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1. INTRODUCTION

In medical research, count variables with many zeros are pervasive. Models
that deal with and analyze a high proportion of zeros are known as zero-inflated
models. [23] and [24] performed Hurdle models for modeling zero-inflated data.
Also, the zero-inflated negative binomial (ZINB) regression is used for count data
that exhibit overdispersion and excess zeros. In general, zero-inflated power se-
ries distributions are applied to assess the excess of zeros [30]. [20] have studied
zero-inflated modified power series distributions along with their applications for
simulated data. [33] considered non-zero-inflated modified power series distribu-
tions and extended the results of [20]. [35] discussed a Bayesian paradigm for the
ZIP and ZINB models for analyzing the data set of a study of psychiatric out-
patient services. [38] discussed the application of the ZI and Hurdle models for
longitudinal studies concerning vaccination safety. [36] studied different aspects
of the zero-inflated power series distributions. [5] considered the ZIP, ZINB, and
Hurdle models, to observe whether there is any effect of the proportion of zeros
in the performance of the models with the given overall rate of the counts. [12]
reviewed the zero-inflated and hurdle models and highlighted their differences in
terms of their data-generating processes. [43] surveyed the developments in han-
dling zero inflation for correlated count settings. [3] discussed the approximate
Bayesian approach for zero-inflated longitudinal models.

In longitudinal studies, data are collected repeatedly for the same set of
units on more than one occasion. Random effect models have often been used in
longitudinal data analysis since they allow for association among repeated mea-
surements due to unobserved heterogeneity. To take into account the correlation
among repeated measurements for each subject, zero-inflated count models with
random effects have been developed. For example, a random effect was used to
account for the within-subject dependency in the Poisson part of the ZIP model
[21]. [34] proposed a random effect model to analyze the ZI longitudinal count
data. [28] incorporated shared subject-specific random effects in each part of
the zero-inflated model to account for zero-inflation and overdispersion within
longitudinal count measurements.

Variable selection is an essential part of regression modeling for longitu-
dinal data because many variables are measured and it is common in practice
to include only a subset of important variables in the model. [44] discussed a
variable selection approach for zero-inflated count data analysis based on the
adaptive lasso technique. [31] assumed that the regression coefficients were mu-
tually independent with a two-point mixture distribution made up of a uniform
flat distribution (the slab) and a degenerate distribution at zero (the spike). [13]
used a different prior for the regression coefficients. This involved a scale (vari-
ance) mixture of two normal distributions. In particular, the use of a normal
prior was instrumental in facilitating efficient Gibbs sampling of the posterior.
This made spike and slab variable selection computationally attractive and heav-
ily popularized the method. Normal-scale mixture priors constitute a wide class
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of models termed spike and slab models [25]. Spike and slab models are extended
to the class of re-scaled spike and slab models [25]. [29] developed a Bayesian
variable selection model for multivariate count data with excess zeros that incor-
porates information on the covariance structure of the outcomes. [14] introduced
the basic concepts of the Bayesian approach for variable selection based on model
choice.[42] studied some of the classic and contemporary literature on parametric
zero-inflated count regression models. [15] studied Bayesian variable selection in
high dimensional data sets while simultaneously accounting for the error-prone
nature of self-reported outcomes. [26] presented a Bayesian analysis of linear
mixed models for quantile regression based on a Cholesky decomposition of the
covariance matrix of random effects. [32] considered linear regression models
for count data, specifically negative binomial regression models and Dirichlet-
multinomial regression models, they also addressed variable selection criteria via
the use of spike-and-slab priors on the regression coefficients. [1] discussed new
variable selection methods for the power series, specifically ZIP and ZINB transi-
tion models using LASSO, MCP, and SCAD penalties for analyzing longitudinal
count data with extra zeros.

In this paper, we focus primarily on Bayesian approaches for variable selec-
tion that use spike and slab priors in the zero-inflated power series (ZIPS) model.
For posterior inference, we apply MCMC methods via Gibbs sampling, and a test
for variable selection of regression coefficients is considered by using both a local
Bayesian false discovery rate and a Bayes factor procedure. After checking the
performance of the proposed model using some simulation studies, we apply the
proposed method to analyze the RAND health insurance experiment data.

This paper is organized as follows. Section 2 is a review of ZIPS distribu-
tions and the use of these distributions for analyzing zero-inflated longitudinal
data. Also, this section includes some notation and definitions of models. Section
3 includes the likelihood functions, the Bayesian variable selection method, using
spike and slab priors, and the test for variable selection of the regression coeffi-
cients. In Section 4, some simulation studies are performed. In Section 5, after
describing the RAND health insurance experiment data, the data is analyzed
using the proposed approaches. The last Section includes some conclusions.

2. MATERIALS AND METHODS

2.1. Notation

Let Yij , i = 1, · · · , n and j = 1, · · · , T be the longitudinal measurements
for the ith individual at the jth time point. The ZIPS model is given as follows:

P (Yij = yij |µij , πij) =

{
(1− πij)p(Yij = yij |µij) yij = 1, 2, · · ·

πij + (1− πij)p(Yij = 0|µij) yij = 0.
(2.1)
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where p(Yij = yij |µij , πij) is a member of the power series (PS) family with the
general form of

byijµ
yij
ij

f(µij)
, yij = 0, 1, · · · ; i = 1, · · · , n; j = 1, · · · , T.(2.2)

where byij > 0, µij is positive and f(µij) =
∑∞

yij=0 byijµ
yij
ij is a finite and dif-

ferentiable function of µij . The Poisson distribution and the negative binomial
distribution belong to the PS distributions with byij = 1

yij !
, f(µij) = exp (µij),

byij =
Γ(yij+θ)
Γ(yij+1) , and f(µij) = Γ(θ)(1 − µij)

−θ, respectively, where θ > 0 is an

overdispersion parameter for negative binomial model. For considering ZIPS
random effects models µij and πij , i = 1, · · · , n, j = 1, · · · , T are considered as
follows:

log(µij) = xxx
′
ijβββj + κ

′
i1bbbi1,

logit(πij) = zzz
′
ijαααj + κ

′
i2bbbi2,(2.3)

where βββ = (β1, · · · βp)
′ and ααα = (α1, · · · , αq)

′ are the outcome-specific
vectors of fixed-effect regression coefficients. Also, κκκ1 and κκκ2 are, respectively,
q1-dimensional and q2-dimensional explanatory variables. The random effects
bbbi = (bbbi1, bbbi2)

′, i = 1, · · ·, n characterize the unobserved characteristics that are
associated with the mean count for time j of subject i such that bbbi ∼ Nq1+q2(000,DDD),
where NK(000,DDD) denotes a K-variate normal distribution with mean 000 and co-
variance matrix DDD.

2.2. Bayesian variable selection for ZIPS random effects model

We complete the Bayesian formulation of the proposed framework by spec-
ifying prior distributions for the unknown parameters. To facilitate outcome-
specific variable selection, we adopt spike and slab priors for the regression pa-
rameters of equation (2.3). A spike and slab prior is a mixture of spike and slab
distributions, where the spike is a distribution with its mass concentrated around
zero and the slab is a flat distribution spread over the parameter space. The spike
component, representing a null effect, can be either a positive mass at zero (Dirac
spike, DS,[29, 41]) or a normal distribution with mean zero and a small variance
(continuous spike, CS,[13]). In DS, a point mass at zero represents the prior
belief that the coefficient in the regression equation is zero and the corresponding
predictor has no relevance to the outcome, but in CS, each predictor’s coefficient
is modeled as coming from a mixture of two normal distributions with different
variances: one with a density concentrated around zero, the other with a density
spread out over large plausible values. Thus, unlike DS, it allows for ‘almost zero’
regression coefficients which is a much more realistic assumption than assuming
that a predictor has absolutely no effect on the outcome. The slab component
represents a non-null effect. [31] introduced this type before facilitating variable
selection by constraining regression coefficients to be zero or not. Such a prior has
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been widely used in the context of Bayesian stochastic search variable selection
[13]. Figure 1 shows graphical examples of the CS and DS priors; slab densities
are colored red and spike densities are colored blue.

Figure 1: Example of the continuous spike (a) and the Dirac spike priors
(b).

2.2.1. Continuous spike

The hierarchical setup of the zero-inflated random effects power series with
CS prior [13, 3] for the regression coefficients of rate and probability models is
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given by:

Yij |bbbi ∼ ZIPS (πij , µij , aaa),

bbbi ∼ N2(000, DDD),

βk|ζk, σ2
βk

∼ ζkN(0, σ2
βk
) + (1− ζk)N(0, τ2βk

), k = 1, · · · p,
τ2βk

|c1k, c2k ∼ IG(c1k, c2k),

ζk|λβk
∼ Ber(λβk

),

λβk
|f1k, f2k ∼ Beta(f1k, f2k),

αl|ωl, σ
2
αl

∼ ωlN(0, σ2
αl
) + (1− ωl)N(0, τ2αl

), l = 1, · · · q,
τ2αl

|d1l, d2l ∼ IG(d1l, d2l),

ωl|λαl
∼ Ber(λl),

λαl
|m1l,m2l ∼ Beta(m1l, m2l),

DDD ∼ IWishart(r, ΨΨΨ),

aaa ∼ π(aaa),(2.4)

where ζζζ = (ζ1, · · · ζp)
′, ωωω = (ω1, · · · ωq)

′ are vectors of binary latent variables
indicating the membership of each regression coefficient to one of the mixture
components, such that if ζk = 1, then βk ∼ N(0, σ2

βk
), otherwise, βk ∼ N(0, τ2βk

)

and its components can be considered non-zero values for large values of τ2βk
and

aaa are the other parameters. The values of σ2
βk

and σ2
αl

should be small (e.g. −3

or −4). By these conditions, N(0, σ2
βk
) and N(0, σ2

αl
), leads us to a spike prior.

The values of c1k and c2k are considered such that τβk
is large enough to yield

a slab prior. ZIPS(., ., .) is used to denote a zero-inflated power series random
effects model, IG(., .) denotes an inverse gamma distribution, Beta(., .) denotes a
beta distribution, Ber(.) is used to denote a Bernoulli distribution, π(aaa) denotes
the prior of aaa; for example, a > 0 is an overdispersion parameter in the ZINB
model, and the π(a) = Γ(r1, r2) where Γ(., .) denotes a gamma distribution and
IWishart(r,ΨΨΨ) denotes an inverse Wishart distribution with parameters degrees
of freedom r and scale matrix ΨΨΨ. Note that, the natural conjugate prior to the
multivariate normal distribution is the inverse Wishart distribution [4]. Due to its
conjugacy, this is the most common prior implemented in the Bayesian paradigm.
However, this prior has issues: the uncertainty for all variances is controlled
by a single degree of freedom parameter (r) [16], the marginal distribution for
the variances has a low density in a region near zero [17], and there is a prior
dependence between correlations and variances [40]. These characteristics of the
prior can impact posterior inferences about the covariance matrix. Here, the
hyperparameters are chosen to be uninformative in the simulation study and
application sections chosen to be uninformative.
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2.2.2. Dirac spike

The hierarchical setup of zero-inflated random effects power series with a
DS prior [29, 41] for the regression coefficients of rate and probability models is
given by:

Yij |bbbi ∼ ZIPS(πij , µij , aaa),

bbbi ∼ N2(000,DDD),

βk|γk, σ2
βk

∼ γkδ0(βk) + (1− γk)N(0, σ2
βk
), k = 1, · · · , p,

σ2
βk

∼ IG(c1k, c2k),

γk ∼ Beta(f1k, f2k)

αl|νl, σ2
αl

∼ νlδ0(αl) + (1− νl)N(0, σ2
αl
), l = 1, · · · , q,

σ2
αl

∼ IG(d1l, d2l),

νl ∼ Beta(m1l,m2l),

DDD ∼ IWishart(r,ΨΨΨ),

aaa ∼ π(aaa),(2.5)

where, δ0(.) denotes a Dirac mass at 0, such that δ0(βk) = 1 if βk = 0 and
δ0(βk) = 0 if βk ̸= 0 and the other notations are the same as those described for
CS.

3. STATISTICAL INFERENCE

Our inference is based on Metropolis-Hastings within Gibbs samplers be-
cause the full conditional distributions of the regression coefficients and the ran-
dom effects do not have closed forms. The full conditional posterior distributions
of all parameters and for all models are presented in supplementary materials A
and B for CS and DS, respectively. A local Bayesian false discovery rate and a
Bayes factor are proposed to perform the test of checking the significance of the
regression coefficients [11].

3.1. Bayesian Implementation

3.1.1. Continuous spike

Let θθθ = (bbb,DDD,aaa, {βk, σ2r
βk
, ζk, λβk

}pk=1, {αl, σαl
, ωl, λαl

}ql=1) be the vector of
all the unknown parameters in the model, yyy = (yyyi, ···, yyyn)′, xxx = (xxx1, · · · ,xxxn)′, πππ =
(π1, · · · , πn)

′, µµµ = (µ1, · · · , µn)
′, yyyi = (yi1, · · · , yiT )

′, xxxi = (xi1, · · · , xip)′ and
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zzzi = (zi1, · · · , ziq)
′.

The likelihood function of the model can be written as:

L(θθθ|yyy,xxx,πππ,µµµ) =

n∏
i=1

T∏
j=1

(1− πij)p(Yij = yij |µij)
1−I(yij)

× {πij + (1− πij)p(Yij = 0|µij)}I(yij),(3.1)

where, [left=I(Yij) =]alignat = 20 yij = 1, 2, · · ·
1 yij = 0. The joint posterior distribution of the unknown parameters is as
follows:

π(θ|yyy,xxx) ∝ L(θθθ|yyy,xxx,πππ,µµµ)× p(βββ|τττ21, ζζζ,λλλ1)× p(τττ21)× p(ααα|τττ22,ωωω,λλλ2)× p(τττ22)× p(bbb|DDD)

× p(DDD)× p(ζζζ|λλλ1)× p(ωωω|λλλ2)× p(λλλ1)× p(λλλ2)× p(aaa)

∝
n∏

i=1

T∏
j=1

{(1− πij)p(Yij = yij |µij)}1−I(yij){πij + (1− πij)p(Yij = 0|µij)}I(yij)

× ϕ(bbbi,000,DDD)|DDD|
−(r+2+1)

2 exp(−DDD−1ΨΨΨ

2
)

×
p∏

k=1

ζkϕ(βk, 0, σ
2
βk
) + (1− ζk)ϕ(βk, 0, τ

2
βk
)× τ2c1k−1

βk
exp(− c2k

τ2βk

)

×
q∏

l=1

ωlϕ(αl, 0, σ
2
α) + (1− ωl)ϕ(αl, 0, τ

2
α)τ

2d1l−1
αι exp(−d2l

τ2αl

)

×
q∏

l=1

(λαl
)ωl(1− λαl

)1−ωl

p∏
k=1

(λβk
)ζl(1− λβk

)1−ζl

×
p∏

k=1

(λβk
)f1k−1(1− λβk

)f2k−1
q∏

l=1

(λαl
)m1l−1(1− λαl

)π(aaa).

Where λλλ1 = (λβ1 , · · · , λβp)
′ and λλλ2 = (λα1 , · · · , λαq)

′. For applying MCMC
methods, the full conditional posterior distributions of all the unknown parame-
ters for this model are computed and presented in supplementary material A.

3.1.2. Dirac spike

Let θθθ = (bbb,DDD,aaa, {βk, σ2
βk
, γk}pk=1, {αl, σ2

αl
, νl}ql=1) be the vector of all

the unknown parameters in the model, yyy = (yyyi, · · ·, yyyn)′, xxx = (xxx1, · · · ,xxxn)
′, πππ =

(π1, · · · , πn)′, µµµ = (µ1, · · · , µn)
′, yyyi = (yi1, · · · , yiT )′, xxxi = (xxxi1, · · · ,xxxip)′ and

zzzi = (zzzi1, · · · , zzziq)
′. The joint posterior distribution of all unknown parameters,
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given data, is as follows:

π(θθθ|yyy,xxx) ∝ L(θθθ|yyy,xxx,πππ, µµµ)× p(βββ|γγγ,σσσ2
1)× p(σσσ2

1)× p(ααα|ννν,σσσ2
2)× p(σσσ2

2)p(bbbi|DDD)

× p(DDD)× p(γγγ)× p(ννν)× p(aaa)

∝
n∏

i=1

T∏
j=1

{(1− πij)p(Yij = yij |µij)}1−I(yij){πij + (1− πij)p(Yij = 0|µij)}I(yij)

× ϕ(bbbi, 000, DDD)|DDD|
−(r+2+1)

2 exp(−DDD−1ΨΨΨ

2
)

×
p∏

k=1

γkϕ(βk, 0, σ2
βk
) + (1− γk)δ0(βk)× σ2c1k−1

βk
exp(− c2k

σ2
βk

)

×
q∏

l=1

νlϕ(αl, 0, σ2
αl
) + (1− νl)δ0(α)σ

2d1l−1
αι exp(− d2l

σ2
αl

)

×
p∏

k=1

γf1k−1
k (1− γk)

f2k−1
q∏

l=1

νm1l−1
l (1− νl)

m2l−1π(aaa),

where σσσ2
1 = (σ2

β1
, · · · , σ2

βp
)′, σσσ2

2 = (σ2
α1
, · · · , σ2

αq
)′, γγγ = (γ1, · · · , γp)

′ and

ννν = (ν1, · · · , νq)
′. For applying MCMC methods, the full conditional posterior

distributions of all the unknown parameters for this model are computed and
presented in supplementary material B.

3.2. Variable selection

In the following, we propose some strategies to select variables in the rate
and probability models.

3.2.1. Continuous spike

Let θθθ(r), r = 1, ···, M be M generated samples from the full conditional dis-
tributions of CS using MCMC. We first define a test for checking the significance
of the parameters, as follows:

H0k : ζk = 0 versus H1k : ζk ̸= 0; k = 1, · · ·, p,
H0l : ωl = 0 versus H1l : ωl ̸= 0; l = 1, · · ·, q.(3.2)

Both a local Bayesian false discovery rate and a Bayes factor procedure are applied
to perform this test.
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Local Bayesian false discovery rate

Let p(H0k|βk, σ2
βk
) be the posterior probability of the null hypothesis, i.e.,

the probability of making a false discovery for a non-null effect, which is called
the local Bayesian false discovery rate for data (denoted by LBFDR). The phrase
”local” comes from a single point 0 as the domain of the null hypothesis test [11].
Note that small values of LBFDR show strong evidence for the existence of a
substantive effect. For computing LBFDR for each of the regression coefficients,
we have

LBFDRk = P (H0k|βk, σβ2
k
) = P (ζk = 0|βk, σ2

βk
)

≈ 1

M

M∑
r=1

P (ζk = 0|β(r)
k , σ

2(r)
βk

), k = 1, · · · , p,

LBFDRl = P (H0l|αl, σ
2
αl
) = P (ωl = 0|αl, σ

2
αl
)

≈ 1

M

M∑
r=1

P (ωl = 0|α(r)
l , σ2(r)

αl
), l = 1, · · · , q.(3.3)

where
(
βk

(r), σ
2(r)
βk

, α
(r)
l , σ

2(r)
αl

)
denotes the rth generated sample of

(
βk, σ

2
βk
, αl, σ

2
αl

)
using the MCMC for r = 1, · · · ,M .

Bayes factor

The Bayes factor for each of the regression coefficients for testing (3.2) is
defined as

BFk =
P (H1k|βk, σ2

βk
)/P (H1k)

P (H0k|βk, σ2
βk
)/P (H0k)

,

BFl =
P (H1l|αl, σ

2
αl
)/P (H1l)

P (H0l|αl, σ2
αl
)/P (H0l)

.(3.4)

which describes the evidence of H1k(H1l) against H0k(H0l). Note that, P (ζk) =
E(λβk

) = f1k
f1k+f2k

and P (ωl) = E(λαl
) = m1l

m1l+m2l
. Also, since LBFDRk =

P (H0k|βk, σ2
βk
) and LBFDRl = P (H0l|αl, σ

2
αl
),

BFk =
1− LBFDRk

LBFDRk
× f1k

f1k + f2k
,

BFl =
1− LBFDRl

LBFDRl
× m1l

m1l +m2l
.(3.5)

Unlike, LBFDR, a large value of BF indicates strong evidence in favor ofH1k(H1l).
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3.2.2. Dirac spike

The same as those discussed for CS, let θθθ(r), r = 1, · · · ,M be M generated
samples from the full conditional distributions of DS using MCMC. The global
test for checking DS is defined by:

H0k : βk = 0, versus H1k : βk ̸= 0; k = 1, · · ·, p,
H0l : αl = 0, versus H1l : αl ̸= 0; l = 1, · · ·, q.(3.6)

Local Bayesian false discovery rate

In this status, the following proposition gives insight into simplifying equa-
tion (3.6). Define indicator variables: I1k, I2l, k = 1, 2, · · · , p, l = 1, 2, · · · , q,
such that

I1k =

{
1 βk ̸= 0

0 βk = 0,

I1l =

{
1 αl ̸= 0

0 αl = 0.
(3.7)

Also, consider the hierarchical model (2.5), thus,

LBFDRk = P (βk = 0|γk, σ2
βk
)

≈ 1

M

M∑
r=1

P (βk = 0|γ(r)k , σ
2(r)
βk

),

LBFDRl = P (αl = 0|νl, σ2
αk
)

≈ 1

M

M∑
r=1

P (αl = 0|, ν(r)l , σ2(r)
αl

).(3.8)

Bayes factor

The Bayes factor for each of the regression coefficients for DS is given by

BFk =
P (βk ̸= 0|γk, σ2

βk
)/P (βk ̸= 0)

P (βk = 0|γk, σ2
βk
)/P (βk = 0)

,

BFl =
P (αl ̸= 0|νl, σ2

αl
)/P (αl ̸= 0)

P (αl = 0|νl, σ2
αl
)/P (αl = 0)

,(3.9)

we have P (βk) = E(γβk
) = f1k

f1k+f2k
and P (αl) = E(ναl

) = m1l
m1l+m2l

. Thus the
Bayes factor for DS is the same as that of equation (3.5).
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4. SIMULATION STUDIES

In this section, some simulation studies are performed to investigate the per-
formance of the proposed methods. For this purpose, the data is generated from
random effects models under ZIP and ZINB. The sample sizes n = 500 and 1000
with T = 6 repeated measurements, p = 15, and q = 10 predictors are consid-
ered. Also, we consider 40000 MCMC iterations, including 20000 pre-convergence
burn-in. The convergence of the chains is checked using Brooks-Gelman-Rubin
(BGR) diagnostics [6, 19]. Also, some figures are given in supplementary material
E for checking the convergence of the proposed model visually. The simulation
studies are performed for M = 100 replications. For comparison of the results,
relative bias (Rbias) and the root of the mean squared error (RMSE) are com-

puted, these are defined as Rbias(θ) =
θ̂

θ
−1, RMSE(θ) =

√∑M
r=1(θ̂r−θ)2

M , where

θ̂r is the estimated value of parameter θ for the r−th simulation run, M is the

number of simulation runs, and θ̂ =

∑M
r=1 θ̂r
M

.

To investigate the performance of the proposed approaches in variable selection,
we consider the true positive rate (TPR), the false positive rate (FPR), and the
Matthews correlation coefficient (MCC) criteria [?]. The latter is defined as
follows:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,(4.1)

where TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives, and FN is the number of false negatives. The
MCC and TPR are expected to reach 1, and the FPR is expected to be near zero
for a good performance.

4.1. Zero-inflated Poisson random effects model

We consider a ZIP random effects model, such that, Yij |µij , πij ∼ ZIP (µij , πij)
is used to denote it, where µij and πij are considered the same as equations (2.3).
For this simulation study, the explanatory variables xxx and zzz are randomly drawn
from multivariate normal distributions N15(000, III) and N10(000, III), respectively.
Also, four scenarios are considered for the real values of ααα and βββ these scenarios
are different for the real values of the regression coefficients:
Scenario 1:

βββ = (1, · · · , 1︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
10

)′,

ααα = (1, · · · , 1︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

)′.
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Scenario 2:

βββ = (0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
10

)′,

ααα = (0.5, · · · , 0.5︸ ︷︷ ︸
5

, 0, · · · , 0︸ ︷︷ ︸
5

)′.

Scenario 3:

βββ = (0.5, · · · , 0.5︸ ︷︷ ︸
15

)′,

ααα = (0.5, · · · , 0.5︸ ︷︷ ︸
10

)′.

Scenario 4:

βββ = (0, · · · , 0︸ ︷︷ ︸
15

)′,

ααα = (0, · · · , 0︸ ︷︷ ︸
10

)′.

In scenario 2, the values of the regression coefficients are reduced to check if
the Bayesian approach for variable selection has a good performance after the
reduction of the signals. Also, scenario 3 was simulated to represent cases in
which all the covariates had non-zero effects, and scenario 4 was simulated to
represent cases in which all the covariates had zero effects. Also, the real value
for the covariance of the random effects is as follows:

DDD =

[
1 0.1
0.1 1

]
.

For DS and CS, we set the hyperparameters to c1k = 0.01, c2k = 0.01, d1l =
0.01, d2l = 0.01, f1k = 1, f2k = 1, m1l = 1, m2l = 1, k = 1, · · · , p, l =
1, · · · , q, also for CS, we set σ2

βk
= σ2

αl
= 10−4 and the hyperparameters of

inverse Wishart distribution are considered as r = 3 and ΨΨΨ =

[
1 0
0 1

]
, so that

the priors are low-informative [15, 17]. The results of this simulation study are
reported as follows:

Continuous spike The results of this simulation study are reported in Tables
1 and 2 for scenario 1 and Tables C.1 and C.2 for scenario 2 of supplemen-
tary material C. Table 1 includes estimates of posterior mean, standard
errors, posterior median, RMSE, and Rbias. The values of Rbiases and
RMSEs for all the parameters are small, and by increasing the sample size
from n = 500 to n = 1000, the accuracy and efficiency of the estimations
are increased. Also, Table 2 reports TPR, FPR, and MCC, where the
results are based on threshold 1 of BF and threshold 0.05 of LBFDR. The
values of the MCC as a balanced measure between TPR and FPR, show
that the performances of BF and LBFDR are similar. Overall, the results
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show that all the parameters are well estimated, and the values of the MCC
show the good performance of the method in variable selection. The values
of the regression coefficients are reduced in scenario 2, and the results of
this simulation study are summarized in Tables C.1 and C.2. The results
of these tables show similar results as those of scenario 1, even with smaller
values of the signals.

Dirac spike The results of these simulation studies are reported in Tables
C.3 and C.4 for scenario 1. In Table C.4, the value of the criteria for
median thresholding is also given. Table C.3 shows that all the parameters
are well estimated; also, the values of the MCC are given in Table C.4
and confirm that the performances of BF and LBFDR are similar, and
they are better than median thresholding. The values of the regression
coefficients are reduced in scenario 2, and the results of this simulation
study are summarized in Tables C.5 and C.6. The results of these tables
show the same results as in scenario 1.

4.2. Zero-inflated negative binomial random effects model

In this simulation study, we simulate data from a ZINB random effects
model as follows:

Yij |µij , πij ∼ ZINB(ϕ,
ϕ

ϕ+ µij
, πij),

where µij and πij are considered the same as equation (2.3). The parameteriza-
tion and the real values of parameters µij and πij are the same as the set of real
values and those described for two scenarios in the previous subsection; also, we
set ϕ = 2, 0.25. The results of this simulation study are reported as follows:

Continuous spike The results of this simulation study for ϕ = 2 are reported
in Tables 2 and C.7 for scenario 1 and Tables C.2 and C.8 for scenario
2. Also, the results of this simulation study for ϕ = 0.25 are given in
Tables E.1 and E.2 for scenario 1 and in Tables E.3 and E.4 for
scenario 2 of supplementary material E. The performance of the proposed
model is good in both parameter estimation and variable selection, and this
is in agreement with different values of ϕ.

Dirac spike The results of this simulation studies for ϕ = 2 are reported in
Tables C.4 and C.9 for scenario 1 and in Tables C.6 and C.10 for scenario
2. Also, the results of this simulation study are given in E.5 and E.6 for
scenario 1 and in Tables E.7 and E.8 for scenario 2 when ϕ = 0.25. The
results of these tables, the same as those in CS, show that all the parameters
are estimated well and the values of the MCC show the performance of the
method for variable selection as well.



Variable Selection for Zero-inflated Longitudinal Data 15

A comparison between CS and DS for variable selection in the proposed model
for both ZIP and ZINB models shows that DS performs better than CS based on
values of MCC. Also, the parameter estimates by DS are closer to the true values
of the parameters than those obtained by CS.

4.3. Results of simulation studies for scenarios 3 and 4

A sample size of n = 500 is considered for scenarios 3 and 4, which are whole
non-zero and whole zero signals, respectively. The results of these two scenarios,
which are the same as the previous scenarios, include estimates, standard errors,
posterior median, RMSE, and Rbias. It is not possible to check the performance
of the variable selection of the proposed model by TPR, FPR, and MCC when all
of the signals are significant or all of them are non-significant. Therefore, instead,
the mean and standard deviation of LBFDR and BF are given in the tables of
results for these two scenarios.

4.3.1. ZIP model

The results of this simulation study for CS prior are reported in Tables D.1
for scenario 3 and D.2 for scenario 4 of supplementary material D. The results
show that all the parameters are well estimated, and based on the mean of BF
and LBFDR, all the variables are selected for scenario 3, but none of them are
selected for scenario 4.
The results of this simulation study for DS prior are reported in Table D.3 and
Table D.4 for scenarios 3 and 4, respectively. The results of these tables also
confirm the good performance of the proposed model.

4.3.2. ZINB model

The results of this simulation study for CS prior are given in Table D.5
for scenario 3 and in Table D.6 for scenario 4. As with our results for the ZIP
model, the results show that the performance of the proposed model is good in
parameter estimation and variable selection. Also, for the DS prior, the results
are shown in Table D.7 for scenario 3 and in Table D.8 for scenario 4. The results
of these tables also confirm the good performance of the model in both parameter
estimation and variable selection.
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Table 1: Results of the simulation study of CS for generated data un-
der the ZIP random effects model for scenario 1. The posterior
mean, the standard deviation of estimators, the posterior me-
dian, the root of the mean squared error (RMSE), and relative
bias (Rbias) for each of the parameter estimates for M= 100
simulated data with sample sizes of 500 and 1000. The gener-
ated data are analyzed with the ZIP model (*: the relative bias
cannot be calculated since the real value of the related param-
eter is zero).
Parameter True mean sd median RMSE Rbias

n=500

β1 1.000 0.991 0.044 0.993 0.004 -0.014
β2 1.000 0.959 0.046 0.959 0.003 -0.118
β3 1.000 0.966 0.043 0.968 0.004 -0.064
β4 1.000 0.923 0.044 0.925 0.003 -0.040
β5 1.000 0.989 0.044 0.990 0.000 -0.020
β6 0.000 -0.005 0.002 -0.002 0.000 *
β7 0.000 -0.003 0.002 -0.001 0.000 *
β8 0.000 -0.043 0.003 -0.044 0.002 *
β9 0.000 0.003 0.002 0.001 0.000 *
β10 0.000 0.011 0.004 0.003 0.000 *
β11 0.000 -0.005 0.003 -0.002 0.000 *
β12 0.000 0.020 0.004 0.018 0.000 *
β13 0.000 -0.031 0.004 -0.038 0.001 *
β14 0.000 -0.003 0.003 -0.001 0.000 *
β15 0.000 -0.002 0.002 -0.001 0.000 *
α1 1.000 0.955 0.063 0.454 0.002 -0.092
α2 1.000 0.918 0.065 0.919 0.000 -0.038
α3 1.000 0.943 0.065 0.942 0.002 -0.084
α4 1.000 0.992 0.065 0.992 0.000 -0.016
α5 1.000 0.977 0.065 0.976 0.001 -0.048
α6 0.000 0.000 0.005 0.000 0.000 *
α7 0.000 -0.005 0.005 -0.001 0.000 *
α8 0.000 0.002 0.006 0.000 0.000 *
α9 0.000 0.000 0.006 0.000 0.000 *
α10 0.000 0.016 0.009 0.002 0.000 *

n=1000

β1 1.000 0.997 0.043 0.996 0.002 -0.008
β2 1.000 0.906 0.045 0.906 0.002 -0.012
β3 1.000 0.973 0.043 0.974 0.003 -0.052
β4 1.000 0.995 0.042 0.994 0.003 -0.052
β5 1.000 0.994 0.043 0.995 0.001 -0.010
β6 0.000 -0.007 0.002 -0.003 0.000 *
β7 0.000 -0.003 0.002 -0.001 0.000 *
β8 0.000 0.001 0.002 0.001 0.000 *
β9 0.000 -0.020 0.003 -0.022 0.000 *
β10 0.000 -0.001 0.002 0.000 0.000 *
β11 0.000 0.002 0.003 0.001 0.000 *
β12 0.000 0.001 0.002 0.001 0.000 *
β13 0.000 0.002 0.003 0.001 0.000 *
β14 0.000 0.000 0.002 0.000 0.000 *
β15 0.000 0.000 0.002 0.000 0.000 *
α1 1.000 0.987 0.061 0.986 0.000 -0.028
α2 1.000 0.907 0.063 0.906 0.000 -0.012
α3 1.000 0.928 0.062 0.927 0.001 -0.054
α4 1.000 0.908 0.063 0.908 0.000 -0.016
α5 1.000 0.970 0.063 0.969 0.001 -0.062
α6 0.000 0.003 0.005 0.001 0.000 *
α7 0.000 0.018 0.006 0.005 0.000 *
α8 0.000 -0.004 0.006 -0.001 0.000 *
α9 0.000 -0.001 0.005 0.000 0.000 *
α10 0.000 0.002 0.007 0.000 0.000 *
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Table 2: Mean (SD) of true/false positive rate (TPR/FPR) and
Matthews correlation coefficient (MCC) of BF and LBFDR for
ZINB and ZIP random effects models of Scenario 1 for CS with
M = 100 simulated data with sample sizes of 500 and 1000.

ZIP ZINB

n BF LBFDR BF LBFDR

TPR 0.925(0.096) 0.925(0.096) 0.966(0.070) 0.975(0.061)
500 FPR 0.033(0.038) 0.000(0.000) 0.053(0.021) 0.000(0.000)

MCC 0.897 (0.106) 0.941(0.077) 0.838(0.088) 0.938(0.079)

TPR 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000)
1000 FPR 0.025(0.011) 0.000(0.000) 0.000(0.000) 0.000(0.000)

MCC 0.912(0.011) 1.000(0.000) 1.000(0.000) 1.000(0.000)

5. APPLICATION: THE RAND HEALTH INSURANCE EXPER-
IMENT

In this section, we shall analyze the RAND Health Insurance Experiment
(RAND HIE) data from [8]. The data investigate how medical care utilization,
measured by the number of visits to a medical doctor (MD), is affected by health
insurance plans, demographic characteristics, and the health status of patients.
This particular data set consists of 5792 participants with 20,190 observations
in total. The vast majority of participants are observed either three or five
times, and each observation corresponds to data collected for the participant in
a given year. The response variable MD is the yearly count of outpatient visits
to physicians, which represents the health care utilization for the experimental
subject for a specific year. Over 30% of the observations are zeros, motivating
the use of the proposed approach. We use a simple zero-score test for checking
the zero-inflation in the data, and not having zero-inflation in the data is re-
jected by a p-value of 0.000. The bar plot of this variable is presented in Figure
2 where the zero-inflation in the data set is also implied. The insurance vari-
ables were randomly assigned and included, an indicator variable for plans with
a deductible (IDP), aparticipation-incentive payment function (LPI), a maximum
dollar-expenditure function (FMDE), and other covariates including factors rep-
resenting the demographic information including a log of annual family income
(LINC), gender (FEMALE), race (BLACK), education of the head of household
in years (EDUCDEC), age, an indicator for age less than 18 (CHILD), log of the
family size (LFAM), a coinsurance rate (LC), health status including an indicator
for physical limitations (PHYSLIM), index of chronic diseases (NDISEASE), fair
self-rated health (HLTHF), good self-rated health (HLTHG) and poor self-rated
health (HLTHP). For detailed variable definitions and summary statistics of each
variable, see Table F.4 of supplementary material D. For checking the effect of
time, we let time be modeled as a square polynomial in the rate model [2]. The
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proposed variable selection models are applied to analyze the data such that:

log(µij) = β0 + β1tij + β2t
2
ij + β3IDPi + β4LPIi + β5FMDEi(5.1)

+ β6LINCi + β7FEMALEi + β8PHYSLMi + β9BLACKi

+ β10EDUCDECi + β11NDISEASEi + β12HLTHFi + β13HLTHGi

+ β14HLTHPi + β15AGEi + β16CHILDij + β17LFAMiLCij

+ β18FCHILDij + b1i

and

logit(πij) = α0 + α1tij + α2IDPi + α3LPIi + α4FMDEi(5.2)

+ α5LINCi + α6FEMALEi + α7PHYSLMi + α8BLACKi

+ α9EDUCDECi + α10NDISEASEi + α11HLTHFi

+ α12HLTHGi + α13HLTHPi + α14AGEi + α15CHILDij

+ α16LFAMi + α17LCij + α18FCHILDij + b2i.

where bbbi ∼ N2(000, DDD). The prior distributions for the unknown parameters of
the ZINB and ZIP random effects models are the same as those of the simulation
study section and are given by:
βk ∼ γkδ0(βk) + (1− γk)N(0, σ2

βk
), γk ∼ Beta(0.1, 0.1), σ2

βk
∼ IG(0.1, 0.1), k =

1, · · · , 19, αl ∼ νlδ0(αl)+(1−νl)N(0, σ2
αl
), νl ∼ Beta(0.1, 0.1), σ2

αl
∼ IG(0.1, 0.1), l =

1, · · · , 18, DDD ∼ IWishart(2,Ψ),

Ψ =

[
1 0
0 1

]
. In the Bayesian method, two parallel MCMC chains are run with

different initial values for 40,000 iterations each. Then, we discarded the first
20,000 iterations as pre-convergence burn-in and retained 20,000 for the pos-
terior inference. For checking the convergence of the MCMC chains, we have
used the Gelman–Rubin diagnostic test. The results, including parameter esti-
mates, standard deviations, 95% credible intervals, LBFDR, and Gelman–Rubin
statistics for analyzing the data using ZINB and ZIP random effects models, are
presented in Tables 3 and F.1. The negative binomial random effects model (NB)
and the Poisson random effects model (P) are also applied to analyze the data.
The prior distributions for the unknown parameters of the NB and P random
effects models are given by:
βk ∼ γkδ0(βk) + (1 − γk)N(0, σ2

βk
), γk ∼ Beta(0.1, 0.1), σ2

βk
∼ IG(0.1, 0.1), k =

1, · · · , 19, bi ∼ N(0, σ2
b ), σ

2
b ∼ IG(0.1, 0.1), i = 1, · · · , n. Tables F.2 and F.3

show the results for the NB and P random effects models, respectively. Based
on the values of DIC, the performance of the ZINB random effects model is
better than that of the ZIP, P, and NB random effects models. Based on the
results of Table 3, IDP, FMDE, LINC, FEMALE, PHYSLIM, BLACK, NDIS-
EASE, HLTHF, HLTHP, CHILD, LFAM and FEMCHILD are selected for the
rate model (they have LBFDR < 0.05), that is, these variables are significant
predictors such that increasing in IDP leads to decreasing the medical doctor
visit (MD) and LINC is positively significant meaning the more the natural log-
arithm of income (LINC), the more visits to a MD. FMDE is a negatively sig-
nificant predictor, such that by increasing it, the probability of zero decreases.
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The greater the physical limitations (PHYSLIM), the larger the values of the
estimated probability of nonzero. BLACK is positively significant, which means
the number of visits to a medical doctor of black patients is higher than that
of white patients, and increasing the NDISEASE leads to higher MD numbers.
Also, HLTHF and HLTHP are factors that motivate patients to visit the doctor.
CHILD is positively significant, which means the patient who is under 18 years
old has more MD than others. The effect of FEMALE on MD number depends
on the level of CHILD, and the effect of CHILD on MD number depends on the
level of FEMALE. These estimates indicate females visit the doctor more than
males. Also, LPI, EDUCDEC, HLTHG, AGE, and LC have a LBFDR > 0.05
which means they are not significant predictors. Time and time2 have LBFDR
> 0.05, i.e., time is not a significant predictor. Also, in the probability model,
IDP, LPI, FMDE, FEMALE, BLACK, NDISEASE, CHILD, and FEMCHILD
are significant predictors, such that increasing IDP leads to decreasing medical
doctor visits, with increasing participation incentive payment (LPI) the proba-
bility of nonzeros decreases. FEMALE is positively significant, which means the
probability of zero for men is the largest. BLACK is negatively significant, which
means the white patient visits a MD less than the black patient. Also, increasing
NDISEASE leads to a larger probability of nonzeros.
As mentioned before, the zero-inflated regression model assumes that the count
numbers arise from a two-component mixture of a standard count distribution
and a degenerated distribution at zero. Under such models, a zero can belong
to either the degenerate state or the count distribution, but it is typically im-
possible to with certainty to determine to which state it belongs [27]. As two
examples of the data, consider the 6th and 12th patients with yyy6 = (1, 0, 0, 0, 0)
and yyy12 = (1, 0, 7). The 6th patient is a white 16-year-old girl who has neither
physical limitations nor chronic diseases. Also, the 12th patient is a black 61-
year-old man who has no physical limitations but has chronic diseases. The other
characteristics of these two patients are as follows:

6th patient 12th patient

IDP 1 0
LPI 0.22 0.48

FMDE 1.16 1.29
LINC 0.40 0.52

EDUCDEC 8 18
HLTHF 0 0
HLTHG 0 1
HLTHP 0 0
LFAM 4 2
LC 0.45 0.52

The probability of being zero for the 6th patient at different time points can be
estimated by considering ZINB as described in (5.1) and (5.2) and it is given by
πππ6 = (0.08, 0.64, 0.52, 0.72, 0.61); that is, for example, at the first time the proba-
bility of coming from a degenerated distribution is 0.08 while for the second time,
it is 0.64. Also, this probability for the 12th patient is πππ12 = (0.09, 0.61, 0.02).
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Figure 2: Barplot of the number of visits to a medical doctor of rand
health Insurance data.

6. CONCLUSION

In this paper, we have discussed Bayesian variable selection methods for the
zero-inflated power series distribution, specifically ZIP and ZINB random effects
models that have been used via spike and slab priors for analyzing longitudinal
count data with extra zeros.
We have evaluated the selection accuracy of DS and CS approaches through some
simulation studies. Also, we have defined a test for checking the significance of
the parameters, both a local Bayesian false discovery rate with a threshold of
0.05 and a Bayes factor procedure with a threshold of 1 are applied to perform
this test. The other thresholds can also be considered to investigate H0. The
simulation studies show that applying DS has better performance than applying
CS. A real data set from the RAND health insurance experiment has been ana-
lyzed as an illustrative example. The proposed variable selection models by DS
spike are applied to select the important variables in this data set, where the non-
significant variables shrink to zero and those estimated are considered significant
variables. To the best of our knowledge, ZINB and ZIP are the best models for
analyzing zero-inflated count data, but if the range of the zero-inflated data is
restricted to a special range such as 0, 1, · · · ,K, the zero-inflated binomial model
is a more appropriate model than the ZINB and ZIP models. The ZINB regres-
sion model allows for over-dispersion in the model and can be used to quantify
various parameters more effectively. We have used DIC to select among different
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Table 3: Parameter estimates (Est.), standard deviation (SD.), 2.5%:
lower bound of 95% credible interval, 97.5%: upper bound
of 95% credible interval, local Bayesian false discovery rate
(LBFDR), and Gelman-Rubin statistics (R̂) for analyzing
RAND data using the ZINB model.

Est. SD. 2.5% 97.5% LBFDR R̂

Model of the rate (µij)

Intercept (β0) 0.824 0.044 0.738 0.908 0.000 1.013
time (β1) 0.000 0.001 0.000 0.000 0.992 1.029
time2 (β2) 0.000 0.000 0.000 0.000 1.000 1.000
IDP (β3) -0.169 0.037 -0.241 -0.099 0.000 1.004
LPI (β4) 0.001 0.005 0.000 0.011 0.968 1.016
FMDE (β5) -0.129 0.015 -0.157 -0.099 0.000 1.006
LINC (β6) 0.107 0.019 0.070 0.145 0.000 1.005
FEMALE (β7) 0.258 0.039 0.184 0.339 0.000 1.006
PHYSLM (β8) 0.270 0.044 0.183 0.356 0.000 1.009
BLACK (β9) 0.353 0.056 0.241 0.463 0.000 1.015
EDUCDEC (β10) 0.000 0.014 0.000 0.000 0.959 1.017
NDISEASE (β11) 0.175 0.015 0.146 0.207 0.000 1.016
HLTHF (β12) 0.206 0.058 0.087 0.315 0.011 1.101
HLTHG (β13) 0.000 0.004 0.000 0.000 0.986 1.004
HLTHP (β14) 0.426 0.107 0.211 0.626 0.001 1.000
AGE (β15) 0.000 0.000 0.000 0.000 0.999 1.002
CHILD (β16) 0.174 0.042 0.093 0.256 0.000 1.001
LFAM (β17) -0.144 0.027 -0.199 -0.093 0.000 1.002
LC (β18) -0.002 0.016 -0.026 0.000 0.959 1.106
FEMCHILD (β19) 0.217 0.058 0.105 0.330 0.000 1.006

Model of the probability (πij)

Intercept (α0) 5.390 0.741 4.356 7.166 0.000 1.050
time (α1) 0.002 0.016 0.000 0.032 0.948 1.062
IDP (α2) -1.026 0.341 -1.799 -0.416 0.003 1.074
LPI (α3) -0.663 0.160 -0.991 -0.357 0.000 1.022
FMDE (α4) -1.044 0.175 -1.395 -0.714 0.000 1.007
LINC (α5) 0.151 0.133 0.000 0.383 0.357 1.015
FEMALE (α6) -2.475 0.445 -3.450 -1.662 0.000 1.018
PHYSLM (α7) -0.005 0.122 -0.334 0.265 0.857 1.014
BLACK (α8) -4.915 0.605 -6.255 -4.011 0.000 1.032
EDUCDEC (α9) -0.028 0.151 -0.512 0.159 0.825 1.035
NDISEASE (α10) 0.452 0.152 0.164 0.762 0.010 1.045
HLTHF (α11) -0.039 0.165 -0.577 0.096 0.840 1.006
HLTHG (α12) 0.004 0.087 -0.165 0.246 0.869 1.054
HLTHP (α13) 0.178 0.459 -0.270 1.526 0.690 1.030
AGE (α14) 0.000 0.000 0.000 0.000 1.000 1.000
CHILD (α15) -1.458 0.367 -2.226 -0.791 0.000 1.028
LFAM (α16) 0.005 0.064 0.000 0.153 0.932 1.044
LC (α17) -0.118 0.296 -1.051 0.054 0.740 1.032
FEMCHILD (α18) -2.995 0.628 -4.256 -1.807 0.000 1.015

D11 0.493 0.228 0.226 1.007 - 1.010
D12(D21) 0.925 0.128 0.516 1.803 - 1.101
D22 1.021 0.020 0.561 2.907 - 1.002

ϕ 3.817 0.140 3.553 4.098 - 1.002

DIC 183127.5

models, and we have concluded that the zero-inflated negative binomial random
effects model is a flexible model to be assumed for analyzing this data.
As a future work, the proposed method can be applied to semi-parametric mod-
eling data sets by considering spline. For this purpose, equation (2.3) can be
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improved to be

log(µij) = xxx
′
ijβββj + g1(tij) + bi1,

logit(πij) = zzz
′
ijαααj + g2(tij) + bi2, i = 1, · · · , n, j = 1, · · · , T,

where g1(.) and g2(.) are unknown smooth functions of time. For example, they
can be considered as follows:

gk(tij) = αk0 + αk1tij + . . .+ αkdkt
dk
ij +

Kk∑
l=1

αk,dk+l(tij − κli)
dk
+ , k = 1, 2,

where d is the degree of the polynomial component, Kk is the number of inte-
rior knots, κli is referred to as knots of the ith subject, (a)+ = max(0, a), and
αααk = (αk0, · · · , αkdk , αkdk+1 · · · , αkKk

) is the vector of spline coefficients. By con-
sidering these functions, all the approaches in this paper can be applied to this
model, too.
As future work, we can consider marginalized zero-inflated negative binomial
(MZINB) and marginalized zero-inflated Poisson (MZIP) models to model the
population means count directly, allowing straightforward inference for overall
exposure effects that account for both excess zeros and overdispersion [37]. Also,
the model can be extended to analyze data in the presence of missing values. For
this purpose, a non-ignorable missing mechanism should be considered. Also,
Bayesian variable selection by using global-local shrinkage [22] priors can be ap-
plied in future works. The Wishart-gamma and half-Cauchy priors can also be
considered for the random effects covariance matrix and variance components,
respectively.
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