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1. INTRODUCTION

Researchers have often shown interest in developing control charts, also known as con-
trol monitoring scheme, for monitoring percentiles of an underlying distribution in reliability
studies. Padgett and Spurrier (1990) and Nichols and Padgett (2005) argued in favor of
monitoring lower percentile of strength distribution over average to confirm the quality of
carbon fiber strength to be in control. Chowdhury et al. (2021) emphasized on monitoring
the upper (lower) percentile of the proportion of non-conforming (conforming) units, as an
upward (downward) shift in the upper (lower) percentile indicates a deterioration in qual-
ity. All the available control schemes for monitoring distribution quantiles (see for example,
Padgett and Spurrier, 1990; Nichols and Padgett, 2005; Erto and Pallotta, 2007; Lio and
Park, 2008, 2010; Lio et al. (2014); Erto et al. (2015); Chiang et al., 2017, 2018; Leiva et al.,
2022; and Ma et al., 2022) used parametric bootstrap method with different distributional
assumptions under classical or/and Bayesian set-up. Additionally, Chiang et al. (2018) used
model selection approaches to choose between competing underlying distributions. Due to
the non-availability of closed form expressions of the sampling distribution of the percentiles,
computational methods such as parametric bootstrap is used to obtain the control limits. For
more discussion on the bootstrap technique and its advantages, one can refer to Efron and
Tibshirani (1993), Liu and Tang (1996), Jones and Woodall (1998) and Seppala et al. (1996).

The results obtained from the aforementioned papers are useful and valuable, and can be
applied to complete data setting only. In practice, reliability data are skewed and censored.
Recently Vining et al. (2016) emphasized on using censored data in reliability studies as
customers expected products and processes to perform with high quality over the entire
expected lifetime of the product/process. Most of the available schemes for censored data
monitor mean of a process. Few papers are found in the literature for monitoring percentiles
of a process using censored data. Haghighi et al. (2015) proposed control charts for the
quantiles of the Weibull distribution for type-II censored data, based on the distribution of
a pivotal quantity conditioned on ancillary statistics. Wang et al. (2018) proposed EWMA
and CUSUM charts for monitoring the lower Weibull percentiles under complete data and
type-II censoring using the same approach as used in Haghighi et al. (2015). Encouraged by
these findings, in this paper, a control monitoring scheme is proposed based on bootstrap
method using hybrid censoring which generalizes control monitoring schemes under type-I
and type-II censoring.

In type-I censoring scheme, the experiment is aborted after a pre-decided time T = x0;
whereas in type-II censoring, the termination is subject to failure of a pre-fixed number of
items r. The hybrid censoring scheme which is popularly known in the literature as type-I
hybrid censoring scheme was initially introduced by Epstein (1954) and can be considered
as a mixture of type-I and type-II censoring schemes. It can be described briefly as follows:
Suppose n identical units are put on an experiment. Now if X1:n, ..., Xn:n are the ordered
lifetimes of the units, then the experiment is aborted either when a pre-chosen number r(< n)
out of n items has failed or when a pre-determined time x0 has elapsed. Hence the life test
can be terminated at a random time X∗ = min{Xr:n, T}. One of the following two types of
observations can be witnessed under type-I hybrid censoring scheme.
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Case I: {X1:n < ... < Xr:n} if Xr:n < x0.

Case II: {X1:n < ... < Xd:n < T} if d + 1 ≤ r < n and x0 ≤ Xr:n.

Case I 

 

 

 

  

 

Case II 

 

 

 

 

 

1st failure 2nd failure  rth failure (Experiment Stops) 

𝑋1:𝑛 𝑋2:𝑛 𝑋𝑟:𝑛 𝑥0 ⋯ 

1st failure 2nd failure dth failure Experiment stops (d+1)th failure rth failure 

⋯ 𝑋1:𝑛 𝑋2:𝑛 𝑋𝑑:𝑛 𝑋(𝑑+1):𝑛 𝑋𝑟:𝑛 𝑥0 

Figure 1: Schematic illustration of type-I hybrid censoring scheme.

In reliability studies, two-parameter Weibull is the most popular distribution to the
practitioners. Gupta and Kundu (1999) proposed the two parameter generalized exponential
(GE) distribution as an alternative to the Weibull and studied its properties extensively.
The scale and shape parameters of the GE distribution bring quite a bit of flexibility in
the distribution to analyze any positive real data. Both the Weibull and GE distributions
have increasing or decreasing failure rates depending on the shape parameter. Many authors
pointed out (see for example, Bain, 1976) that since the hazard function of a GE distribution
is bounded above or bounded below as opposed to Weibull which is unbounded, the GE
may be more appropriate as a population model when the items in the population are in
a regular maintenance environment. The hazard rate may increase initially, but after some
times the system reaches a stable condition because of maintenance. Therefore, if it is known
that the data are from a regular maintenance environment, it may make more sense to fit
the GE distribution over the Weibull. As opposed to Weibull distribution, GE represents a
parallel system of independent and identically distributed exponential components. GE has
likelihood ratio ordering on the shape parameter indicating the possibility of constructing
a uniformly most powerful test for testing a one-sided hypothesis on the shape parameter
keeping the scale parameter known. The Weibull distribution doesn’t enjoy any such ordering
properties and hence no such uniformly most powerful test exists for Weibull. One of the
disadvantages of Weibull can be pointed out that the asymptotic convergence to normality for
the distribution of the maximum likelihood estimators is very slow (Bain, 1976). Therefore
most of the asymptotic inferences may not be very accurate unless the sample size is very
large. For a detailed comparison between Weibull and GE, one can refer to Gupta and Kundu
(2001). Motivated by these findings, GE is chosen as the underlying distribution to develop
a bootstrap control monitoring scheme for hybrid censored data.
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The rest of the paper is organized as follows. Section 2 provides the statistical back-
ground of the paper. The proposed bootstrap and Shewhart-type control monitoring schemes
for GE percentiles with hybrid censored data are introduced in Section 3. Section 4 is de-
voted to the practical implementation of the schemes including tabulation of the control limits
and average run length (ARL). Simulation results of both in-control (IC) and out-of-control
(OOC) performance of the bootstrap scheme are presented in Section 4. The effectiveness
of the proposed scheme is evaluated in Section 5 using a skewed data set. Bootstrap control
monitoring scheme for type-I and type-II censored data are also obtained in Section 5 as
a special case and are compared with bootstrap chart under hybrid censoring scheme. An
application of the proposed scheme is shown from clinical practice in Section 6. Section 7
concludes the paper.

2. STATISTICAL FRAMEWORK

2.1. Maximum likelihood estimators

Let X be a random variable following two parameter GE distribution with the shape
parameter θ > 0 and scale parameter λ > 0. Then probability density function (pdf) and
cumulative distribution function (cdf) of X are given by

(2.1) f(x|θ, λ) = θλe−λx(1− e−λx)θ−1

and

(2.2) F (x|θ, λ) =
(
1− e−λx

)θ
.

Let ξp be the 100pth percentile of the GE distribution and is obtained as

(2.3) ξp = − 1
λ

ln
(
1− p

1
θ

)
.

Now, let xi1 , xi2 , ..., xin be ith in-control (IC) random subgroup of size n (i = 1, 2, ..., k) drawn
from phase I process following GE distribution as in (2.1). On the basis of the observed data
and ignoring the additive constant, the log-likelihood function under hybrid censoring (for
Case I and II as introduced in Section 1) is given by

L(θ, λ|data) = d ln θ + d lnλ− λ

d∑
i=1

xi:n + (θ − 1)
d∑

i=1

ln(1− e−λxi:n)

+ (n− d) ln
(
1− (1− e−λc)θ

)
.(2.4)

Note that for Case I, d = r and c = xr:n, and for Case II, 0 ≤ d ≤ r − 1 and c = x0. Also it
can be shown that for λ → 0, and for any fixed θ, maximum likelihood estimators (MLE)
of θ and λ do not exist when d = 0. Assuming d to be positive, the MLEs θ̂ and λ̂ are
obtained by maximizing the log-likelihood function (2.4), and subsequently solving the non-
linear equations

∂L

∂θ
= 0,

∂L

∂λ
= 0.
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As closed-form solutions of these two equations are not available, EM algorithm is used
to obtain the MLEs. Let the observed data and the censored data be denoted by X =
(x1:n, ..., xd:n) and Y = (y1, ..., yn−d) respectively. Here for given d, Y is not observable and
hence can be thought of as missing data. The combination of Z = (X,Y) forms the complete
data set. Ignoring the additive constant, the log-likelihood function of the uncensored data
set, denoted by Lc(θ, λ|Z) is given by

Lc(θ, λ|data) = n ln θ + n lnλ− λ

(
d∑

i=1

xi:n +
n−d∑
i=1

yi

)

+ (θ − 1)

(
d∑

i=1

ln
(
1− e−λxi:n

)
+

n−d∑
i=1

ln
(
1− e−λyi

))
.(2.5)

Now for ‘E’-step of the EM algorithm, one needs to compute the pseudo log-likelihood function
as Ls(θ, λ|data) = E(Lc(Z; θ, λ)|X), obtained as

Ls(θ, λ|data) = n ln θ + n lnλ− λ
d∑

i=1

xi:n + (θ − 1)
d∑

i=1

ln
(
1− e−λxi:n

)
− λ

n−d∑
i=1

E[Yi|Yi > c] + (θ − 1)
n−d∑
i=1

E
[
ln(1− e−λYi)|Yi > c

]
.(2.6)

Now the ‘M’-step involves maximization of the pseudo log-likelihood function given in
(2.6). Therefore, if at the kth stage the estimate of (θ, λ) is (θk, λk), then (θ(k+1), λ(k+1)) can
be obtained by maximizing

g(θ, λ) = n ln θ + n lnλ− λ
d∑

i=1

xi:n + (θ − 1)
d∑

i=1

ln
(
1− e−λxi:n

)
− λ(n− d)A

(
c, θ(k), λ(k)

)
+ (θ − 1)(n− d)B

(
c, θ(k), λ(k)

)
,(2.7)

where

A(c, θ, λ) = − θ

λ(1− F (c, θ, λ))
u(λc, θ),

B(c, θ, λ) =
1

θ(1− F (c, θ, λ))

[(
1− e−cλ

)θ(
1− θ ln

(
1− e−cλ

))
− 1
]
.

The maximization of (2.7) can be performed by using similar technique as of Gupta and
Kundu (2001). First, λ(k+1) can be obtained by solving a fixed point type equation h(λ) = λ,

where the function h(λ) is defined as

h(λ) =

[
1
n

d∑
i=1

xi:n +
n− d

n
A− 1

n

(
θ̂(λ)− 1

) d∑
i=1

xi:ne−λxi:n

1− e−λxi:n

]−1

,

with A=A
(
c, θ(k), λ(k)

)
, B=B

(
c, θ(k), λ(k)

)
and θ̂(λ) =− nPd

i=1 ln(1−e−λxi:n)+(n−d)B
. Once λ(k+1)

is obtained, θ(k+1) is obtained by solving the equation θ(k+1) = θ̂
(
λ(k+1)

)
. For more detail on

the estimation of GE parameters under hybrid censoring (see Kundu and Pradhan, 2009).

The MLE of the 100pth percentiles, denoted by ξ̂p, is also obtained as

(2.8) ξ̂p = − 1

λ̂
ln
(
1− p

1

θ̂

)
.
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2.2. Asymptotic properties

An outline of the Fisher information matrix and asymptotic properties of the estimators
are discussed here. For more detail, one may refer to Gupta and Kundu (2001) and Kundu
and Pradhan (2009). Using the missing value principle of Louis (1982), it can be written that

(2.9) Observed information = Complete information − Missing information,

and can be expressed as

(2.10) IX(Θ) = IW (Θ)− IW |X(Θ),

with Θ = (θ, λ); X = the observed vector; W = the complete data; IW (Θ) = the complete
information; IW |X(Θ) = the missing information. The complete information IW (Θ) is given
by

IW (Θ) = −E

[
∂2Lc(W ; Θ)

∂Θ2

]
,

with the Fisher information matrix of the censored observations being written as

IW |X(Θ) = −(n− d)EZ|X

[
∂2 ln fZ(z|X, Θ)

∂Θ2

]
.

The asymptotic variance covariance matrix of Θ̂, the MLE of Θ, can be obtained by inverting
IX

(
Θ̂
)
. The elements of the matrix IX(Θ) for the complete data set can be obtained in

Kundu and Pradhan (2009).

Let ξ̂p

(
Θ̂n

)
be the value of ξp at Θ = Θ̂n, obtained from (2.3) and calculated on the

basis of n observations. Then as in Chiang et al. (2017), it can be shown that ξ̂p

(
Θ̂n

)
follows

asymptotic normal distribution with mean ξp(Θ) and variance 1
n∇ξT

p (Θ)IY−1(Θ)∇ξp(Θ),
where ∇ξp(Θ) is the gradient of ξp(Θ) with respect to Θ. In practice, IY(Θ) is replaced

by the observed Fisher Information matrix ÎY

(
Θ̂n

)
, obtained by substituting the unknown

parameters θ and λ by their respective MLEs.

3. CONSTRUCTIONOFPROPOSEDCONTROL MONITORING SCHEMES

3.1. Charting procedure for the bootstrap hybrid-censored control (BHCC)
monitoring scheme

Here, the bootstrap hybrid-censored control (BHCC) monitoring scheme for GE per-
centiles is developed using the following charting procedure.

Step-1: Collect and establish k reference samples Xm = (xi1, xi2, ..., xim) of size m

each from an IC process (Phase I process) following GE cdf F (x|θ, λ) as in
(2.2).
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Step-2: Obtain the MLEs of θ and λ from Step-1 under hybrid censoring following
the procedure described in Section 2 and estimate the cdf as F (x|θ̂, λ̂).

Step-3: Generate a bootstrap sample of size m, x∗1, x
∗
2, ..., x

∗
m, from F (x|θ̂, λ̂) as

obtained in Step-2.

Step-4: Obtain the MLEs of θ and λ under hybrid censoring using the bootstrap
sample obtained in Step-3, and denote these as θ∗ and λ∗.

Step-5: Using (2.3) and (2.8), compute the bootstrap estimate of the 100pth per-
centile as

(3.1) ξ̂∗p = − 1
λ∗

ln
(
1− p

1
θ∗
)
.

Step-6: Repeat Steps 3-5 large number of times (B) to obtain bootstrap estimates
of ξ̂∗p , denoted by ξ̂∗1p, ξ̂

∗
2p, ..., ξ̂

∗
Bp.

Step-7: Using B bootstrap estimates as obtained in Step 6, find the ν
2

th and (1− ν
2 )th

empirical percentiles as the lower control limit (LCL) and upper control
limit (UCL) respectively to construct a two-sided BHCC chart, where ν is
the false alarm rate (FAR) defined as the probability that an observation is
considered as out of control (OOC) when the process is actually IC. Here,
empirical sample percentiles are obtained following a method proposed by
Hyndman and Fan (1996).

Step-8: Sequentially observe the jth phase II (test) sample Yj:m = (Yj1, Yj2, ..., Yjm)
of size m, j = 1, 2, ....

Step-9: Sequentially obtain ξ̂jp using (3.1) after obtaining MLEs of the parameters
under hybrid censoring scheme using the jth test sample as described in
Step-5.

Step-10: Plot ξ̂jp against LCL and UCL as obtained in Step-7 of the Phase I process.

Step-11: If ξ̂jp falls in between the LCL and UCL, then the process is assumed to
be in-control, otherwise, an OOC signal is activated.

3.2. Charting procedure for the Shewhart-type hybrid-censored control (SHCC)
monitoring scheme

Shewhart-type control monitoring scheme for the percentiles of GE distribution, named
as SHCC scheme is derived in this section following the asymptotic properties of the MLEs
obtained in Section 2.2. The steps for designing the SHCC scheme for 100pth percentile of
proportion, ξp(Θ), are described as follows.

In phase I, samples are drawn from in-control process following GE distribution in k

independent random subgroups of size m each with n = m× k being the total sample size.
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Step-1: As described in Section 2.1, the MLEs Θ̂n =
(
θ̂n, λ̂n

)
are computed on the

basis of n in-control sample values of Phase I. Then the asymptotic standard
error of ξ̂p,m

(
Θ̂m

)
is computed as

(3.2) SEξp,m =

√
1
m
∇ξT

p

(
Θ̂n

)
I−1
Y

(
Θ̂n

)
∇ξp

(
Θ̂n

)
,

where ∇ξp

(
Θ̂n

)
is the gradient of ξp(Θ) at Θ = Θ̂n. I−1

Y

(
Θ̂n

)
is calculated

following the procedure as described in Section 2.2.

Step-2: The MLEs Θ̂j
m of Θ and ξj

p

(
Θ̂j

m

)
are calculated based on jth (j = 1, 2, ..., k)

IC samples of size m each. The sample mean of ξj
p

(
Θ̂j

m

)
s is calculated as

ξ̄p

(
Θ̂m

)
=

1
k

k∑
i=1

ξj
p

(
Θ̂j

m

)
.

Step-3: The Shewhart-type control monitoring scheme has the center line CLSH =
ξ̄p

(
Θ̂m

)
. If ν is the false alarm rate (FAR), then for 0 < ν < 1, the upper

and lower control limits of the SHCC scheme are found to be

UCLSH = ξ̄p

(
Θ̂m

)
+ z(1−ν/2)SEξp,m ,

and
LCLSH = ξ̄p

(
Θ̂m

)
− z(1−ν/2)SEξp,m ,

respectively, where z(1−ν/2) is the (1− ν/2)th quantile of standard normal
distribution.

4. SIMULATION STUDY

In this section, the IC and OOC performances of the proposed BHCC monitoring
scheme are evaluated through a comprehensive simulation study. Numerical computations in
R (version 4.0.2) based on Monte-Carlo simulations are used to determine the average UCL

and LCL. The MLEs of the parameters θ and λ are obtained for the pair (θ = 5.5, λ = 0.05).
The control limits are obtained based on B = 5, 000 bootstrap samples. The simulations
are carried out with different bootstrap sample sizes m with k = 20 subgroups, different
percentiles (p = 0.1, 0.5, 0.9), different levels of FAR (ν = 0.1, 0.005, 0.0027, 0.002, 0.001) and
the following censoring schemes: Scheme 1 : m = 25, r = 15, x0 = 55; Scheme 2 : m = 25,
r = 20, x0 = 55; Scheme 3 : m = 40, r = 30, x0 = 55; Scheme 4 : m = 40, r = 35, x0 = 55;
Scheme 5 : m = 25, r = 15, x0 = 70; Scheme 6 : m = 25, r = 20, x0 = 70; Scheme 7 : m = 40,
r = 30, x0 = 70; and Scheme 8 : m = 40, r = 35, x0 = 70. The performance of the scheme
is assessed by run length, defined as the number of cases required to observe the first OOC
signal. For each simulation, the run length is obtained, followed by obtaining the average run
length (ARL) and the standard deviation of run length (SDRL) by using 5, 000 simulation
runs.
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4.1. IC monitoring scheme performance

The estimated IC control limits of the BHCC scheme are displayed in Table 1 of the
supplementary article, along with the respective ARL and SDRL as the scheme performance
measures, denoted by ARL0 and SDRL0 respectively. It is easy to show that the reciprocal
of FAR is same as the nominal (theoretical) ARL, viz. for ν = 0.1, 0.005, 0.0027, 0.002 and
0.001, the nominal ARL should be equal to 10, 200, 370, 500 and 1000 respectively. In general,
the smaller ARLs indicate narrower control limits, while ARLs larger than 370 specifies wider
limits that the bootstrap control schemes give fewer false signals. The simulated values of
ARL0 in Table 1 are found to be closer to the theoretical results implying that the BHCC
monitoring scheme for percentiles perform well with skewed data. As the bootstrap sample
size (m) increases, the estimated control limits get closer together. Moreover, for fixed m,

the control limits become farther apart as the percentile (p) increases. Also, SDRL0 is found
to be closer to the ARL0, satisfying the theoretical result of the geometric distribution used
as the run length model.

4.2. OOC monitoring scheme performance

The OOC performance of the BHCC monitoring scheme is investigated by measuring
impact of changes in the IC parameter estimates on ARL. In other words, the phase II sample
is considered taken from GE(θ + ∆θ, λ + ∆λ), while the IC sample comes from GE(θ, λ).
The effects of shifts (∆θ and/or ∆λ) in the parameters of the GE distribution on ARL of
the percentile scheme is examined and exhibited in Table 2 of the supplementary article.
In general, the simulation results reveal that for fixed m, r, and x0, the OOC ARL values
(denoted by ARL1) for the percentiles decrease sharply with both downward and upward
small, medium and large shifts in the parameters indicating the effectiveness and usefulness
of the scheme. However, the speed of detection varies depending on the type of shifts, the
parameters, and the percentile being considered. Except for minor sampling fluctuations, in
general, the monitoring scheme detects OOC signal in percentiles faster for downward shifts
than the upward shifts (refer Table 2 and Figure 2). In particular, when θ is IC, the ARLs
around 50th percentile are smaller than the other percentiles for both upward and downward
shifts in λ as is evident from Table 2 and Figure 2(a). For example, for a 4% decrease (increase)
in λ when θ is IC (∆θ = 0), there is about 27.8% (21%) reduction in the ARL of the 50th

percentile. On the other hand, when λ is IC, the ARLs for the lower percentiles (around 10th

percentile) is found to be smaller than the other percentiles for downward (upward) shift in
θ (refer Table 2 and Figure 2(b)). For example, there is about 44.8% (13.8%) reduction in
the ARL of the 10th percentile for a 6% decrease (increase) in θ when λ is IC. From Table 2
and Figure 2(c) it is also clear that for 10% deviation in θ the ARLs around 50th percentile
are smaller than the other percentiles for both upward and downward shifts in λ. Again,
from Figure 2(d) it can also be observed that, for 10% deviation in λ the ARLs around 50th

percentile are smaller than the other percentiles for both upward and downward shifts in θ.
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(a) ARL1 for different choices of ∆λ, when ∆θ = 0
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(b) ARL1 for different choices of ∆θ, when ∆λ = 0
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(c) ARL1 for different choices of ∆λ, when ∆θ = 0.1
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Figure 2: Graphs of ARL1 for different choices of ∆λ, ∆θ and p.

5. ILLUSTRATIVE EXAMPLE WITH COMPARISONS

In this section, the BHCC and SHCC monitoring schemes are illustrated by a numerical
example which records the waiting times (in minutes) of 100 customers before getting their
services (see Ghitany et al., 2008). The BHCC scheme is then compared with bootstrap
scheme with Type I and Type II censoring. Various summary measures of the data set can
be found below:

Min 5% 10% 25% 50% 75% 90% 95% Max
0.800 1.895 2.880 4.675 8.100 13.000 19.090 21.955 38.500

First, the Weibull and GE distributions are compared for fitting the data set. For Weibull
model, the MLEs of the shape and scale parameters are found to be 1.458 and 10.954 re-
spectively with Kolmogorov-Smirnov test (K-S) statistic value D = 0.0577, and p-value, p =
0.8927. For GE model, the MLEs are obtained as θ̂ = 2.183 and λ̂ = 0.159 with D = 0.0402
and p = 0.9970. The histogram of the data and two fitted densities are provided in Figure 3.
The fit results confirm that the GE distribution provides a better fit than Weibull in this
case. Moreover, logarithm of the ratio of maximized likelihood (RML), defined as T = log L =
lGE(θ̂, λ̂)− lWE( ˆshape, ˆscale) = −317.0884− (−318.7261) = 1.6377 > 0 indicates to choose
GE distribution over Weibull.
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Figure 3: Histogram and density plot of waiting times of 100 patients.

In order to achieve service excellence, the bank may find extreme percentiles of the
waiting times worth investigating over the average waiting time. An upward shift in the
upper percentile of the waiting times indicates deterioration in the service quality and requires
monitoring. In view of this objective, the BHCC chart is constructed for monitoring 90th

percentile of the waiting times. The complete data is censored either at the waiting time
of the first 60% of the total number of customers (r = 60) or at the waiting time of 10
minutes (x0 = 10), whichever occurs earlier. The censoring time x0 = 10 is chosen near to
60th percentile. The complete set of 100 observations is considered as four (k = 4) reference
samples of size m = 25 each. The MLEs of θ and λ under the stated hybrid censoring scheme
are obtained as θ̂ = 1.760 and λ̂ = 0.127 respectively. Using these MLEs, B = 5, 000 bootstrap
samples of size m = 25 each are drawn with r = 15 (60% of the subgroup size) and x0 = 10.

Following the steps 4− 7 in subsection 3.1, and using ν = 0.0027 as FAR, the control limits
of the BHCC scheme for the 90th percentile are obtained as UCL = 78.597, CL = 26.255
and LCL = 12.702, while the same for the SHCC scheme are computed as UCLSH = 23.711,
LCLSH = 19.966 and CLSH = 21.839. It is observed that both schemes provide asymmetric
control limits from the respective CL, while the SHCC scheme has narrower interval than the
BHCC scheme. Twenty subgroups of size m = 25 each are generated from the OOC process
under similar hybrid censoring plan having shape parameters θ = 2.024 and λ = 0.108 (15%
increase in θ and 15% decrease in λ).

The OOC performance of the BHCC and SHCC schemes for the 90th percentile are
presented in Figure 4 and Figure 5 respectively. The BHCC scheme is able to produce OOC
signals quite efficiently with five 90th percentile points falling above the UCL with the first
OOC signal being obtained at test sample 2 indicating effectiveness of the scheme in terms
of quick detection as well. On the other hand, nine OOC signals are produced by the SHCC
scheme with test sample 2 producing the first OOC signal. It is to be noted here that the
SHCC scheme grossly underestimates the IC ARL (computation of IC ARL for SHCC scheme
is not shown for brevity) due to the narrow band of the control limits which may eventually
produce false OOC signals.

Next, bootstrap monitoring scheme is used for type-I (denoted as BTICC) and type-II
(denoted as BTIICC) censored data coming from the GE distribution and their performance
is compared with the BHCC monitoring scheme with the same data set and the procedure
as used before. The control monitoring schemes for type-I and type-II censored data can
be derived as a special case of hybrid censored data for r = n and T = xn:n respectively.
The MLEs of θ and λ under type-I censoring with x0 = 10 are obtained as θ̂ = 1.803 and
λ̂ = 0.131 respectively, while the same under type-II censoring with r = 60 are found to be
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Figure 4: BHCC monitoring scheme for 90th percentile of the waiting time data
with ∆θ = 0.15, ∆λ = −0.15, UCL = 78.597, CL = 26.255, LCL = 12.702.
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Figure 5: SHCC monitoring scheme for 90th percentile of the waiting time data with
∆θ = 0.15, ∆λ = −0.15, UCLSH = 23.711, CLSH = 21.839, LCLSH = 19.966;
Example 1.

θ̂ = 1.766 and λ̂ = 0.127 respectively. While the control limits of BTICC scheme for the 90th

percentile are obtained as UCL = 76.812, CL = 15.833 and LCL = 12.066, the same for the
BTIICC scheme are calculated as UCL = 44.144, CL = 24.770, and LCL = 12.599. Both the
schemes provide asymmetric control limits with the BTIICC scheme having narrower interval
than the BTICC scheme. After the first four IC subgroups, twenty subgroups of size m = 25
each are generated from the OOC process having θ = 2.073 and λ = 0.111 (15% increase in θ

and 15% decrease in λ). Figure 6 and Figure 7 provide the OOC performance of the control
monitoring schemes for the 90th percentile. Figure 6 shows that the type-I censored scheme
is able to generate three OOC points falling above the UCL with the first being produced
at test sample 12. The type-II censored scheme as is shown in Figure 7 produces two OOC
signals just above the UCL with test sample 9 providing the first signal. It is evident from
the data analysis that the hybrid censored control monitoring scheme performs better than
type-I and type-II censored control monitoring schemes in terms of both frequency and speed
of detection of OOC signals.
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Figure 6: BTICC monitoring scheme for 90th percentile of the waiting time data
with ∆θ = 0.15, ∆λ = −0.15, UCL = 76.812, CL = 15.833, LCL = 12.066.
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Figure 7: BTIICC monitoring scheme for 90th percentile of the waiting time data
with ∆θ = 0.15, ∆λ = −0.15, UCL = 44.144, CL = 24.770, LCL = 12.599.

6. APPLICATION

This section provides an application of the BHCC monitoring scheme in clinical practice.
The scheme is used to monitor the top percentile of the survival times of 120 patients (see
Hamedani, 2013) with breast cancer obtained from a large hospital in a period from 1929 to
1938. The histogram of the data set as shown in Figure 8 and the summary measures below
suggest the skewed nature of the data set.

Min 5% 10% 25% 50% 75% 90% 95% Max
0.3 6.585 10.110 17.800 40.000 60.000 105.400 125.050 154.0

The MLEs of θ and λ for the complete data set coming from the GE distribution are found to
be θ̂ = 1.649 and λ̂ = 0.029 respectively. The fitted density is provided in Figure 8. The one
sample K-S statistic and corresponding p-value are found to be 0.0717 and 0.5681 respectively.
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Figure 8: Histogram and density plot of survival times of 120 patients with breast cancer.

The fit results recommend GE distribution to model the survival time data and subsequent
development of BHCC scheme. The complete sample data is split into six subgroups of
size 20 each. Under hybrid censoring with r = 72 and x0 = 60, the estimates of the GE
parameters are obtained as θ̂ = 1.415 and λ̂ = 0.024. Using 5, 000 bootstrap samples of size
m = 20 each with r = 12 and x0 = 60, the control limits of the BHCC monitoring scheme
for the 90th percentile are evaluated as UCL = 322.248, CL = 115.577, LCL = 48.912. Next,
twenty phase II samples of size m = 20 each are generated from the process under similar
hybrid censoring plan with ∆θ = 0.15 and ∆λ = −0.15 to develop the BHCC monitoring
scheme for the 90th percentile as presented in Figure 9. The scheme has been able to detect
OOC signals at 2nd, 5th and 11th samples. For the same data set, the control limits for
the BTICC monitoring scheme for 90th percentile with x0 = 60 are found to be UCL =
291.965, CL = 106.950, LCL = 51.203. Figure 10 shows that this scheme has been able to
detect only one OOC signal at the 20th sample. On the other hand, BTIICC monitoring
scheme for 90th percentile with r = 72 is presented in Figure 11 with UCL = 232.296, CL =
115.565, LCL = 48.846. Figure 11 shows that this scheme also detects only one OOC signal
at the 9th sample. The frequency and speed of detection of OOC signals further justify
the use of BHCC monitoring scheme over BTICC and BTIICC monitoring schemes for the
percentiles of survival time in a healthcare set-up.
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Figure 9: BHCC monitoring scheme for 90th percentile of the survival time data with
∆θ = 0.15 ,∆λ = −0.15, UCL = 322.248, CL = 115.577, LCL = 48.912.
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Figure 10: BTICC monitoring scheme for 90th percentile of the survival time data with
∆θ = 0.15, ∆λ = −0.15, UCL = 291.965, CL = 106.950, LCL = 51.203.
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Figure 11: BTIICC monitoring scheme for 90th percentile of the survival time data with
∆θ = 0.15, ∆λ = −0.15, UCL = 232.296, CL = 115.565, LCL = 48.846.

7. CONCLUDING REMARKS

In this work, hybrid censoring is employed to develop control monitoring schemes for
percentiles of GE distribution using bootstrap and asymptotic methods. Bootstrap monitor-
ing schemes for type-I and type-II censored data are also developed under similar set-up as a
special case of hybrid censoring plan. An extensive simulation study is conducted to evaluate
the IC and OOC performance of the schemes. The hybrid censored schemes are found to be
effective in the detection of OOC signals in terms of both magnitude and speed as demon-
strated by a real data set. One application from healthcare is also provided to establish the
effectiveness of the schemes. In this sense, the present work is the first attempt to apply
a new censoring scheme in the process control and generalizes available control monitoring
schemes for the GE data. As a scope for future research, hybrid censored schemes may be
proposed under Bayesian set-up measuring uncertainty in the parameter(s). One can also
think of using progressive censoring scheme to construct such control mechanism. For highly
reliable products, accelerated life testing scheme may be employed under various censoring
plans for the same purpose.
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