
REVSTAT – Statistical Journal
Volume 0, Number 0, Month 0000, 000-000
https://doi.org/00.00000/revstat.v00i0.000

Control Monitoring Schemes for Percentiles of Gener-
alized Exponential Distribution with Hybrid Censoring

Authors: Shovan Chowdhury
– Quantitative Methods and Operations Management Area,

Indian Institute of Management, Kozhikode, India
shovanc@iimk.ac.in

Amarjit Kundu �

– Department of Mathematics, Raiganj University, West Bengal,
India
bapai k@yahoo.com

Bidhan Modok
– Department of Mathematics, Raiganj University, West Bengal,

India
bidhanmodok95@gmail.com

Received: Month 0000 Revised: Month 0000 Accepted: Month 0000

Abstract:

� In this article, a parametric bootstrap “control monitoring scheme” equivalently
known as “control chart”, is proposed for process monitoring of percentiles of the gen-
eralized exponential distribution for type-I hybrid censored data assuming in-control
parameters to be unknown. Monte Carlo simulations are carried out to evaluate the
in-control and out-of-control performance of the proposed scheme in terms of average
run lengths. Conventional Shewhart-type scheme is also proposed under the same
set-up asymptotically and compared with bootstrap scheme using a skewed data set.
Finally, an application of the proposed scheme is shown from clinical practice.

Keywords:

� Average run length, Control monitoring scheme, False alarm rate, Generalized expo-
nential distribution, Hybrid censoring, Parametric bootstrap.

AMS Subject Classification:

� 62P30 (Primary), 62F40 (Secondary), 62N01 (Secondary)

� Corresponding author

https://doi.org/00.00000/revstat.v00i0.000
https://orcid.org/0000-0002-2027-4127
mailto:shovanc@iimk.ac.in
https://orcid.org/0000-0001-9148-4036
mailto:bapai_k@yahoo.com
https://orcid.org/0000-0002-6297-4105
mailto:bidhanmodok95@gmail.com


2 Shovan Chowdhury, Amarjit Kundu and Bidhan Modok

1. INTRODUCTION

Researchers have often shown interest in developing control charts, also
known as control monitoring scheme, for monitoring percentiles of an underly-
ing distribution in reliability studies. Padgett and Spurrier [25] and Nichols and
Padgett [24] argued in favor of monitoring lower percentile of strength distribu-
tion over average to confirm the quality of carbon fiber strength to be in control.
Chowdhury et al. [4] emphasized on monitoring the upper (lower) percentile of
the proportion of non-conforming (conforming) units, as an upward (downward)
shift in the upper (lower) percentile indicates a deterioration in quality. All the
available control schemes for monitoring distribution quantiles (see for example,
Padgett and Spurrier [25], Nichols and Padgett [24], Erto and Pallotta [7], Lio
and Park [18, 19], Lio et al.[20], Erto et al. [8], Chiang et al. [2, 3], Leiva et
al.[17] and Ma et al.[23]) used parametric bootstrap method with different dis-
tributional assumptions under classical or/and Bayesian set-up. Additionally,
Chiang et al. [3] used model selection approaches to choose between competing
underlying distributions. Due to the non-availability of closed form expressions
of the sampling distribution of the percentiles, computational methods such as
parametric bootstrap is used to obtain the control limits. For more discussion on
the bootstrap technique and its advantages, one can refer to Efron and Tibshirani
[5], Liu and Tang [21], Jones and Woodall [15] and Seppala et al. [26].
The results obtained from the aforementioned papers are useful and valuable,
and can be applied to complete data setting only. In practice, reliability data are
skewed and censored. Recently Vining et al. [27] emphasized on using censored
data in reliability studies as customers expected products and processes to per-
form with high quality over the entire expected lifetime of the product/process.
Most of the available schemes for censored data monitor mean of a process. Few
papers are found in the literature for monitoring percentiles of a process using
censored data. Haghighi et al. [12] proposed control charts for the quantiles
of the Weibull distribution for type-II censored data, based on the distribution
of a pivotal quantity conditioned on ancillary statistics. Wang et al. [28] pro-
posed EWMA and CUSUM charts for monitoring the lower Weibull percentiles
under complete data and type-II censoring using the same approach as used in
Haghighi et al. [12]. Encouraged by these findings, in this paper, a control mon-
itoring scheme is proposed based on bootstrap method using hybrid censoring
which generalizes control monitoring schemes under type-I and type-II censoring.
In type-I censoring scheme, the experiment is aborted after a pre-decided time
T = x0; whereas in type-II censoring, the termination is subject to failure of
a pre-fixed number of items r. The hybrid censoring scheme which is popularly
known in the literature as type-I hybrid censoring scheme was initially introduced
by Epstein [6] and can be considered as a mixture of type-I and type-II censoring
schemes. It can be described briefly as follows: Suppose n identical units are put
on an experiment. Now if X1:n, ..., Xn:n are the ordered lifetimes of the units,
then the experiment is aborted either when a pre-chosen number r(< n) out of n
items has failed or when a pre-determined time x0 has elapsed. Hence the life test
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can be terminated at a random time X∗ = min{Xr:n, T}. One of the following
two types of observations can be witnessed under type-I hybrid censoring scheme.
Case I: {X1:n < ... < Xr:n} if Xr:n < x0.
Case II: {X1:n < ... < Xd:n < T} if d+ 1 ≤ r < n and x0 ≤ Xr:n.

Case I 

 

 

 

  

 

Case II 

 

 

 

 

 

1st failure 2nd failure  rth failure (Experiment Stops) 

𝑋1:𝑛 𝑋2:𝑛 𝑋𝑟:𝑛 𝑥0 ⋯ 

1st failure 2nd failure dth failure Experiment stops (d+1)th failure rth failure 

⋯ 𝑋1:𝑛 𝑋2:𝑛 𝑋𝑑:𝑛 𝑋(𝑑+1):𝑛 𝑋𝑟:𝑛 𝑥0 

Figure 1: Schematic illustration of type-I hybrid censoring scheme

In reliability studies, two-parameter Weibull is the most popular distribu-
tion to the practitioners. Gupta and Kundu [10] proposed the two parameter
generalized exponential (GE) distribution as an alternative to the Weibull and
studied its properties extensively. The scale and shape parameters of the GE dis-
tribution bring quite a bit of flexibility in the distribution to analyze any positive
real data. Both the Weibull and GE distributions have increasing or decreas-
ing failure rates depending on the shape parameter. Many authors pointed out
(see for example, Bain [1]) that since the hazard function of a GE distribution
is bounded above or bounded below as opposed to Webull which is unbounded,
the GE may be more appropriate as a population model when the items in the
population are in a regular maintenance environment. The hazard rate may
increase initially, but after some times the system reaches a stable condition be-
cause of maintenance. Therefore, if it is known that the data are from a regular
maintenance environment, it may make more sense to fit the GE distribution
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over the Weibull. As opposed to Weibull distribution, GE represents a parallel
system of independent and identically distributed exponential components. GE
has likelihood ratio ordering on the shape parameter indicating the possibility
of constructing a uniformly most powerful test for testing a one-sided hypothesis
on the shape parameter keeping the scale parameter known. The Weibull distri-
bution doesn’t enjoy any such ordering properties and hence no such uniformly
most powerful test exists for Weibull. One of the disadvantages of Weibull can
be pointed out that the asymptotic convergence to normality for the distribution
of the maximum likelihood estimators is very slow (Bain [1]). Therefore most
of the asymptotic inferences may not be very accurate unless the sample size is
very large. For a detailed comparison between Weibull and GE, one can refer to
Gupta and Kundu [11]. Motivated by these findings, GE is chosen as the under-
lying distribution to develop a bootstrap control monitoring scheme for hybrid
censored data.
The rest of the paper is organized as follows. Section 2 provides the statistical
background of the paper. The proposed bootstrap and Shewhart-type control
monitoring schemes for GE percentiles with hybrid censored data are introduced
in Section 3. Section 4 is devoted to the practical implementation of the schemes
including tabulation of the control limits and average run length (ARL). Simula-
tion results of both in-control (IC) and out-of-control (OOC) performance of the
bootstrap scheme are presented in Section 4. The effectiveness of the proposed
scheme is evaluated in Section 5 using a skewed data set. Bootstrap control mon-
itoring scheme for type-I and type-II censored data are also obtained in Section 5
as a special case and are compared with bootstrap chart under hybrid censoring
scheme. An application of the proposed scheme is shown from clinical practice
in Section 6. Section 7 concludes the paper.

2. STATISTICAL FRAMEWORK

2.1. MAXIMUM LIKELIHOOD ESTIMATORS

Let X be a random variable following two parameter GE distribution with
the shape parameter θ > 0 and scale parameter λ > 0. Then probability density
function (pdf) and cumulative distribution function (cdf) of X are given by

(2.1) f (x|θ, λ) = θλe−λx(1− e−λx)θ−1,

and

(2.2) F (x|θ, λ) =
(
1− e−λx

)θ
.

Let ξp be the 100pth percentile of the GE distribution and is obtained as

(2.3) ξp = − 1

λ
ln
(
1− p

1
θ

)
.
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Now, let xi1 , xi2 , ..., xin be ith in-control (IC) random subgroup of size n (i =
1, 2, ..., k) drawn from phase I process following GE distribution as in (2.1).
On the basis of the observed data and ignoring the additive constant, the log-
likelihood function under hybrid censoring (for Case I and II as introduced in
Section 1) is given by

L (θ, λ|data) = d ln θ + d lnλ− λ

d∑
i=1

xi:n + (θ − 1)

d∑
i=1

ln(1− e−λxi:n)

+ (n− d) ln
(
1− (1− e−λc)θ

)
.(2.4)

Note that for Case I, d = r and c = xr:n, and for Case II, 0 ≤ d ≤ r − 1 and
c = x0. Also it can be shown that for λ → 0, and for any fixed θ, maximum
likelihood estimators (MLE) of θ and λ do not exist when d = 0. Assuming d
to be positive, the MLEs θ̂ and λ̂ are obtained by maximizing the log-likelihood
function (2.4), and subsequently solving the non-linear equations

∂L

∂θ
= 0,

∂L

∂λ
= 0.

As closed-form solutions of these two equations are not available, EM algorithm is
used to obtain the MLEs. Let the observed data and the censored data be denoted
by X = (x1:n, . . . , xd:n) and Y = (y1, . . . , yn−d) respectively. Here for given d, Y
is not observable and hence can be thought of as missing data. The combination
of Z = (X,Y) forms the complete data set. Ignoring the additive constant, the
log-likelihood function of the uncensored data set, denoted by Lc(θ, λ|Z) is give
by

Lc (θ, λ|data) = n ln θ + n lnλ− λ

(
d∑

i=1

xi:n +

n−d∑
i=1

yi

)

+ (θ − 1)

(
d∑

i=1

ln
(
1− e−λxi:n

)
+

n−d∑
i=1

ln
(
1− e−λyi

))
.(2.5)

Now for ‘E’-step of the EM algorithm, one needs to compute the pseudo log-
likelihood function as Ls(θ, λ|data) = E(Lc(Z; θ, λ)|X), obtained as

Ls (θ, λ|data) = n ln θ + n lnλ− λ

d∑
i=1

xi:n + (θ − 1)

d∑
i=1

ln
(
1− e−λxi:n

)
− λ

n−d∑
i=1

E [Yi|Yi > c] + (θ − 1)

n−d∑
i=1

E
[
ln(1− e−λYi)|Yi > c

]
.(2.6)

Now the ‘M’-step involves maximization of the pseudo log-likelihood func-
tion given in (2.6). Therefore, if at the k-th stage the estimate of (θ, λ) is (θk, λk),
then (θ(k+1), λ(k+1)) can be obtained by maximizing

g (θ, λ) = n ln θ + n lnλ− λ
d∑

i=1

xi:n + (θ − 1)
d∑

i=1

ln
(
1− e−λxi:n

)
− λ(n− d)A

(
c, θ(k), λ(k)

)
+ (θ − 1)(n− d)B

(
c, θ(k), λ(k)

)
,(2.7)
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where

A(c, θ, λ) = − θ

λ (1− F (c, θ, λ))
u(λc, θ),

B(c, θ, λ) =
1

θ (1− F (c, θ, λ))

[(
1− e−cλ

)θ (
1− θ ln

(
1− e−cλ

))
− 1

]
.

The maximization of (2.7) can be performed by using similar technique as
of Gupta and Kundu [11]. First, λ(k+1) can be obtained by solving a fixed point
type equation h(λ) = λ, where the function h(λ) is defined as

h(λ) =

[
1

n

d∑
i=1

xi:n +
n− d

n
A− 1

n

(
θ̂(λ)− 1

) d∑
i=1

xi:ne
−λxi:n

1− e−λxi:n

]−1

,

withA = A
(
c, θ(k), λ(k)

)
, B = B

(
c, θ(k), λ(k)

)
and θ̂(λ) = − n∑d

i=1 ln(1−e−λxi:n)+(n−d)B
.

Once λ(k+1) is obtained, θ(k+1) is obtained by solving the equation θ(k+1) =
θ̂
(
λ(k+1)

)
. For more detail on the estimation of GE parameters under hybrid

censoring (see Kundu and Pradhan [16]).
The MLE of the 100pth percentiles, denoted by ξ̂p, is also obtained as

(2.8) ξ̂p = − 1

λ̂
ln
(
1− p

1

θ̂

)
.

2.2. ASYMPTOTIC PROPERTIES

An outline of the Fisher information matrix and asymptotic properties of
the estimators are discussed here. For more detail, one may refer to Gupta and
Kundu [11] and Kundu and Pradhan [16]. Using the missing value principle of
Louise [22], it can be written that

(2.9) Observed information = Complete information - Missing information,

and can be expressed as

(2.10) IX(Θ) = IW (Θ)− IW |X(Θ),

with Θ = (θ, λ) ; X = the observed vector; W = the complete data; IW (Θ) =
the complete information; IW |X(Θ) = the missing information. The complete
information IW (Θ) is given by

IW (Θ) = −E

[
∂2Lc (W ; Θ)

∂Θ2

]
,

with the Fisher information matrix of the censored observations being written as

IW |X(Θ) = −(n− d)EZ|X

[
∂2 ln fZ(z|X,Θ)

∂Θ2

]
.
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The asymptotic variance covariance matrix of Θ̂, the MLE of Θ, can be obtained

by inverting IX

(
Θ̂
)
. The elements of the matrix IX (Θ) for the complete data

set can be obtained in Kundu and Pradhan [16].

Let ξ̂p

(
Θ̂n

)
be the value of ξp at Θ = Θ̂n, obtained from (2.3) and calculated on

the basis of n observations. Then as in Chiang et al. [2], it can be shown that

ξ̂p

(
Θ̂n

)
follows asymptotic normal distribution with mean ξp (Θ) and variance

1
n∇ξTp (Θ) IY

−1 (Θ)∇ξp (Θ), where ∇ξp (Θ) is the gradient of ξp (Θ) with respect
to Θ. In practice, IY(Θ) is replaced by the observed Fisher Information matrix

ÎY

(
Θ̂n

)
, obtained by substituting the unknown parameters θ and λ by their

respective MLEs.

3. CONSTRUCTION OF PROPOSED CONTROL MONITORING
SCHEMES

3.1. CHARTING PROCEDURE FOR THE BOOTSTRAP HYBRID-
CENSORED CONTROL (BHCC) MONITORING SCHEME

Here, the bootstrap hybrid-censored control (BHCC) monitoring scheme
for GE percentiles is developed using the following charting procedure.

Step-1: Collect and establish k reference samples Xm = (xi1, xi2, . . . , xim) of size m
each from an IC process (Phase I process) following GE cdf F (x|θ, λ) as in
(2.2).

Step-2: Obtain the MLEs of θ and λ from Step-1 under hybrid censoring following
the procedure described in Section 2 and estimate the cdf as F (x|θ̂, λ̂).

Step-3: Generate a bootstrap sample of size m, x∗1, x
∗
2, . . . , x

∗
m, from F (x|θ̂, λ̂) as

obtained in Step-2.

Step-4: Obtain the MLEs of θ and λ under hybrid censoring using the bootstrap
sample obtained in Step-3, and denote these as θ∗ and λ∗.

Step-5: Using (2.3) and (2.8), compute the bootstrap estimate of the 100pth per-
centile as

(3.1) ξ̂∗p = − 1

λ∗ ln
(
1− p

1
θ∗
)
.

Step-6: Repeat Steps 3-5 large number of times (B) to obtain bootstrap estimates
of ξ̂∗p , denoted by ξ̂∗1p, ξ̂

∗
2p, . . . , ξ̂

∗
Bp.

Step-7: Using B bootstrap estimates as obtained in Step 6, find the ν
2
th and (1− ν

2 )
th

empirical percentiles as the lower control limit (LCL) and upper control
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limit (UCL) respectively to construct a two-sided BHCC chart, where ν is
the false alarm rate (FAR) defined as the probability that an observation is
considered as out of control (OOC) when the process is actually IC. Here,
empirical sample percentiles are obtained following a method proposed by
Hyndman and Fan [14].

Step-8: Sequentially observe the jth phase II (test) sample Yj:m = (Yj1, Yj2, . . . , Yjm)
of size m, j = 1, 2, . . ..

Step-9: Sequentially obtain ξ̂jp using (3.1) after obtaining MLEs of the parameters
under hybrid censoring scheme using the jth test sample as described in
Step-5.

Step-10: Plot ξ̂jp against LCL and UCL as obtained in Step-7 of the Phase I process.

Step-11: If ξ̂jp falls in between the LCL and UCL, then the process is assumed to
be in-control, otherwise, an OOC signal is activated.

3.2. CHARTING PROCEDURE FOR THE SHEWART-TYPE HYBRID-
CENSORED CONTROL (SHCC) MONITORING SCHEME

Shewhart-type control monitoring scheme for the percentiles of GE distri-
bution, named as SHCC scheme is derived in this section following the asymptotic
properties of the MLEs obtained in Section 2.2. The steps for designing the SHCC
scheme for 100pth percentile of proportion, ξp (Θ), are described as follows:
In phase I, samples are drawn from in-control process following GE distribution
in k independent random subgroups of size m each with n = m × k being the
total sample size.

Step-1: As described in Section 2.1, the MLEs Θ̂n =
(
θ̂n, λ̂n

)
are computed on

the basis of n in-control sample values of Phase I. Then the asymptotic

standard error of ξ̂p,m

(
Θ̂m

)
is computed as

(3.2) SEξp,m =

√
1

m
∇ξTp

(
Θ̂n

)
I−1
Y

(
Θ̂n

)
∇ξp

(
Θ̂n

)
,

where ∇ξp

(
Θ̂n

)
is the gradient of ξp (Θ) at Θ = Θ̂n. I−1

Y

(
Θ̂n

)
is calcu-

lated following the procedure as described in Section 2.2.

Step-2: The MLEs Θ̂j
m of Θ and ξjp

(
Θ̂j

m

)
are calculated based on jth (j = 1, 2, . . . , k)

IC samples of size m each. The sample mean of ξjp
(
Θ̂j

m

)
s is calculated as

ξ̄p

(
Θ̂m

)
=

1

k

k∑
i=1

ξjp

(
Θ̂j

m

)
.
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Step-3: The Shewhart-type control monitoring scheme has the center line CLSH =

ξ̄p

(
Θ̂m

)
. If ν is the false alarm rate (FAR), then for 0 < ν < 1, the upper

and lower control limits of the SHCC scheme are found to be

UCLSH = ξ̄p

(
Θ̂m

)
+ z(1−ν/2)SEξp,m ,

and
LCLSH = ξ̄p

(
Θ̂m

)
− z(1−ν/2)SEξp,m ,

respectively, where z(1−ν/2) is the (1 − ν/2)th quantile of standard normal
distribution.
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Figure 2: Histogram and density plot of waiting times of 100 patients

4. SIMULATION STUDY

In this section, the IC and OOC performances of the proposed BHCC
monitoring scheme are evaluated through a comprehensive simulation study. Nu-
merical computations in R (version 4.0.2) based on Monte-Carlo simulations are
used to determine the average UCL and LCL. The MLEs of the parameters θ and
λ are obtained for the pair (θ = 5.5, λ = 0.05). The control limits are obtained
based on B = 5, 000 bootstrap samples. The simulations are carried out with
different bootstrap sample sizes m with k = 20 subgroups, different percentiles
(p = 0.1, 0.5, 0.9), different levels of FAR (ν = 0.1, 0.005, 0.0027, 0.002, 0.001) and
the following censoring schemes: Scheme 1 : m = 25, r = 15, x0 = 55; Scheme
2 : m = 25, r = 20, x0 = 55; Scheme 3 : m = 40, r = 30, x0 = 55; Scheme
4 : m = 40, r = 35, x0 = 55; Scheme 5 : m = 25, r = 15, x0 = 70; Scheme
6 : m = 25, r = 20, x0 = 70; Scheme 7 : m = 40, r = 30, x0 = 70; and Scheme
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Figure 3: BHCC monitoring scheme for 90th percentile of the waiting time
data with ∆θ = 0.15, ∆λ = −0.15, UCL = 78.597, CL =
26.255, LCL = 12.702
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Figure 4: SHCC monitoring scheme for 90th percentile of the waiting time
data with ∆θ = 0.15, ∆λ = −0.15, UCLSH = 23.711, CLSH =
21.839, LCLSH = 19.966; Example 1

8 : m = 40, r = 35, x0 = 70. The performance of the scheme is assessed by
run length, defined as the number of cases required to observe the first OOC
signal. For each simulation, the run length is obtained, followed by obtaining the
average run length (ARL) and the standard deviation of run length (SDRL) by
using 5, 000 simulation runs.

4.1. IC MONITORING SCHEME PERFORMANCE

The estimated IC control limits of the BHCC scheme are displayed in
Table 1 along with the respective ARL and SDRL as the scheme performance
measures, denoted by ARL0 and SDRL0 respectively. It is easy to show that
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Figure 5: BTICC monitoring scheme for 90th percentile of the waiting
time data with ∆θ = 0.15, ∆λ = −0.15, UCL = 76.812, CL =
15.833, LCL = 12.066
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Figure 6: BTIICC monitoring scheme for 90th percentile of the waiting
time data with ∆θ = 0.15, ∆λ = −0.15, UCL = 44.144, CL =
24.770, LCL = 12.599

the reciprocal of FAR is same as the nominal (theoretical) ARL, viz. for ν =
0.1, 0.005, 0.0027, 0.002 and 0.001, the nominal ARL should be equal to 10, 200, 370,
500 and 1000 respectively. In general, the smaller ARLs indicate narrower con-
trol limits, while ARLs larger than 370 specifies wider limits that the bootstrap
control schemes give fewer false signals. The simulated values of ARL0 in Table
1 of the supplementary article are found to be closer to the theoretical results
implying that the BHCC monitoring scheme for percentiles perform well with
skewed data. As the bootstrap sample size (m) increases, the estimated control
limits get closer together. Moreover, for fixed m, the control limits become far-
ther apart as the percentile (p) increases. Also, SDRL0 is found to be closer to
the ARL0, satisfying the theoretical result of the geometric distribution used as
the run length model.
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Figure 7: Histogram and density plot of survival times of 120 patients
with breast cancer
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Figure 8: BHCC monitoring scheme for 90th percentile of the survival
time data with ∆θ = 0.15 ,∆λ = −0.15, UCL = 322.248, CL =
115.577, LCL = 48.912

4.2. OOC MONITORING SCHEME PERFORMANCE

The OOC performance of the BHCC monitoring scheme is investigated by
measuring impact of changes in the IC parameter estimates on ARL. In other
words, the phase II sample is considered taken from GE(θ +∆θ, λ+∆λ), while
the IC sample comes from GE(θ, λ). The effects of shifts (∆θ and/or ∆λ) in the
parameters of the GE distribution on ARL of the percentile scheme is examined
and exhibited in Table 2 of the supplementary article. In general, the simulation
results reveal that for fixed m, r, and x0, the OOC ARL values (denoted by
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Figure 9: BTICC monitoring scheme for 90th percentile of the survival
time data with ∆θ = 0.15, ∆λ = −0.15, UCL = 291.965, CL =
106.950, LCL = 51.203
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Figure 10: BTIICC monitoring scheme for 90th percentile of the survival
time data with ∆θ = 0.15, ∆λ = −0.15, UCL = 232.296, CL =
115.565, LCL = 48.846

ARL1) for the percentiles decrease sharply with both downward and upward
small, medium and large shifts in the parameters indicating the effectiveness and
usefulness of the scheme. However, the speed of detection varies depending on
the type of shifts, the parameters, and the percentile being considered. Except
for minor sampling fluctuations, in general, the monitoring scheme detects OOC
signal in percentiles faster for downward shifts than the upward shifts (refer Table
2 and Figure 11). In particular, when θ is IC, the ARLs around 50th percentile
are smaller than the other percentiles for both upward and downward shifts in
λ as is evident from Table 2 and Figure 11(a). For example, for a 4% decrease
(increase) in λ when θ is IC (∆θ = 0), there is about 27.8% (21%) reduction in the
ARL of the 50th percentile. On the other hand, when λ is IC, the ARLs for the
lower percentiles (around 10th percentile) is found to be smaller than the other
percentiles for downward (upward) shift in θ (refer Table 2 and Figure 11(b)). For
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example, there is about 44.8% (13.8%) reduction in the ARL of the 10th percentile
for a 6% decrease (increase) in θ when λ is IC. From Table 2 and Figure 11(c)
it is also clear that for 10% deviation in θ the ARLs around 50th percentile are
smaller than the other percentiles for both upward and downward shifts in λ.
Again, from Figure 11(d) it can also be observed that, for 10% deviation in λ
the ARLs around 50th percentile are smaller than the other percentiles for both
upward and downward shifts in θ.

5. ILLUSTRATIVE EXAMPLE WITH COMPARISONS

In this section, the BHCC and SHCC monitoring schemes are illustrated
by a numerical example which records the waiting times (in minutes) of 100
customers before getting their services (see Ghitany et al. [9]). The BHCC scheme
is then compared with bootstrap scheme with Type I amd Type II censoring.
Various summary measures of the data set can be found below:

Min 5% 10% 25% 50% 75% 90% 95% Max
0.800 1.895 2.880 4.675 8.100 13.000 19.090 21.955 38.500

First, the Weibull and GE distributions are compared for fitting the data set.
For Weibull model, the MLEs of the shape and scale parameters are found to be
1.458 and 10.954 respectively with Kolmogorov-Smirnov test (K-S) statistic value
D = 0.0577, and p-value, p = 0.8927. For GE model, the MLEs are obtained as
θ̂ = 2.183 and λ̂ = 0.159 with D = 0.0402 and p = 0.9970. The histogram of the
data and two fitted densities are provided in Figure 2. The fit results confirm that
the GE distribution provides a better fit than Weibull in this case. Moreover,
logarithm of the ratio of maximized likelihood (RML), defined as T = logL =
lGE(θ̂, λ̂)− lWE( ˆshape, ˆscale) = −317.0884− (−318.7261) = 1.6377 > 0 indicates
to choose GE distribution over Weibull.
In order to achieve service excellence, the bank may find extreme percentiles of
the waiting times worth investigating over the average waiting time. An upward
shift in the upper percentile of the waiting times indicates deterioration in the
service quality and requires monitoring. In view of this objective, the BHCC chart
is constructed for monitoring 90th percentile of the waiting times. The complete
data is censored either at the waiting time of the first 60% of the total number
of customers (r = 60) or at the waiting time of 10 minutes (x0 = 10), whichever
occurs earlier. The censoring time x0 = 10 is chosen near to 60th percentile. The
complete set of 100 observations is considered as four (k = 4) reference samples of
size m = 25 each. The MLEs of θ and λ under the stated hybrid censoring scheme
are obtained as θ̂ = 1.760 and λ̂ = 0.127 respectively. Using these MLEs, B =
5, 000 bootstrap samples of size m = 25 each are drawn with r = 15 (60% of the
subgroup size) and x0 = 10. Following the steps 4−7 in subsection 3.1, and using
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ν = 0.0027 as FAR, the control limits of the BHCC scheme for the 90th percentile
are obtained as UCL = 78.597, CL = 26.255 and LCL = 12.702, while the same
for the SHCC scheme are computed as UCLSH = 23.711, LCLSH = 19.966 and
CLSH = 21.839. It is observed that both schemes provide asymmetric control
limits from the respective CL, while the SHCC scheme has narrower interval than
the BHCC scheme. Twenty subgroups of size m = 25 each are generated from
the OOC process under similar hybrid censoring plan having shape parameters
θ = 2.024 and λ = 0.108 (15% increase in θ and 15% decrease in λ).
The OOC performance of the BHCC and SHCC schemes for the 90th percentile
are presented in Figure 3 and Figure 4 respectively. The BHCC scheme is able to
produce OOC signals quite efficiently with five 90th percentile points falling above
the UCL with the first OOC signal being obtained at test sample 2 indicating
effectiveness of the scheme in terms of quick detection as well. On the other
hand, nine OOC signals are produced by the SHCC scheme with test sample 2
producing the first OOC signal. It is to be noted here that the SHCC scheme
grossly underestimates the IC ARL (computation of IC ARL for SHCC scheme
is not shown for brevity) due to the narrow band of the control limits which may
eventually produce false OOC signals.
Next, bootstrap monitoring scheme is used for type-I (denoted as BTICC) and
type-II (denoted as BTIICC) censored data coming from the GE distribution
and their performance is compared with the BHCC monitoring scheme with the
same data set and the procedure as used before. The control monitoring schemes
for type-I and type-II censored data can be derived as a special case of hybrid
censored data for r = n and T = xn:n respectively. The MLEs of θ and λ
under type-I censoring with x0 = 10 are obtained as θ̂ = 1.803 and λ̂ = 0.131
respectively, while the same under type-II censoring with r = 60 are found to
be θ̂ = 1.766 and λ̂ = 0.127 respectively. While the control limits of BTICC
scheme for the 90th percentile are obtained as UCL = 76.812, CL = 15.833 and
LCL = 12.066, the same for the BTIICC scheme are calculated as UCL =
44.144, CL = 24.770, and LCL = 12.599. Both the schemes provide asymmetric
control limits with the BTIICC scheme having narrower interval than the BTICC
scheme. After the first four IC subgroups, twenty subgroups of size m = 25 each
are generated from the OOC process having θ = 2.073 and λ = 0.111 (15%
increase in θ and 15% decrease in λ). Figure 5 and Figure 6 provide the OOC
performance of the control monitoring schemes for the 90th percentile. Figure
5 shows that the type-I censored scheme is able to generate three OOC points
falling above the UCL with the first being produced at test sample 12. The
type-II censored scheme as is shown in Figure 6 produces two OOC signals just
above the UCL with test sample 9 providing the first signal. It is evident from
the data analysis that the hybrid censored control monitoring scheme performs
better than type-I and type-II censored control monitoring schemes in terms of
both frequency and speed of detection of OOC signals.
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6. APPLICATION

This section provides an application of the BHCC monitoring scheme in
clinical practice. The scheme is used to monitor the top percentile of the survival
times of 120 patients (see Hamedani [13]) with breast cancer obtained from a
large hospital in a period from 1929 to 1938. The histogram of the data set as
shown in Figure 7 and the summary measures below suggest the skewed nature
of the data set.

Min 5% 10% 25% 50% 75% 90% 95% Max
0.3 6.585 10.110 17.800 40.000 60.000 105.400 125.050 154.0

The MLEs of θ and λ for the complete data set coming from the GE distribu-
tion are found to be θ̂ = 1.649 and λ̂ = 0.029 respectively. The fitted density
is provided in Figure 7. The one sample K-S statistic and corresponding p-
value are found to be 0.0717 and 0.5681 respectively. The fit results recommend
GE distribution to model the survival time data and subsequent development
of BHCC scheme. The complete sample data is split into six subgroups of size
20 each. Under hybrid censoring with r = 72 and x0 = 60, the estimates of
the GE parameters are obtained as θ̂ = 1.415 and λ̂ = 0.024. Using 5, 000
bootstrap samples of size m = 20 each with r = 12 and x0 = 60, the control
limits of the BHCC monitoring scheme for the 90th percentile are evaluated as
UCL = 322.248, CL = 115.577, LCL = 48.912. Next, twenty phase II samples of
size m = 20 each are generated from the process under similar hybrid censoring
plan with ∆θ = 0.15 and ∆λ = −0.15 to develop the BHCC monitoring scheme
for the 90th percentile as presented in Figure 8. The scheme has been able to
detect OOC signals at 2nd, 5th and 11th samples. For the same data set, the
control limits for the BTICC monitoring scheme for 90th percentile with x0 = 60
are found to be UCL = 291.965, CL = 106.950, LCL = 51.203. Figure 9 shows
that this scheme has been able to detect only one OOC signal at the 20th sample.
On the other hand, BTIICC monitoring scheme for 90th percentile with r = 12
is presented in Figure 10 with UCL = 232.296, CL = 115.565, LCL = 48.846.
Figure 10 shows that this scheme also detects only one OOC signal at the 9th

sample. The frequency and speed of detection of OOC signals further justify the
use of BHCC monitoring scheme over BTICC and BTIICC monitoring schemes
for the percentiles of survival time in a healthcare set-up.

7. CONCLUDING REMARKS

In this work, hybrid censoring is employed to develop control monitoring
schemes for percentiles of GE distribution using bootstrap and asymptotic meth-
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ods. Bootstrap monitoring schemes for type-I and type-II censored data are also
developed under similar set-up as a special case of hybrid censoring plan. An ex-
tensive simulation study is conducted to evaluate the IC and OOC performance
of the schemes. The hybrid censored schemes are found to be effective in the de-
tection of OOC signals in terms of both magnitude and speed as demonstrated by
a real data set. One application from healthcare is also provided to establish the
effectiveness of the schemes. In this sense, the present work is the first attempt to
apply a new censoring scheme in the process control and generalizes available con-
trol monitoring schemes for the GE data. As a scope for future research, hybrid
censored schemes may be proposed under Bayesian set-up measuring uncertainty
in the parameter(s). One can also think of using progressive censoring scheme
to construct such control mechanism. For highly reliable products, accelerated
life testing scheme may be employed under various censoring plans for the same
purpose.
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Table 1: Control limits, ARL0 and SDRL0 for θ = 5.5, λ = 0.05

m = 25, x0 = 55, r = 15
ν θ1 θ2 LCL UCL ARL0 SDRL0

p = 0.1
0.1 2.812 0.030 11.830 23.037 8.865 9.269

0.005 2.876 00.314 8.968 27.711 199.281 202.163
0.0027 2.866 0.031 8.518 28.718 373.620 382.851
0.002 2.848 0.031 8.269 29.288 510.406 511.501
0.001 2.881 0.031 7.893 30.523 1012.984 1019.954

p = 0.5
0.1 2.909 0.032 42.012 86.471 9.654 9.153

0.005 2.915 0.031 34.638 128.473 200.125 197.813
0.0027 2.869 0.031 33.919 144.963 371.171 373.865
0.002 2.932 0.032 33.336 147.457 516.495 518.838
0.001 2.895 0.0313 32.330 163.980 946.275 942.008

p = 0.9
0.1 2.858 0.031 95.772 248.542 9.240 8.821

0.005 2.853 0.031 76.570 381.303 199.350 195.763
0.0027 2.837 0.031 74.073 421.948 366.788 369.880
0.002 2.882 0.032 73.003 439.777 548.506 539.569
0.001 2.877 0.031 70.660 491.325 935.637 917.314

m = 25, x0 = 55, r = 20
p = 0.1

0.1 3.705 0.038 13.612 24.275 9.593 8.978
0.005 3.743 0.0387 10.616 28.571 197.046 202.377
0.0027 3.955 0.040 10.543 29.553 371.029 378.865
0.002 3.857 0.397 10.096 29.733 499.323 497.201
0.001 3.870 0.039 9.715 30.573 963.830 962.839

p = 0.5
0.1 3.758 0.039 38.684 75.995 9.586 8.993

0.005 3.843 0.039 32.782 107.914 199.891 199.839
0.0027 3.834 0.034 31.638 112.757 372.903 371.694
0.002 3.671 0.038 31.317 120.484 498.172 501.858
0.001 3.917 0.039 30.986 130.329 1012.002 1025.377

p = 0.9
0.1 3.835 0.039 73.389 187.241 8.782 9.306

0.005 4.068 0.041 59.618 291.500 187.599 189.073
0.0027 3.922 0.040 58.869 329.939 344.867 344.185
0.002 3.887 0.039 58.189 486.579 485.553 485.330
0.001 3.833 0.039 56.391 376.658 1067.507 1052.423

Continued on next page
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Table 1 – Continued from previous page
ν θ λ LCL UCL ARL0 SDRL0

m = 40, x0 = 55, r = 30
p = 0.1

0.1 3.830 0.039 14.549 22.933 9.072 9.741
0.005 3.837 0.039 12.097 26.294 194.992 197.399
0.0027 3.894 0.039 11.780 26.922 371.586 375.765
0.002 3.786 0.039 11.434 27.066 501.07 514.918
0.001 4.095 0.041 11.528 27.985 983.974 972.453

p = 0.5
0.1 2.503 0.0278 44.272 84.018 9.229 9.564

0.005 2.494 0.027 37.495 115.207 193.264 194.567
0.0027 2.512 0.027 36.734 123.208 362.996 370.67
0.002 2.503 0.027 36.005 124.74 503.296 488.532
0.001 2.531 0.028 35.167 132.979 988.48 971.968

p = 0.9
0.1 3.900 0.039 79.890 170.495 8.999 9.708

0.005 3.997 0.041 67.896 232.891 217.252 218.698
0.0027 3.952 0.040 66.733 252.688 358.866 358.729
0.002 3.829 0.039 66.681 267.657 483.185 478.586
0.001 3.784 0.039 65.095 284.924 1055.368 1045.77

m = 40, x0 = 55, r = 35
p = 0.1

0.1 3.982 0.040 14.788 23.134 9.198 9.786
0.005 3.736 0.038 11.898 26.137 197.942 200.359
0.0027 3.932 0.040 11.784 26.912 377.912 380.658
0.002 3.917 0.040 11.632 27.214 493.621 499.410
0.001 3.814 0.039 11.072 27.667 998.736 993.715

p = 0.5
0.1 3.878 0.039 40.204 67.263 9.132 9.362

0.005 3.794 0.039 35.513 89.176 198.183 198.474
0.0027 3.898 0.039 34.708 92.318 359.332 356.474
0.002 3.825 0.039 34.375 95.111 496.614 493.678
0.001 3.842 0.039 33.474 98.635 974.028 967.235

p = 0.9
0.1 3.852 0.039 80.054 171.3 9.423 8.836

0.005 4.008 0.041 66.133 232.144 210.664 207.081
0.0027 3.924 0.040 65.055 252.767 370.094 370.317
0.002 3.845 0.039 64.789 264.826 501.823 497.035
0.001 3.823 0.039 63.645 287.609 1060.917 1072.800

m = 25, x0 = 70, r = 15
p = 0.1

0.1 2.85 0.031 11.932 24.484 9.075 9.822
0.005 2.869 0.031 8.954 29.986 194.054 189.316
0.0027 2.855 0.031 8.459 30.878 356.592 354.291
0.002 2.870 0.031 8.359 31.497 498.327 498.327
0.001 2.883 0.032 7.855 32.205 1006.289 983.451

p = 0.5
0.1 2.832 0.031 41.750 70.441 9.128 9.419

0.005 2.914 0.031 35.082 96.917 199.993 204.249
0.0027 2.864 0.031 33.606 101.857 373.372 378.762
0.002 2.838 0.031 33.179 106.356 506.805 526.741
0.001 2.876 0.031 32.025 111.392 976.043 962.025

p = 0.9
0.1 2.851 0.031 96.561 182.511 8.788 9.209

0.005 2.821 0.031 77.351 270.358 194.856 200.642
0.0027 2.843 0.031 74.817 286.522 400.526 400.402
0.002 2.581 0.031 73.916 302.909 458.016 457.852
0.001 2.841 0.031 70.663 319.773 1025.175 1004.552

m = 25, x0 = 70, r = 20
p = 0.1

0.1 4.748 0.0465 15.550 27.219 9.091 9.500
0.005 4.792 0.046 12.467 32.308 198.842 197.303
0.0027 4.891 0.046 12.337 33.719 378.966 382.839
0.002 4.968 0.047 12.034 33.675 490.950 489.029
0.001 4.738 0.045 11.221 34.438 984.621 984.048

p = 0.5
0.1 4.811 0.046 37.059 55.666 8.974 9.612

0.005 4.804 0.046 32.221 68.410 199.735 202.615
0.0027 4.783 0.045 31.681 72.234 366.767 362.857
0.002 4.929 0.046 31.323 72.598 508.148 511.174
0.001 4.759 0.046 30.461 76.763 982.873 994.352

p = 0.9
0.1 4.913 0.046 67.604 117.085 9.308 8.976

0.005 4.774 0.046 57.159 161.266 202.340 200.612
0.0027 4.817 0.046 56.277 176.398 363.095 356.985
0.002 4.789 0.046 55.146 178.642 518.166 529.807
0.001 4.823 0.046 53.239 187.111 1013.308 1055.570

m = 40, x0 = 70, r = 30
p = 0.1

0.1 4.490 0.044 15.967 25.259 9.017 9.654
0.005 4.410 0.043 13.298 29.299 195.595 196.360
0.0027 4.491 0.044 13.071 30.153 358.369 351.506
0.002 4.563 0.044 12.992 30.353 494.728 497.457
0.001 4.450 0.043 12.346 31.002 969.354 992.311

Continued on next page
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Table 1 – Continued from previous page
ν θ λ LCL UCL ARL0 SDRL0

p = 0.5
0.1 4.354 0.043 39.241 54.206 8.975 9.327

0.005 4.363 0.043 35.250 64.082 194.275 195.113
0.0027 4.348 0.434 34.324 65.286 361.189 345.430
0.002 4.531 0.044 34.147 65.598 499.626 504.093
0.001 4.403 0.043 33.746 69.507 967.592 974.619

p = 0.9
0.1 4.466 0.043 75.657 115.239 9.128 9.807

0.005 4.431 0.044 65.931 146.569 197.499 195.845
0.0027 4.387 0.044 64.441 153.629 374.160 366.423
0.002 4.416 0.043 64.231 159.318 490.342 487.078
0.001 4.332 0.042 63.081 170.417 998.072 1004.605

m = 40, x0 = 70, r = 35
p = 0.1

0.1 5.099 0.048 16.987 31.039 9.009 9.445
0.005 5.211 0.048 14.599 30.020 200.179 198.202
0.0027 5.157 0.048 13.956 30.332 378.016 379.920
0.002 5.253 0.048 13.965 30.812 483.591 494.707
0.001 5.178 0.048 13.372 31.252 969.366 978.296

p = 0.5
0.1 5.207 0.048 37.905 51.624 9.263 9.805

0.005 5.129 0.047 34.250 59.701 198.445 201.138
0.0027 5.077 0.048 33.582 61.249 371.043 369.694
0.002 4.905 0.046 33.499 63.380 504.436 500.516
0.001 5.154 0.048 32.929 64.138 981.467 995.158

p = 0.9
0.1 5.208 0.048 68.413 104.205 8.935 9.597

0.005 5.209 0.048 61.156 132.089 196.665 197.578
0.0027 5.072 0.047 60.212 139.842 362.635 361.404
0.002 5.092 0.048 58.875 138.727 498.193 493.579
0.001 5.113 0.048 58.059 146.944 993.288 1002.445

Table 2: OOC performance for m = 25, x0 = 55, r = 15, θ = 5.5, λ = 0.05

∆λ p = 0.1 p = 0.5 p = 0.9
∆θ = −0.3

ARL(SDRL) ARL(SDRL) ARL(SDRL)
-0.2 8.071 (8.594) 16.451 (16.023) 15.109 (14.112)
-0.1 9.415 (10.004) 16.300 (17.133) 17.019 (17.138)
-0.08 9.975(10.444) 18.050(19.192) 16.078(17.290)
-0.06 10.134(9.291) 19.007(18.010) 18.653(18.365)
-0.04 10.950(8.723) 19.946(18.721) 21.894(21.022)
-0.02 11.639(9.904) 21.681(20.257) 32.333(32.958)
0 10.541 (9.251) 20.041 (21.078) 36.721 (36.002)

0.02 5.334(5.781) 6.766(7.240) 20.751(21.542)
0.04 4.723(5.139) 5.463(5.996) 17.341(17.914)
0.06 4.293(4.852) 4.620(5.132) 14.310(14.473)
0.08 3.882(4.308) 3.931(4.366) 12.156(12.797)
0.1 3.570 (4.023) 3.364 (3.846) 9.961 (10.623)
0.2 2.183 (2.702) 1.453 (1.927) 4.538 (5.118)
0.3 1.387 (1.822) 0.756 (1.182) 2.333 (2.825)

∆θ = −0.2
-0.3 35.950 (36.976) 23.445 (23.949) 24.664 (25.280)
-0.1 61.271 (60.222) 127.080 ( 127.506) 157.182 (158.833)
-0.08 54.435 (55.689) 94.709 (193.538) 207.804 (206.153)
-0.06 46.315 (46.097) 74.016 (73.762) 164.721 (168.005)
-0.04 33.551 (34.483) 54.724 (55.509) 127.318 (124.859)
-0.02 27.908 (28.031) 41.884 (41.318) 96.785 (98.045)
0 25.954 (26.304) 31.898 (32.191) 75.108 (77.694)

0.02 20.762 (21.244) 25.563 (26.411) 59.844 (60.967)
0.04 18.362 ( 17.736) 20.345 (20.977) 46.644 (46.517)
0.06 15.654 (16.147) 15.624 (16.179) 36.663 (37.373)
0.08 13.655 (14.395) 12.501 (13.140) 29.571 (30.682)
0.1 11.972 (12.555) 10.264 (10.795) 23.464 (24.721)
0.2 6.861 (7.329) 3.990 (4.371) 9.508 (9.862)
0.3 4.073 (4.489) 1.880 (2.343) 4.361 (4.842)

∆θ = −0.1
-0.3 12.388 (12.896) 8.710 (9.099) 9.430 (9.973)
-0.2 63.085 (64.036) 45.780 (46.784) 49.016 (50.760)
-0.08 198.434 (197.024) 262.096 (266.725) 314.749 (317.814)
-0.06 178.580 (173.978) 263.839 (264.534) 340.554 (341.785)
-0.04 155.577 ( 156.147) 228.006 (226.347) 311.412 (311.228)
-0.02 135.275 (136.893) 181.486 (179.450) 266.279 (269.387)
0 123.055 (124.551) 140.192 (142.782) 215.486 (214.190)

0.02 91.102 (90.584) 102.635 (100.961) 164.303 (161.264)
0.04 77.828 (78.596) 77.164 (77.172) 125.107 (125.513)
0.06 64.256 (65.345) 59.231 (58.065) 96.188 (96.402)

Continued on next page
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Table 2 – Continued from previous page
∆λ p = 0.1 p = 0.5 0.9
0.08 54.182 (55.813) 45.851 (45.705) 75.810 (76.306)
0.1 51.479 (52.428) 35.402 (35.681) 59.754 (59.929)
0.2 24.233 (24.276) 11.190 (11.619) 20.097 (20.594)
0.3 12.371 (12.949) 4.371 (4.957) 8.461 (9.041)

∆θ = −0.08
-0.3 11.886(12.673) 7.775(8.267) 7.899(8.255)
-0.2 61.563 (61.407) 37.695 (37.675) 39.176 (38.924)
-0.1 215.642 (209.788) 205.235 (202.819) 226.998 (230.446)
-0.06 226.573 (227.238) 279.552 (279.899) 306.655 (307.643)
-0.04 205.435 (205.503) 270.143 (268.302) 315.048 (318.793)
-0.02 174.515 (171.644) 236.296 (231.238) 287.769 (287.914)
0 150.818 (152.212) 180.879 (181.724) 211.515 (210.278)

0.02 129.346 (129.425) 133.565 (132.856) 198.244 (202.245)
0.04 106.854 (106.836) 102.946 (103.456) 153.449 (152.253)
0.06 88.418 (89.227) 78.821 (77.653) 121.086 (121.408)
0.08 75.401 (75.139) 57.324 (57.387) 91.256 (92.481)
0.1 63.326 (64.821) 44.105 (44.193) 72.867 (73.186)
0.2 28.112 (28.448) 13.641 (14.115) 23.975 (24.209)
0.3 14.353(14.892) 5.161(5.548) 9.592(10.032)

∆θ = −0.06
-0.3 9.893(10.463) 6.448(7.056) 6.586(6.998)
-0.2 48.117 (49.646) 30.908 (31.087) 32.991 (33.657)
-0.1 213.661 (210.378) 179.409 (177.378) 183.967 (183.990)
-0.08 251.301 (248.520) 233.205 (233.415) 254.553 (258.357)
-0.04 252.823 (252.657) 307.411 (309.388) 327.791 (329.037)
-0.02 228.497 (233.517) 283.904 (278.001) 304.651 (300.923)
0 204.217 (203.632) 238.552 (239.031) 277.182 (273.787)

0.02 167.358 (172.887) 176.706 (178.378) 243.192 (240.835)
0.04 142.135 (141.693) 140.615(137.063 ) 190.432 (187.359)
0.06 121.480 (119.899) 101.555 (102.258) 143.980 (143.508)
0.08 101.719 (99.834) 75.899 (76.290) 112.152 (115.584)
0.1 82.816 (83.910) 58.432 (58.148) 84.175 (82.994)
0.2 36.061 (35.892) 16.787 (17.355) 26.634 (26.932)
0.3 18.181(18.611) 6.237(6.747) 6.687(7.171)

∆θ = −0.04
-0.3 8.116(8.717) 5.438(5.981) 5.666(6.221)
-0.2 39.919 (40.091) 24.881 ( 25.368) 27.687 (27.828)
-0.1 202.228 (202.461) 144.353 (148.195) 156.115 (156.972)
-0.08 240.958 (237.041) 197.099 (201.085) 216.393 (215.429)
-0.06 287.695 (282.448) 261.544 (259.733) 282.848 (281.407)
-0.02 288.003 (288.531) 326.057 (325.667) 340.305 (337.266)
0 262.173 (263.314) 290.495 (288.586) 311.873 (306.750)

0.02 226.845 (226.034) 231.251 (233.209) 287.975 (287.018)
0.04 198.517 ( 189.025) 177.966 (179.320) 229.115 (232.436)
0.06 164.970 (164.305) 131.281 (131.383) 177.014 (175.740)
0.08 133.642 (135.438) 101.146 (100.476) 133.021 (131.784)
0.1 112.469 (112.791) 76.257 (77.329) 103.376 (101.785)
0.2 48.386 (48.633) 20.929 (21.263) 31.555 (32.532)
0.3 22.761(22.997) 7.283(7.664) 12.396(13.141)

∆θ = −0.02
-0.3 7.164(7.811) 4.725(5.133) 4.939(5.471)
-0.2 33.497 (34.843) 21.208 (21.850) 22.540 (22.257)
-0.1 170.787 (172.114) 120.951 (120.508) 130.460 (131.825)
-0.08 224.713 (229.501) 170.848 (174.452) 181.880 (185.662)
-0.06 281.890 (282.828) 234.437 (236.225) 254.898 (254.178)
-0.04 322.881 (322.501) 296.366 (297.089) 311.082 (312.213)
0 316.098 (319.640) 326.129 (325.610) 353.417 (354.495)

0.02 290.143 (291.939) 281.609 (285.059) 329.318 (331.790)
0.04 254.654 (253.103) 236.123 (238.064) 270.141 (268.717)
0.06 208.181 (210.002) 178.408 (176.740) 211.014 (208.905)
0.08 182.292 (181.063) 129.337 (129.630) 159.043 (159.878)
0.1 151.083 (153.169) 99.703 (98.518) 122.928 (120.460)
0.2 64.170 (62.063) 26.619 (27.183) 37.580 (37.805)
0.3 28.934(29.525) 8.812(9.258) 13.903(14.351)

∆θ = 0
-0.3 5.146 (5.685) 4.026 (4.498) 4.342 (4.885)
-0.2 23.873 (24.526) 17.853 (18.572) 19.796 (20.633)
-0.1 120.044 (121.699) 98.649 (98.686) 107.044 (109.599)
-0.08 197.698 (195.721) 142.851 (143.442) 149.982 (152.995)
-0.06 248.660 (249.337) 198.897 (200.854) 206.549 (205.732)
-0.04 318.115 (313.830) 267.130 (267.405) 287.480 (288.742)
-0.02 347.811 (346.613) 330.700 (327.919) 346.422 (342.225)
0.02 349.378 (341.547) 345.469 (343.1509) 347.475 (343.017)
0.04 307.966 (305.231) 292.367 (293.186) 315.871 (311.009)
0.06 285.495 (287.511) 224.780 (222.699) 255.153 (256.592)
0.08 245.649 (241.926) 170.219 (169.888) 195.335 (196.753)
0.1 228.174 (224.763) 127.124 (125.624) 146.773 (147.685)
0.2 93.332 (92.879) 33.757 (33.946) 43.583 (44.329)
0.3 42.378 (43.231) 11.149 (11.803) 16.315 (16.910)

∆θ = 0.02
-0.3 2.014(5.482) 3.554(3.990) 3.646(4.134)
-0.2 22.453 (23.251) 15.312 (15.695) 16.197 (16.674)
-0.1 121.237 (121.867) 80.721 (81.123) 87.831 (89.568)

Continued on next page
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Table 2 – Continued from previous page
∆λ p = 0.1 p = 0.5 0.9
-0.08 164.530 (165.194) 116.477 (117.060) 124.528 (122.930)
-0.06 225.273 (223.209) 167.112 (166.062) 174.944 (174.176)
-0.04 285.688 (285.807) 230.741 (230.871) 247.017 (243.818)
-0.02 325.712 (321.820) 309.026 (310.978) 316.239 (313.509)
0 351.165 (352.190) 339.507 (338.933) 351.835 (352.645)

0.04 327.298 (327.598) 341.754 (340.489) 358.973 (354.868)
0.06 284.917 (278.141) 292.467 (289.143) 298.720 (297.358)
0.08 244.925 (246.697) 219.153 (216.450) 238.672 (237.522)
0.1 216.756 (213.139) 168.603 (169.045) 178.548 (175.878)
0.2 110.682 (109.558) 42.547 (42.668) 50.968 (51.535)
0.3 49.894(49.325) 12.505(13.124) 18.327(18.749)

∆θ = 0.04
-0.3 4.258(4.744) 3.139(3.536) 3.334(3.829)
-0.2 19.298 (20.088) 2.681 (13.379) 13.767 (14.128)
-0.1 97.294 (96.922) 67.063 (67.514) 71.071 (70.970)
-0.08 134.830 (134.146) 97.933 (98.592) 104.091 (103.166)
-0.06 195.094 (195483) 138.501 (139.310) 147.901 (147.183)
-0.04 258.640 (254.946) 195.995 (196.845) 202.986 (202.735)
-0.02 324.457 (315.447) 269.969 (269.319) 290.090 (291.774)
0 338.298 (337.423) 326.874 (321.441) 337.103 (337.252)

0.02 353.916 (355.162) 307.010 (302.873) 348.082 (349.941)
0.06 312.641 (318.930) 262.881 (266.375) 315.847 (314.416)
0.08 283.480 (280.010) 234.701 (231.158) 276.028 (273.423)
0.1 246.262 (244.174) 216.532 (218.505) 214.942 (213.660)
0.2 148.436 (148.675) 52.733 (54.212) 61.271 (61.084)
0.3 63.508(62.827) 15.548(16.290) 20.046(20.429)

∆θ = 0.06
-0.3 3.773(4.181) 2.647(3.255) 2.825(3.151)
-0.2 15.951 (16.193) 10.821 (11.349) 12.082 (12.475 )
-0.1 81.565 (79.756) 56.805 (57.194) 59.442 (60.425)
-0.08 113.241 (115.676) 78.945 (79.865) 87.668 (86.476)
-0.06 155.420 (154.542) 116.008 (117.311) 120.866 (120.387)
-0.04 215.970 (213.989) 163.720 (161.567) 176.411 (177.459)
-0.02 291.390 (290.645) 235.395 (235.929) 237.869 (239.999)
0 319.040 (314.315) 310.375 (307.344) 302.283 (304.516)

0.02 351.823 (344.020) 302.774 (301.931) 305.684 (305.013)
0.04 307.645 (309.847) 317.919 (319.292) 287.804 (281.186)
0.08 289.209 (282.092) 253.376 (249.784) 273.810 (275.690)
0.1 165.600 (166.456) 181.284 (183.759) 204.824 (206.420)
0.2 93.899 (86.272) 67.307 (67.272) 70.855 (70.129)
0.3 83.568(83.462) 18.510(18.518) 23.647(24.229)

∆θ = 0.08
-0.3 3.197(3.626) 2.413(2.916) 2.443(2.826)
-0.2 13.171 (13.351) 9.390 ( 9.708) 10.017 (10.386)
-0.1 65.757 (67.911) 47.064 (46.972) 50.248 (49.601)
-0.08 92.555 (93.534) 65.688 (65.594) 70.905 (70.764)
-0.06 130.089 (129.537) 93.709 (94.519) 101.872 (103.465)
-0.04 176.979 (177.393) 138.650 (138.043) 154.428 (149.648)
-0.02 245.615 (250.181) 198.299 (196.548) 213.642 (214.738)
0 322.647 (322.225) 272.080 (277.007 ) 281.983 (277.233)

0.02 316.544 ( 318.740) 323.037 (324.774) 333.435 (330.259)
0.04 289.769 (282.429) 248.173 (250.649) 314.347 (311.741)
0.06 161.657 (154.789) 174.933 (173.759) 224.01 (217.134)
0.1 125.323 (120.744) 102.847 (103.731) 195.939 (189.567)
0.2 107.973 (102.402) 84.612 (84.106) 82.274 (81.494)
0.3 25.917(26.392) 23.275(23.464) 26.788(27.545)

∆θ = 0.1
-0.3 2.582 (3.004) 2.060 (2.475) 2.144 (2.565)
-0.2 10.044 ( 10.573) 8.237 (8.744) 8.633 (9.220)
-0.1 45.458 (45.288) 40.190 (40.169) 42.671 (43.072)
-0.08 78.066 (79.923) 56.408 (56.222) 60.550 (59.510)
-0.06 108.639 (110.753) 78.858 (76.372) 85.276 (85.831)
-0.04 152.238 (151.485) 111.594 (114.535) 121.627 (121.197)
-0.02 211.178 (213.879) 166.236 (170.004) 180.452 (176.148)
0 243.698 (246.604) 233.343 (238.010) 242.020 (242.069)

0.02 304.725 (303.160) 305.640 (303.013) 307.912 (307.655)
0.04 272.858 (279.499) 280.166 (281.112) 289.241 (295.188)
0.06 229.642 (226.153) 192.379 (193.960) 218.105 (221.838)
0.08 196.232 (198.063) 151.472 (152.54) 202.449 (202.458)
0.2 101.995 (101.021) 107.061 (108.357) 97.898 (100.107)
0.3 31.119 (29.927) 28.886 (28.749) 31.125 (31.195)

∆θ = 0.2
-0.3 1.367 (1.777) 1.141 (1.568) 1.220 (1.666)
-0.2 4.940 (5.430) 4.284 (4.768) 4.579 (5.153)
-0.1 19.818 (20.438) 18.222 (18.748) 19.698 (20.689)
-0.08 32.992 ( 33.615) 24.992 (25.745) 27.607 (28.223)
-0.06 44.450 (45.491) 34.922 (35.687) 38.127 (38.019)
-0.04 61.030 (61.835) 48.214 (49.086) 52.721 (53.135)
-0.02 85.146 (84.163) 70.125 (70.402) 76.241 (76.271)
0 98.400 (98.306) 99.780 (101.924) 108.355 (107.993)

0.02 158.717 (154.999) 143.573 (142.778) 148.627 (151.554)
0.04 220.958 (221.866) 201.934 (200.050) 213.975 (213.585)
0.06 190.662 (190.574) 195.769 (190.288) 197.689 (189.725)
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Table 2 – Continued from previous page
∆λ p = 0.1 p = 0.5 0.9
0.08 136.692 (137.831) 111.273 (114.226) 175.503 (174.908)
0.1 125.508 (117.243) 134.163 (137.397) 153.334 (145.659)
0.3 581.559 (580.219) 82.061 (85.179) 60.863 (61.331)

∆θ = 0.3
-0.3 0.733 (1.140) 0.614 (0.978) 0.666 (1.043)
-0.2 2.560 (2.991) 2.390 (2.762) 2.624 (3.131)
-0.1 10.291 (10.693) 9.490 (9.792) 10.162 (10.721)
-0.08 15.543(15.827) 13.437(13.687) 13.577(13.903)
-0.06 20.680(21.275) 18.087(18.454) 18.447(18.746)
-0.04 28.642(28.716) 24.397(24.426) 25.407(26.176)
-0.02 38.031(38.667) 34.034(34.785) 35.431(36.771)
0 44.358 (45.876) 46.537 (46.280) 49.652 (50.875)
0.1 186.297 (191.952) 277.517 ( 276.838) 277.816 (278.703)
0.02 69.029(67.574) 66.001(65.354) 68.319(68.212)
0.04 95.260(96.475) 97.923(96.799) 97.752(98.794)
0.06 77.063(75.622) 76.678(77.609) 70.614(73.677)
0.08 65.598(64.124) 63.965(62.746) 64.623(62.185)
0.2 663.674 (649.070) 885.480 (890.444) 433.937 (446.464)
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(a) ARL1 for different choices of ∆λ,
when ∆θ = 0
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(b) ARL1 for different choices of ∆θ,
when ∆λ = 0
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(c) ARL1 for different choices of ∆λ,
when ∆θ = 0.1
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(d) ARL1 for different choices of ∆θ,
when ∆λ = 0.1
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(e) ARL1 for different choices of p
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(f) ARL1 for different choices of p

Figure 11:
Graphs of ARL1 for different choices of ∆λ, ∆θ and p
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