between
the involved matrices. On the contrary, PCA focuses on the explanation of the
variability in X matrix independently from Y, an approach that can result in
loss of information, that could be proved valuable for prediction purposes. Fur-
thermore, another difference between the two methods is that PLS disposes of
a variation, that makes feasible the simultaneous modelling of multiple response
variables, where the intercorrelations among them are considered. Instead, PCA
runs regression steps multiple times to model multiple responses. PLS is often
considered more appropriate than PCA in cases with small sample sizes, multi-
collinearity and missing data.

From a geometrical point of view, similarly to PCA, X but here also Y data
are projected to low dimensional spaces defined by the latent variables. Making
use of the scores and loadings of the observations in the new spaces, an X data
matrix of size n× p and a Y data matrix of size n× k can be written as:

X = TmP ⊺
m + E

Y = UmQ⊺
m + F

where T and U are score matrices, P and Q are loading matrices and E and F are
matrices representing the information loss. The index m expresses the dimension
of the new space and it is determined by the analyst. Eventually, the summarized
approximation of the initial X matrix through PLS is:

X = TmP ⊺
m

and it can be used in linear regression.

3.1. Construction algorithm

The construction of a PLS model can be completed by a number of relative
algorithms. In this article we use the Nonlinear Iterative Partial Least Squares
algorithm (NIPALS), which was proposed by Herman Wold [18].

According to the NIPALS algorithm [5], a PLS model can be produced by
a process in every iteration of which a latent variable emerges. More specifically,
initially an X score vector (t) and a Y score vector (u) with maximized covariance
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are generated. Their directions are determined by weight vectors, w and c that
correspond to X and Y matrices, respectively:

t = Xw

u = Y c/(c⊺c).

Next the computation of a loading vector p follows:

p = X⊺t/(t⊺t)

that is used in a deflation process of the X matrix and through which the infor-
mation explained by the produced latent variable is subtracted:

Xnew = Xold − tp⊺.

This deflated matrix is then used in the next iteration of the algorithm for ob-
taining a new latent variable.

The procedure of emerging new variables is terminated based on the indi-
cations of model selection criteria. The computation of their values follows the
implementation of the regression step, demonstrating that in PLS dimension re-
duction and regression run simultaneously. The scheme in Partial Least Squares
Regression (PLSR) is identical to Principal Component Regression (PCR):

Y = XB + E = (TP ⊺)B + E′ = T (P ⊺B) + E′ = TA+ E′,

where
A = (T ⊺T )−1T ⊺Y.

Here, T and P matrices are formed by the apposition of the output scores vectors
(t) and loading vectors (p) as columns, respectively. The ith column in A matrix
contains the regression coefficients for the ith response variable in Y matrix. These
coefficients refer to the extracted latent variables, although the reference to the
original variables is attainable by the formula:

B = RA = R(T ⊺T )−1T ⊺Y.

The vectors in R matrix represent the weights of every original variable of X
matrix at the extracted latent variables, unlike the weight vectors wi that refer
to the deflated matrices Xi and their apposition forms W matrix, which is related
to R:

R = W (P ⊺W )−1.

As stated before, PLS is considered to be an effective dimension reduction
technique when it comes to obtaining an optimal statistical model. However,
like many similar feature extraction techniques, we end up with a model that
involves all original variables, significant, or not. What if there was a way to
take advantage of PLS algorithm in order to utilize it as a variable selection
technique? The FS-PLS is a novel approach that allows the researcher to use the
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PLS procedure to remove non-significant variables from the original dataset and
obtain a statistically significant model with minimum dimension when PLS is
applied. FS-PLS provides a new dataset with simpler structure than the original
one and still when its implementation is compared to PLS and PCA, the model
arises from FS-PLS is more efficient than the corresponding models of PLS and
PCA. This ”superiority” is due to the fact that the constructed model of FS-PLS
is easier to interpret since all irrelevant variables have been removed.

The beta coefficients (β) that emerge from the PLSR in conjunction with
the number of selected latent variables can be seen as a general rule of thumb for
disregarding variables from a dataset. We propose the following rule to determine
if a variable is significant:

Let us assume a model with Xj , j = 1, . . . ,m independent variables and let
v be the number of latent variables that have been selected as optimal from the
PLS regression of the aforementioned model. Let us also assume that βv

j being
the corresponding coefficient of Xj variable in the v-latent variable (each latent
contains all original variables). Now, let us define Equation 3.1 as follows:

(3.1) |βv
j | ≤ c,

where c ∈ [0.05, |max{βv
j }/2|) is a pre-determined non-negative value close to

zero and |max{βv
j }| is the maximum (absolute) value that exists in the coefficient

matrix of the selected v latent variables. If Equation 3.1 is satisfied for the j-th
variable, i.e. |β1

j | ≤ c, and |β2
j | ≤ c, . . . and |βv

j | ≤ c, then this variable can
be labelled as non-significant. By integrating this β-based constraint in the PLS
regression, it is feasible to discard the insignificant variables and still maintain
a robust model. A fixed value c is expected to complement effectively all other
aspects (purpose of the study, researcher’s judgement, etc.) of the decision-
making process. In that sense, it can be considered as a rule of thumb and is in
the judgement of the researcher which value of c is the one that results the optimal
PLS model without underfitting or overfitting the model under consideration. We
recommend a step procedure of 0.05 units (i.e. 0.05, 0.10, 0.15, etc.) until model
underfitting is observed based on the model selection criteria.

The FS-PLS algorithm consists of a two level implementation of the PLSR
algorithm. Initially, PLS method is applied on the original dataset and the re-
gression coefficients of the original variables are estimated with the use of models
consisted of up to three latent variables. Those variables with absolute values
of regression coefficients lower than the testing threshold in all three models are
considered insignificant for the prediction of response variable and they are re-
moved from the dataset. This distinction between the variables is followed by
the application of Partial Least Squares Regression to generate predictive mod-
els. Their competency is evaluated based on information criteria, such as AIC,
Adjusted R2 (R2

adj), RMSECV and Adjusted Wold’s R criterion, that lead to the
final model selection.

The following algorithm displays the proposed procedure
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Algorithm 1 Pseudocode for FS-PLS

Input: A data set consisted by a n× p matrix X and a n× 1 matrix Y, where
each Xj and Y column represents a variable, and a constant threshold c.
Output: A data set consisted of the minimum variables that can result in the
optimal PLS model.

Step 1: Application of PLSR on original data for the evaluation of regression
coefficients.

Step 2: Usage of model selection criteria for number of optimal latent variables
determination

Step 3: Application of the constrain proposed in Equation 3.1 for the location
of the statistically insignificant variables.

Step 4: Removal from the input dataset the variables that Step 3 indicate as
insignificant

Step 5: Repetition of Step 1 on the minimized original data

4. MODEL ASSESSMENT

In this section we briefly discuss classical model assessment criteria for PLS
and/or PCA.

The selection of the optimal number of latent variables to retain in a PLS
model is determined on the basis of the following criteria:

• Wold’s R criterion: It is a criterion specially designed to evaluate PLSR
models by comparing the contribution of a new extracted variable with the
previous one, to the predictive ability of the model. For this purpose, cross
validation technique is involved to compute Predicted Error Sum of Squares
(PRESS) statistic and R ratio as follows (Li et al. [12]):

R =
PRESS(m+ 1)

PRESS(m)

where m denotes the number of retained latent variables in the model. The
inclusion of the latent variable that makes R greater than one, terminates
the construction algorithm and the produce of new latent variables. The
first m of them are then included in the model.

• Adjusted Wold’s R criterion: In this permutation of Wold’s R criterion the
ratio R is compared to the values 0.90 (R0.90

adj ) and 0.95 (R0.95
adj ) rather than
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1, as in the original version. As it has been proven in Li et al. [12], these
variations give better results due to sample variability.

In many cases, when researchers deal with high dimensional datasets, vari-
able selection leads up to the construction of a PLS and/or a PCA model, in
order to remove insignificant variables in a preparatory level. As a result, the
production of sets of models that differ in the number of predictors they arise
from and also differ in terms of complexity, occurs. The selection of the opti-
mal model can emerge from various model selection criteria (Faraway [6]). The
most frequently utilized criteria that one can use when in PCA, PLS and similar
techniques have been documented below:

• R-squared (R2) value: It expresses the percentage of the explained variabil-
ity in the response variable and it is computed by:

R2 =

∑n
i (ŷi − ȳ)2∑n
i (yi − ȳ)2

It varies from 0 to 1 and higher values indicate more sufficient model per-
formance.

• Adjusted R2 value: It is a modification of R2 criterion that penalizes models
of higher complexity. It is computed by:

R2
adj = 1− (n− 1)

(n− p− 1)
(1−R2)

where n refers to the number of available observations and p to the number
of retained components.

• Akaike’s Information Criterion: This measure consider both the predictive
accuracy and the parsimony of a model to evaluate it, according to the
following formula:

AICm = −2(maximum log-likelihood)+ 2m

where m is the number of the retained predictors in the model. Among
the comparable models, the most sufficient performance is presented by the
model with the lowest AIC value.

• RMSECV: This measure involves cross validation to give an estimation
of the variation/divergence of the predicted values from the true values
of unseen observations, in lack of available data that could be used as a
test set. The criterion uses the cross-validation approach and its value is
computed as:

RMSECV =

√∑
j

∑
i(yij−ŷij)2

Nj

k

where ŷij is the estimation of yij , Nj is the number of observations in
the jth fold and k is the number of folds in cross validation procedure.



The Utilization of PLS for Simultaneous Feature Selection and Extraction 11

Lower RMSECV values indicate better predictive capacity of the compared
models.

By utilizing R2
adj , we aimed to assess the models’ ability to explain the

variability in the dependent variable while considering the complexity of the re-
gression models. This metric allows for a fair comparison between the PLS and
PCA regression models, taking into account their respective number of latent
variables or principal components and potential differences in the predictive per-
formance. Moreover, adjusted R-squared aligns with the principle of parsimony,
which encourages the use of simpler models that explain the data effectively. The
inclusion of adjusted R-squared as one of our evaluation criteria supports the se-
lection of models that strike a balance between explanatory power and model
complexity.

We acknowledge that R2
adj should not be the sole criterion for model evalu-

ation, and we have also incorporated other well-established metrics such as AIC,
Wold’s R criterion, and RMSECV. These metrics provide complementary in-
sights into model performance, including goodness of fit, model complexity, and
prediction accuracy.

By utilizing a combination of these metrics, we aimed to provide a compre-
hensive evaluation of the PLS and PCA regression models, taking into consider-
ation various aspects of model performance. This approach ensures a robust and
thorough assessment of the models and allows for informed comparisons between
them.

To address the issue of information control in our proposed methodology,
we evaluate the same chemometrics datasets that have been extensively used in
previous studies on PLS regression. These studies, have already addressed the
concern of information preservation within PLS models. For instance, in first row
of Table 1 (case where c is −), we present a typical PLS model used as a baseline
in previous works. Our goal is to simplify this model by removing variables
while maintaining its information content and robustness. To ensure information
control, we employ the Wold’s R criterion, specifically developed for evaluating
PLS models. Additionally, we utilize other established metrics such as AIC,
adjusted R-squared, and RMSECV to comprehensively assess the performance of
our methodology. By incorporating these evaluation metrics and techniques, we
ensure that the simplification process retains the essential information captured
by the original PLS model. This allows us to strike a balance between model
complexity and interpretability while preserving the predictive performance of
the PLS regression. It is important to note that the information control aspect
has already been addressed in the relevant literature on PLS regression, which
serves as the foundation for our work.
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5. NUMERICAL APPLICATIONS

In this section the application of the FS-PLS on near infrared (NIR) spec-
troscopy data is presented.

5.1. Univariate FS-PLS regression – FS-PLSR

In the first case, in the gasoline dataset, which is found in the pls package,
X matrix includes 401 diffuse reflectance measurements and Y matrix is consisted
of one response variable, that corresponds to the number of octanes of the total 60
observations (Kalivas [10]). Due to the multicollinearity and the rate of available
observations to X-variables, dimensionality reduction is demanded in order to
generate a linear regression model. Applying the FS-PLS optimization, we first
computed the estimators of PLS-regression coefficients of all 401 variables in
models built with up to three components. Their absolute values were then
compared with predefined constant c of 0.10, 0.20, 0.25 and 0.30. The final X data
matrices contextually included only the predictive variables with absolute values
of PLS-coefficients higher than the testing threshold in one-, two- and three-
component models (1LV, 2LV, and 3LV). In the next step we reapplied the PLSR
method to the selected variables and the resulted models were evaluated based
on AIC, R2

adj , R
0.90
adj , and R0.95

adj and RMSECV. Table 1 and Table 2 summarize
the results:

1 LV 2 LV 3 LV 4 LV 5 LV 6 LV

c Attributes R0.90
adj R0.95

adj RMSECV AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj

- 401 4 4 7 203 30% 52 94% 3 97% -2 97% -25 98% -36 98%

0.10 374 4 4 7 203 30% 52 94% 4 97% -3 97% -25 98% -36 98%

0.20 307 4 4 7 203 31% 52 94% 6 97% -3 97% -24 98% -35 98%

0.25 245 4 6 6 202 31% 51 94% 9 97% -4 98% -23 98% -35 98%

0.30 217 4 4 6 202 31% 51 94% 12 97% -5 98% -22 98% -35 98%

Table 1: Information criteria values of FS-PLSR models, where At-
tributes is the number of original variables.

In Table 1, the reduction in AIC values in all two-component models and the
simultaneous increase of their R2

adj values is noteworthy. These changes strongly
indicate the outstanding enhancement of the corresponding models when the
second component is retained in the model. Further, the most sufficient FS-PLSR
model is proposed, the four-component model, which is based on the 0.30 testing
threshold and it includes only 217 variables in X matrix, which consist of 46% of
the initial observations. This choice is established in accordance with the adjusted
Wold criterion, which is specialized to evaluate PLS models, complemented by
the high R2

adj value and the significant reduction in AIC value. It should be noted
that AIC values tend to decrease as more components are added to the model.
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However, the rate of decrease is approximately fixed after the addition of the
fourth component. Moreover, the criteria values of the models that resulted from
the thresholds 0.25 and 0.30 are alike, though the latter constraint conveys to
further dimensional reduction. At this point, it should be mentioned that more
restrictive thresholds were tested; they were found to lead to over-fitted models
and rejected.

The results of the PCA regression (PCR) models, generated with the
datasets arising from the aforementioned thresholds, are displayed in Table 2.
As the most adequate model is proposed the five-component model of the last
threshold, since R2

adj value is close to 1 and AIC value does not change suffi-
ciently with the addition of more components in the model. In contradiction to
the FS-PLSR models, the inclusion of the second component does not improve
the model performance in any case, while the minimization of RMSECV values
proposes much more complicated models than in FS-PLSR cases.

1 LV 2 LV 3 LV 4 LV 5 LV 6 LV

c RMSECV AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj

- 17 213 17% 215 17% 192 43% 6 97% 6 97% 8 97%

0.10 17 213 17% 215 17% 189 46% 6 97% 6 97% 7 97%

0.20 15 213 17% 214 17% 174 58% 6 97% 5 97% 7 97%

0.25 15 213 17% 214 18% 147 73% 7 97% 5 97% 5 97%

0.30 14 213 17% 214 18% 133 79% 7 97% 5 97% 5 97%

Table 2: Information criteria values of PCR models

Artigue and Smith [2] have examined several challenges related to PCR.
However, our study specifically focuses on PLSR, which addresses a key limitation
of PCR by considering both the independent and dependent variables, thereby
offering a solution to the mentioned issue which is one of the main arguments of
the article.

Additionally, taking into account the R2
adj criterion and the percentages of

explained variability in the models, as displayed in Figure 1, we conclude that in
FS-PLSR the two-component and three-component models can lead to reliable
results, preserving the advantage of visualization. Note that all c constrains
resulted in similar explained variability and thus only one’s results are being
presented in Figure 1. These FS-PLSR models expose high R2

adj values, while
they leave unexplained a negligible percentage of the response variable. In PCR
instead, the inclusion of the first four components fails to provide a model with
sufficient performance. Finally, the comparison of these methods in terms of
AIC values verifies the predominance of FS-PLSR against PCR: all AIC values
in PCR models (with up to three components) are significantly smaller than the
corresponding FS-PLSR model (Table 2).
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Figure 1: Percentage of explained variability of FS-PLSR and PCR mod-
els

5.2. Multivariate FS-PLS regression – FS-MPLSR

In the second case, the performance of the proposed FS-MPLSR optimiza-
tion over a multivariate response is investigated (the multivariate case of FS-
PLSR will be addressed by FS-MPLSR in the remaining article). In the corn
data set [4], that we processed, the Y matrix consists of four variables, -moisture,
oil, protein and starch, and X matrix includes 700 NIR spectroscopic attributes.
Note that the FS-MPLSR algorithmic procedure is similar to the FS-PLSR with
the only deference to be the number of response variables that form the latent
variables. In the multivariate case, the modelling process aims to reveal and
enable chemists to predict the moisture, oil, protein and starch content in dif-
ferent samples. In this situation, the implementation of Ordinary Least Squares
as a linear regression method would be an inappropriate choice, since the X
matrix is characterized by the existence of multicollinearity. Its mitigation is
achieved through dimensional reduction, based on the absolute values of the
FS-PLS-regression coefficients, in a similar way as in the univariate case. The
FS-MPLSR algorithm was applied on the initial dataset to estimate these values.
The computation of Adjusted Wold’s R criterion R0.90

adj led to the conclusion that
the sufficient modelling of the four Y-variables requires the inclusion of first 5,
21, 7 and 8 FS-PLS-components respectively. Based on this conclusion and the
use of testing thresholds we defined the final reduced set of predictors as the
intersection of the following four subsets:

• The first subset included the variables considered as statistically significant
for Y1. The absolute values of regression coefficients of these variables are
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higher than the tested thresholds in one- to five-component models.

• The second subset included the variables considered as statistically signifi-
cant for Y2. The absolute values of regression coefficients of these variables
are higher than the tested thresholds in one- to twenty one-component mod-
els.

• The third subset included the variables considered as statistically significant
for Y3. The absolute values of regression coefficients of these variables are
higher than the tested thresholds in one- to seven-component models.

• The fourth subset included the variables considered as statistically signifi-
cant for Y4. The absolute values of regression coefficients of these variables
are higher than the tested thresholds in one- to eight-component models.

The thresholds that we tested were 2, 2.25, 2.50 and they resulted in the
removal of 44, 69, and 99 variables from the original dataset, correspondingly.
The new reduced data matrices were then processed via the FS-MPLSR and PCR
methods. Based on the values of the aforementioned model selection criteria we
inferred that the third threshold examined (2.50) generated the most efficient
models. Table 3 and Table 4 summarize the values. The other options led to
over-fitted or under-fitted models.

1 LV 2 LV 5 LV 7 LV 8 LV
omitted

LV
21 LV

AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj · · · AIC R2

adj

Y1 1 51% 2 52% -50 80% -142 96% -166 97% · · · -366 99%

Y2 -62 27% -62 27% -68 37% -87 55% -154 86% · · · -214 95%

Y3 76 17% 65 32% -35 88% -56 92% -60 92% · · · -181 99%

Y4 153 0% 145 13% 63 78% 28 88% 7 92% · · · -131 99%

Table 3: Information criteria values of the FS-MPLSR model based on
the remaining 601 attributes (700-99).

1 LV 2 LV 5 LV 7 LV 8 LV
omitted

LV
21 LV

AIC R2
adj AIC R2

adj AIC R2
adj AIC R2

adj AIC R2
adj · · · AIC R2

adj

Y1 1 52% 1 53% -115 93% -153 96% -151 96% · · · -371 99%

Y2 -62 27% -61 26% -69 38% -116 72% -124 76% · · · -158 88%

Y3 76 17% 74 22% 22 68% -24 86% -56 92% · · · -112 97%

Y4 153 0% 151 0% 120 44% 76 74% 52 83% · · · -47 97%

Table 4: Information criteria values of the PCR model based on the re-
maining 601 attributes.

The optimum FS-MPLSR model retained twenty one components. The
model complexity was determined in accordance with the theory (Wold et al.
[18], which states that the FS-MPLSR model should include every component
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that is found to be significant for at least one variable of the set of responses. In
this way information in Y matrix is significantly explained, as the percentages of
the explained variability are 99.95% for Y1, 97.06% for Y2, 99.43% for Y3 and
99.55% for Y4, while the overall information of the new X matrix is utilized. We
can infer that the substantial dimensionality reduction that we achieved through
the PLS-optimization, resulted in the generation of a unique model capable to
predict the four responses at the same time, with the cost of an insignificant
percentage of unexplained information. Nevertheless, a less strict consideration
of the theoretical frame would yield an eight-component model with the profit
of further dimensionality reduction and with the cost of a less accurate, but yet
sufficient, prediction of Y2 response variable.

On the contrary, the PCR method generated four individual models, one for
the prediction of each response variable, that needed twenty one components to
capture 99.95%, 92.51%, 98.21% and 98.17% of the variability of the responses.
These percentages, in combination with the results of the information criteria
presented in Table 3, demonstrate that FS-MPLSR model is more adequate in
all four responses.

6. CONCLUDING REMARKS

The aim of this study is to introduce PLS as a method for variable selection
in a variety of fields, including time series analysis. Although this method is
commonly used in a regression analysis, it can also be implemented in various
other applications such as discriminant analysis, and hierarchical modelling. It
can handle complex data sets and situations that cannot be solved by standard
methods.

FS-PLS is considered optimal in evaluating more complex structures with a
more realistic and holistic view. It has been proved to be a non-time consuming
process and statistically efficient method with high prediction accuracy. As a
recently found technique in the field, many aspects of its underlying mechanism
have recently been revealed and yet, there is no strictly defined frame for its
application. As a result, the method is considered to be very flexible and many
modifications and experimentations can be tested. In this work the utilization
of PLS approach was used as a variable selection criterion and by expansion as
a dimension reduction technique. The FS-PLS procedure was able to remove
up to 45% and 14% of the original variables in two frequently used datasets in
chemometrics, one univariate set and one more complex multivariate one.

Although PLS is considered to be useful in small datasets, through the
FS-PLS methodology it has been found to be useful in high-dimensional and/or
big data analysis. Although, the applications is chosen from the field of chemo-
metrics, the applicability was quite wide covering biology, physics, chemistry,
business, and social sciences among others.
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In the univariate case, the final selected model is based on only 217 predic-
tors out of an initial set of 401. The three-component model, which is suggested
as optimum, explains the major part of information captured in the data, while
it is parsimonious, with high prediction ability and can easily be used for visual-
izations. The comparison with the corresponding PCR model, which was based
on information criteria AIC, R2

adj , and RMSECV, demonstrates that FS-PLSR
model gave more sufficient results.

In the multivariate case, the problem appears to be more complicated. Ini-
tially FS-MPLSR was implemented on the data out of necessity, due to the fact
that correlations were observed between the response variables. We estimated
regression coefficients and we determined the significant components for each
response variable. We compared the absolute values of the coefficients in signif-
icant components with thresholds and then, we defined four sets of predictors,
which contained the important predictors for the individual responses, respec-
tively. Their intersection consisted the final set of predictors for the multivariate
regression model. This way, in the final selected model 99 less predictors than in
the initial set were included. The simultaneous process of the response variables
generated a single regression model with AIC values lower than the individual
PCR models in all four response variables. The increased number of constructed
models in the PCR method is associated with high complexity and computational
cost of the whole analysis. This, in combination with the fact that less variability
is explained in the second response variable with the PCR method, leads to the
suggestion that a FS-PLSR model is optimum also in the multivariate case.

While our work primarily focuses on the predictive performance and fea-
ture selection aspects of the proposed FS-PLS methodology, we acknowledge the
importance of addressing the issue of interpretability in regression analysis. It is
worth noting that interpretability is a complex aspect in high-dimensional set-
tings, and various techniques have been proposed in the literature to enhance
it. In future research, we can explore the application of these techniques, such
as sparse PLS (SPLS), non-negative matrix factorization (NMF), and indepen-
dent component analysis (ICA) have been proposed in the literature to enhance
interpretability in high-dimensional settings and improve techniques like PCA
and PLS. By incorporating these approaches, we can potentially provide a more
comprehensive analysis that combines predictive accuracy, feature selection, and
enhanced interpretability. This avenue of research holds promise for advancing
the field of PLS regression and its applicability in practical domains.
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