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1. INTRODUCTION

The inverse Gaussian (IG) distribution was first introduced by Schrödinger [12] and
Smoluchowsky [18] as the probability distribution of the first passage time in Brownian mo-
tion. This distribution was named as IG by Tweedie [17] since there exists inverse relationship
between the cumulant generating function of the first passage time distribution and that of
the normal distribution. The IG distribution is also known as Wald’s distribution, especially
in Russian literature.

The probability density function (pdf) of the IG(µ, λ) distribution is defined as

(1.1) f(x;µ, λ) =

√
λ

2x3π
exp

(
−λ(x− µ)2

2µ2x

)
, x > 0, µ > 0, λ > 0,

where λ is a scale parameter and µ is the mean of the distribution.

The IG(µ, λ) distribution has the following attractive properties (see, Tian [16]; Shi
and Lv [14]; Seshadri [13]):

• it is closed under convolution;

• it is suitable to model positively-skewed data sets;

• it is the only distribution that shares many elegant properties with Gaussian models
among the distributions used to model positively skewed data, see for example Tian
[16].

Due to the aforementioned properties, the IG distribution has been widely used in
various fields such as cardiology, pharmacokinetics, linguistics, employment services, mathe-
matical finance, demography, hydrology, management sciences, etc. For example, Chhikara
and Folks [1] considered the use of the IG distribution for a lifetime model. Folks and Chhikara
[5] reviewed the development of the IG distribution and of statistical methods based on it
(Chhikara and Folks [2]). Doksum and Hbyland [3] developed models for variable-stress-
accelerated life testing experiments based on Wiener processes and the IG distribution. Tak-
agi et al. [15] calculated the percentiles of the IG distribution and considered the application
of IG to occupational exposure data. Durham and Padgett [4] used IG models to develop a
new general method based on cumulative damage for describing the failure of a system. Mud-
holkar and Tian [10] presented an entropy characterization of the IG family. Kara et al. [7]
considered the statistical inference problem for the geometric process when the distribution
of the first occurrence time is IG. Punzo [11] considered models based on the IG distribution
for the problem of fitting the distribution of insurance and economic data.

Testing the equality of means of k independent IG populations is one of the common
problems in statistics. The null and alternative hypotheses for this problem are defined as

(1.2) H0 : µ1 = µ2 = ··· = µk and H1 : not all µi’s are equal,

respectively. Here, µi (i = 1, ..., k) is the mean of the i-th population.

To test the null hypothesis against the alternative, analysis of reciprocals (ANORE)
F test is used under the assumption of homogeneity of scale parameters. This assumption is
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not always valid in most of the real-life problems, therefore, in recent years, there have been
many studies testing the equality of several IG means under the assumption of heterogene-
ity of scale parameters. For example, Tian [16] developed a test based on the generalized
p-value (GP ) approach to test the equality of several IG means. Ma and Tian [9] proposed
a parametric bootstrap (PB) approach and compared it with the GP approach in terms of
the type I error rates. Shi and Lv [14] defined a new generalized pivot quantity and the gen-
eralized p-value based on this pivot. Gökpınar et al. [6] proposed a computational approach
test (CAT ) using a simple test statistic to assess the equality of several IG means under
heterogeneity of scale parameters. Different from Gökpınar et al. [6], in this study, we pro-
pose three different test procedures by plugging the Wald (W ), score (S) and likelihood ratio
(LR) test statistics into CAT . W , S and LR test statistics are asymptotically equivalent.
However, they differ in small samples and therefore their type I errors are different from the
nominal level for small samples in general. Consequently, in this study we incorporate W ,
S and LR test statistics into CAT to improve their performances in terms of Type I error
rates. Restricted maximum likelihood (RML) estimators are used in developing the proposed
test procedures. In this study, in contrast to Ma and Tian [9] who derived RML estimators
of the parameters by using expectation-maximization (EM) algorithm, the bisection method
is used to obtain the numerical solutions for the RML estimators by maximizing the profile
likelihood function under the null hypothesis.

This article is organized as follows. In Section 2, maximum likelihood (ML) and RML
estimators for the parameters of the IG distribution are obtained. In Section 3, the PB

approach proposed by Ma and Tian [9] and GP approach proposed by Tian [16] are briefly
reviewed. In Section 4, W , S and LR test statistics are defined and the CAT procedure is
explained for testing the equality of IG means under heterogeneity of scale parameters. In
Section 5, simulated Type I error rates and powers of the existing and proposed tests are
presented. Proposed tests are illustrated by using a real data set in Section 6. Concluding
remarks are given in Section 7.

2. MAXIMUM LIKELIHOOD AND RESTRICTED MAXIMUM LIKELI-
HOOD ESTIMATORS

Let Xij , i = 1, ..., k; j = 1, ..., ni be k independent random samples from IG(µi, λi).
Here, Xij represents the j-th observation of the i-th population and ni denotes the number
of observations in the i-th population. Then the log-likelihood function (lnL1) under the
unrestricted model (H1) is obtained as follows:

(2.1) lnL1 =
k∑

i=1

ni

2
(lnλi − ln(2π))− 3

2

k∑
i=1

ni∑
j=1

lnXij −
k∑

i=1

ni∑
j=1

λi(Xij − µi)2

2µ2
i Xij

.

To obtain the ML estimators of the parameters µi and λi, we take the derivatives of lnL1

with respect to the unknown parameters and then equate them to zero as follows:

(2.2)
∂ lnL1

∂µi
=

ni∑
j=1

λi(Xij − µi)
µ3

i

= 0
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and

(2.3)
∂ lnL1

∂λi
=

ni

λi
−

ni∑
j=1

(Xij − µi)2

µ2
i Xij

= 0.

Solutions of these likelihood equations in (2.2) and (2.3) are the ML estimators of the pa-
rameters µi and λi. They are obtained as

(2.4) µ̂i = X̄i, i = 1, ..., k,

and

(2.5) λ̂i =

 1
ni

ni∑
j=1

(
1/Xij − 1/X̄i

)−1

=
(
X−1

i − (X̄i)−1
)−1

, i = 1, ..., k,

respectively. Here, X−1
i = (1/ni)

ni∑
j=1

(1/Xij). Similarly, under the restricted model (H0), the

log-likelihood function (lnL0) is obtained as

(2.6) ln L0 =
k∑

i=1

ni

2
(lnλi − ln(2π))− 3

2

k∑
i=1

ni∑
j=1

lnXij −
k∑

i=1

ni∑
j=1

λi(Xij − µ)2

2µ2Xij
.

By taking derivatives of ln L0 with respect to the parameters µ and λi and equating them to
zero, the following likelihood equations are

(2.7)
∂ lnL0

∂µ
=

k∑
i=1

ni∑
j=1

(
λiXij

µ3
− λi

µ2

)
= 0

and

(2.8)
∂ lnL0

∂λi
=

ni

2λi
−

ni∑
j=1

(Xij − µ)2

2µ2Xij
= 0,

respectively. Solutions of likelihood equations in (2.7) and (2.8) are called as RML estimators.
RML estimators of the parameters λi and µ are

λ̃i =
niµ

2

ni∑
j=1

(Xij−µ)2

Xij

, i = 1, ..., k,(2.9)

and

µ̃ =

k∑
i=1

niλiX̄i

k∑
i=1

niλi

,(2.10)

respectively.

It is obvious from equations (2.9) and (2.10) that the estimators of the unknown pa-
rameters have no explicit analytical solutions since there exists µ in the estimator of the
parameter λi and vice versa. Therefore, the profile likelihood method is used to eliminate
the effect of nuisance parameters (λ1, ..., λk) and consequently to estimate the parameter µ.
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The profile log-likelihood function (lnL∗) is obtained by replacing λi in equation (2.6) with
λ̃i given in (2.9) as

(2.11) lnL∗ =
1
2

k∑
i=1

ni

ln(niµ
2)− ln

 ni∑
j=1

(Xij − µ)2/Xij

 + constant.

Then we take the derivative of the profile log-likelihood function with respect to the parameter
µ as follows:

(2.12)
∂ lnL∗

∂µ
=

k∑
i=1

ni

 1
µ

+

ni∑
j=1

(Xij − µ)/Xij

ni∑
j=1

(Xij − µ)2/Xij

.

After rearranging the (2.12) and equating it to zero, we obtain the following equality

(2.13)
k∑

i=1

ni(X̄i − µ)

µ(X̄i − 2µ + µ2X−1
i )

= 0.

By solving (2.13), the restricted profile maximum likelihood (RPML) estimator of µ denoted
by µ̃∗ is obtained. Finally, by incorporating µ̃∗ into (2.9), we obtain the RPML estimator of
λi as

(2.14) λ̃∗i =
ni(µ̃∗)2

ni∑
j=1

(Xij−µ̃∗)2

Xij

, i = 1, ..., k.

Unfortunately, the RPML estimator of µ has no closed form. Therefore, the bisection method
is used to obtain a numerical solution for the estimate value of the parameter µ. It requires an
interval in which a root of the given equation must lie. Since the parameter µ is the common
mean, the root of the given equation, i.e., the estimate of the parameter µ, must lie between
the smallest and the largest group means. Hence, the bisection method always converges to
a root and the RPML estimate of the parameter µ is obtained.

3. REVIEWING SOME EXISTING TESTS

In this section, we briefly describe the GP and PB approaches proposed by Tian[16]
and Ma and Tian [9], respectively.

3.1. Generalized p-value (GP ) approach

Tian [16] calculated the p-value based on the GP approach using the following algo-
rithm.
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Step 1: Rλi
= λiVi/vi ∼ χ2

(ni−1)/vi, i = 1, ..., k, which is a generalized pivot for λi is

generated and Rµ̂ =

kP

i=1
niRλi

x̄i

kP

i=1
niRλi

is calculated. Here, Vi =
ni∑

j=1
(X−1

ij − X̄−1
i ),

vi is the observed value of Vi and x̄i =
ni∑

j=1
xij/ni.

Step 2: q =
k∑

i=1
niRλi

(x̄−1
i −R−1

µ̂ ) is calculated.

Step 3: Q ∼ χ2
(k−1) is generated.

Step 4: Step 2 and Step 3 are repeated m times.

Step 5: Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(Q ≥ q)/m.

Step 6: If p̂ < α, then H0 given in (1.2) is rejected.

3.2. Parametric Bootstrap (PB) approach

Ma and Tian [9] calculated the p-value based on the PB approach using the following
algorithm.

Step 1: For a given data set xij , vi and x̄i are calculated. Here, vi is the observed

value of Vi =
ni∑

j=1
(X−1

ij − X̄−1
i ) and X̄i =

ni∑
j=1

Xij/ni, i = 1, ..., k; j = 1, ..., ni.

Then RML estimates µ̃, λ̃1, λ̃2, ..., λ̃k are calculated via EM algorithm. Based

on these estimate values QB0 =
k∑

i=1
niλ̃i(x̄−1

i − µ̃−1) is computed.

Step 2: X̄Bi ∼ IG

(
k∑

i=1
niλ̂ix̄i/

k∑
i=1

niλ̂i, niλ̂i

)
and λBi ∼ χ2

(ni−1)/vi, i = 1, ..., k are

generated independently. Here λ̂i = ni/vi.

Step 3: QB =
k∑

i=1
niλBi

(
1

X̄Bi
− 1

µ̂B

)
is computed. Here, µ̂B =

kP

i=1
niλBiX̄Bi

kP

i=1
niλBi

.

Step 4: Step 2 and Step 3 are repeated m times and Q
(l)
B , l = 1, ...,m, are obtained.

Step 5: Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(Q(l)

B ≥ QB0)/m.

Step 6: If p̂ < α, then H0 given in (1.2) is rejected.

4. THE PROPOSED CAT PROCEDURE USING LIKELIHOOD BASED
TEST STATISTICS

In this section, the likelihood based test statistics W , S and LR are derived for testing
the equality of IG means and then they are plugged into the CAT procedure.
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4.1. Wald (W ) test statistic

The test statistic W is defined as

(4.1) W = (µ̂− µ̃∗)′
(
Iµ,µ(µ̂, λ̂)

)−1
(µ̂− µ̃∗).

Here, µ̂ and µ̃∗ are the ML and RPML estimators of mean vector µ=(µ1, ..., µk), respectively.
Also,

(µ̂− µ̃∗)′ = (µ̂1 − µ̃∗, .., µ̂k − µ̃∗)

and
Iµ,µ(µ,λ) =

(
Iµ,µ(µ,λ)− Iµ,λ(µ,λ)I−1

λ,λ(µ,λ)Iλ,µ(µ,λ)
)−1

.

To obtain (4.1) the following steps are considered:

(i) By taking the second partial derivatives of the lnL1 with respect to the param-
eters, expected information matrix

(4.2) I =
[
Iµ,µ(µ,λ) Iµ,λ(µ,λ)
Iλ,µ(µ,λ) Iλ,λ(µ,λ)

]
is obtained. Here,

(4.3) Iµ,µ(µ,λ) =


n1λ1

µ3
1

0 ··· 0

0 n2λ2

µ3
2

··· 0
...

...
. . .

...
0 0 ··· nkλk

µ3
k

,

(4.4) Iµ,λ(µ,λ) = Iλ,µ(µ,λ) =


0 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0


and

(4.5) Iλ,λ(µ,λ) =


n1

2λ2
1

0 ··· 0
0 n2

2λ2
2
··· 0

...
...

. . .
...

0 0 ··· nk

2λ2
k

.

(ii) Using (4.3), (4.4) and (4.5),

(4.6) Iµ,µ(µ,λ) =


µ3

1
n1λ1

0 ··· 0

0 µ3
2

n2λ2
··· 0

...
...

. . .
...

0 0 ··· µ3
k

nkλk
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and

(4.7) (Iµ,µ(µ,λ))−1 =


n1λ1

µ3
1

0 ··· 0

0 n2λ2

µ3
2

··· 0
...

...
. . .

...
0 0 ··· nkλk

µ3
k


are obtained.

(iii) By substituting (µ̂, λ̂) into the (4.7), we get

(4.8)
(
Iµ,µ(µ̂, λ̂)

)−1
= diag(niλ̂i/µ̂3

i ) i = 1, ..., k.

(iv) The test statistic W is derived as follows:

(4.9) W =
k∑

i=1

niλ̂i(µ̂i − µ̃∗)2

µ̂3
i

.

4.2. Score (S) test statistic

The test statistic S is defined as

(4.10) S = U ′
µ(µ̃∗, λ̃

∗
)
(
Iµ,µ(µ̃∗, λ̃

∗
)
)
Uµ(µ̃∗, λ̃

∗
).

Here, µ̃∗ and λ̃
∗

are the RPML estimators of the vector of means µ=(µ1, ..., µk) and the vector
of scale parameters λ=(λ1, ..., λk). Uµ(µ̃∗, λ̃

∗
) is the value of the vector of score function

Uµ(µ,λ) at the point (µ̃∗, λ̃
∗
)=(µ̃∗, ..., µ̃∗, λ̃∗1, ..., λ̃

∗
k). To obtain the (4.10), the following

steps are considered.

(i) By taking the first partial derivatives of the lnL1 with respect to the parameters

(4.11) U ′
µ(µ,λ) =

[
n1λ1(X̄1 − µ1)

µ3
1

, ...,
nkλk(X̄k − µk)

µ3
k

]
is obtained.

(ii) By substituting (µ̃∗, λ̃
∗
) into the (4.11), we get

(4.12) U ′
µ(µ̃∗, λ̃

∗
) =

[
n1λ̃

∗
1(X̄1 − µ̃∗)

µ̃∗3 , ...,
nkλ̃

∗
k(X̄k − µ̃∗)

µ̃∗3

]
.

(iii) By substituting (µ̃∗, λ̃
∗
) into the (4.6), we get

(4.13)
(
Iµ,µ(µ̃∗, λ̃

∗
)
)

= diag(µ̃∗3/niλ̃
∗
i ), i = 1, ..., k.

(iv) The test statistic S is derived as follows:

(4.14) S =
k∑

i=1

niλ̃
∗
i (µ̂i − µ̃∗)2

µ̃∗3 .
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4.3. Likelihood ratio (LR) test statistic

The test statistic LR is derived as

LR = 2[lnL1(µ̂1, ..., µ̂k; λ̂1, ..., λ̂k)− lnL0(µ̃∗, ..., µ̃∗; λ̃∗1, ..., λ̃
∗
k)]

=
k∑

i=1

ni ln
λ̂i

λ̃∗i
.

(4.15)

It should be noted that W , S and LR test statistics are approximated by a chi-square distribu-
tion with (k− 1) degrees of freedom under H0 and their values are asymptotically equivalent
to each other. However, the mentioned approximation to the distributions of the test statis-
tics may not be accurate for small sample sizes. This problem is also valid even for moderately
large sample sizes. To eliminate this problem, likelihood-based test statistics, which are the
most appropriate for PB methods can be used. The CAT procedure is a special case of PB

methods; therefore, we incorporate the likelihood based test statistics W , S and LR into the
CAT and call these tests CATW , CATS and CATLR, respectively.

The algorithm of the CAT procedure based on T (T is any of W , S or LR) test statistic
is as follows:

Step 1: The observed value of the test statistic T , i.e., T0, is calculated.

Step 2: RPML estimators µ̃∗ and λ̃∗i , i = 1, ..., k, are computed.

Step 3: Artificial samples Xij , i = 1, ..., k; j = 1, ..., ni from IG(µ̃∗, λ̃∗i ) are generated
under H0.

Step 4: For a large number of times, say m, step 3 is repeated. For each of the repli-
cated samples, the values of the test statistic T (l), l = 1, ...,m, are calculated.

Step 5: Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(T (l) ≥ T0)/m.

Step 6: If p̂ < α, then H0 given in (1.2) is rejected.

5. SIMULATION STUDY

In this section, the performances of the proposed tests CATW , CATS and CATLR

are compared with the GP approach proposed by Tian [16], the PB approach proposed by
Ma and Tian [9] and the CAT approach proposed by Gökpınar et al. [6] with respect to
the estimated Type I error rate and power criteria via the MATLAB environment under
the specified nominal level α = 0.050. In comparing the performances of the proposed tests
and the existing tests, 5,000 random samples are generated from the IG(µi, λi), i = 1, ..., k

distribution and m = 5, 000 Monte Carlo runs are used for each of the samples. In the
simulation study the following setup is used.
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Sample Sizes Parameter Values

(n1, n2, n3) (λ1, λ2, λ3) (µ1, µ2, µ3)

k=3

(8, 8, 8)
(15, 15, 15) (10, 11, 12) (2, 2.25, 2.5)
(30, 30, 30) (10, 12, 14) (2, 2.5, 3)
(8, 10, 12) (10, 15, 20) (2, 3, 4)
(10, 20, 30)

(n1, n2, n3, n4, n5) (λ1, λ2, λ3, λ4, λ5) (µ1, µ2, µ3, µ4, µ5)

Number
of Groups

k=5

(8, 8, 8, 8, 8)
(15, 15, 15, 15, 15) (10, 10, 11, 12, 12) (2, 2, 2.25, 2.5, 2.5)
(30, 30, 30, 30, 30) (10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3)
(8, 8, 10, 12, 12) (10, 10, 15, 20, 20) (2, 2, 3, 4, 4)
(10, 10, 20, 30, 30)

(n1, n2, n3, n4, n5, n6, n7) (λ1, λ2, λ3, λ4, λ5, λ6, λ7) (µ1, µ2, µ3, µ4, µ5, µ6, µ7)

k=7

(8, 8, 8, 8, 8, 8, 8)
(15, 15, 15, 15, 15, 15, 15) (10, 10, 11, 11, 11, 12, 12) (2, 2, 2.25, 2.25, 2.25, 3, 3)
(30, 30, 30, 30, 30, 30, 30) (10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3)
(8, 8, 10, 10, 10, 12, 12) (10, 10, 15, 15, 15, 20, 20) (2, 2, 3, 3, 3, 4, 4)
(10, 10, 20, 20, 20, 30, 30)

The estimated type I error rates for the proposed and the existing tests are presented
in Tables 1–3.

Table 1: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=3.

(λ1, λ2, λ3) CATW CATS CATLR GP PB CAT

(n1, n2, n3) = (8, 8, 8)

(10, 11, 12) 0.0454 0.0486 0.0460 0.0400 0.0616 0.0382
(10, 12, 14) 0.0456 0.0454 0.0476 0.0404 0.0606 0.0398
(10, 15, 20) 0.0448 0.0440 0.0432 0.0374 0.0602 0.0358

(n1, n2, n3) = (15, 15, 15)

(10, 11, 12) 0.0558 0.0558 0.0554 0.0524 0.0636 0.0522
(10, 12, 14) 0.0554 0.0582 0.0558 0.0528 0.0658 0.0506
(10, 15, 20) 0.0482 0.0504 0.0492 0.0444 0.0588 0.0460

(n1, n2, n3) = (30, 30, 30)

(10, 11, 12) 0.0466 0.0464 0.0456 0.0458 0.0496 0.0456
(10, 12, 14) 0.0494 0.0498 0.0496 0.0468 0.0514 0.0504
(10, 15, 20) 0.0464 0.0448 0.0442 0.0436 0.0504 0.0442

(n1, n2, n3) = (8, 10, 12)

(10, 11, 12) 0.0482 0.0514 0.0496 0.0460 0.0654 0.0446
(10, 12, 14) 0.0462 0.0478 0.0464 0.0442 0.0636 0.0380
(10, 15, 20) 0.0500 0.0472 0.0498 0.0466 0.0600 0.0398

(n1, n2, n3) = (10, 20, 30)

(10, 11, 12) 0.0522 0.0522 0.0504 0.0494 0.0584 0.0454
(10, 12, 14) 0.0534 0.0546 0.0534 0.0522 0.0592 0.0498
(10, 15, 20) 0.0524 0.0534 0.0552 0.0542 0.0584 0.0452
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Table 2: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=5.

(λ1, λ2, λ3, λ4, λ5) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5) = (8, 8, 8, 8, 8)

(10, 10, 11, 12, 12) 0.0472 0.0486 0.0484 0.0676 0.0480 0.0322
(10, 10, 12, 14, 14) 0.0480 0.0486 0.0458 0.0614 0.0498 0.0310
(10, 10, 15, 20, 20) 0.0498 0.0514 0.0490 0.0610 0.0508 0.0338

(n1, n2, n3, n4, n5) = (15, 15, 15, 15, 15)

(10, 10, 11, 12, 12) 0.0536 0.0508 0.0506 0.0522 0.0524 0.0400
(10, 10, 12, 14, 14) 0.0460 0.0468 0.0450 0.0502 0.0470 0.0416
(10, 10, 15, 20, 20) 0.0530 0.0568 0.0564 0.0620 0.0572 0.0460

(n1, n2, n3, n4, n5) = (30, 30, 30, 30, 30, 30)

(10, 10, 11, 12, 12) 0.0530 0.0546 0.0548 0.0570 0.0556 0.0496
(10, 10, 12, 14, 14) 0.0508 0.0482 0.0486 0.0510 0.0494 0.0452
(10, 10, 15, 20, 20) 0.0500 0.0550 0.0536 0.0556 0.0528 0.0466

(n1, n2, n3, n4, n5) = (8, 8, 10, 12, 12)

(10, 10, 11, 12, 12) 0.0502 0.0510 0.0508 0.0600 0.0538 0.0350
(10, 10, 12, 14, 14) 0.0466 0.0494 0.0496 0.0602 0.0500 0.0376
(10, 10, 15, 20, 20) 0.0482 0.0472 0.0472 0.0602 0.0468 0.0332

(n1, n2, n3, n4, n5) = (10, 10, 20, 30, 30)

(10, 10, 11, 12, 12) 0.0516 0.0522 0.0500 0.0602 0.0492 0.0408
(10, 10, 12, 14, 14) 0.0516 0.0522 0.0500 0.0612 0.0492 0.0408
(10, 10, 15, 20, 20) 0.0486 0.0480 0.0496 0.0634 0.0472 0.0364

Table 3: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=7.

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 8, 8, 8, 8, 8)

(10, 10, 11, 11, 11, 12, 12) 0.0470 0.0510 0.0518 0.0774 0.0482 0.0298
(10, 10, 12, 12, 12, 14, 14) 0.0482 0.0482 0.0468 0.0716 0.0422 0.0272
(10, 10, 15, 15, 15, 20, 20) 0.0474 0.0550 0.0530 0.0770 0.0484 0.0350

(n1, n2, n3, n4, n5, n6, n7) = (15, 15, 15, 15, 15, 15, 15)

(10, 10, 11, 11, 11, 12, 12) 0.0518 0.0522 0.0526 0.0646 0.0516 0.0440
(10, 10, 12, 12, 12, 14, 14) 0.0506 0.0526 0.0534 0.0636 0.0516 0.0388
(10, 10, 15, 15, 15, 20, 20) 0.0488 0.0518 0.0498 0.0636 0.0492 0.0398

(n1, n2, n3, n4, n5, n6, n7) = (30, 30, 30, 30, 30, 30, 30)

(10, 10, 11, 11, 11, 12, 12) 0.0500 0.0536 0.0516 0.0610 0.0524 0.0462
(10, 10, 12, 12, 12, 14, 14) 0.0518 0.0554 0.0562 0.0620 0.0568 0.0494
(10, 10, 15, 15, 15, 20, 20) 0.0500 0.0532 0.0524 0.0624 0.0518 0.0454

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 10, 10, 10, 12, 12)

(10, 10, 11, 11, 11, 12, 12) 0.0434 0.0436 0.0442 0.0656 0.0436 0.0306
(10, 10, 12, 12, 12, 14, 14) 0.0486 0.0486 0.0508 0.0708 0.0444 0.0356
(10, 10, 15, 15, 15, 20, 20) 0.0516 0.0488 0.0502 0.0742 0.0458 0.0350

(n1, n2, n3, n4, n5, n6, n7) = (10, 10, 20, 20, 20, 30, 30)

(10, 10, 11, 11, 11, 12, 12) 0.0502 0.0576 0.0532 0.0670 0.0534 0.0442
(10, 10, 12, 12, 12, 14, 14) 0.0518 0.0500 0.0506 0.0678 0.0474 0.0408
(10, 10, 15, 15, 15, 20, 20) 0.0476 0.0484 0.0462 0.0604 0.0472 0.0400
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Table 4: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=3.

(λ1, λ2, λ3) (µ1, µ2, µ3) CATW CATS CATLR GP PB CAT

(n1, n2, n3) = (8, 8, 8)

(2, 2.25, 2.5) 0.1018 0.1028 0.1194 0.1066 *** 0.1006
(10, 11, 12) (2, 2.5, 3) 0.2120 0.1896 0.2392 0.2200 *** 0.2276

(2, 3, 4) 0.5226 0.3314 0.5486 0.5318 *** 0.5660

(2, 2.25, 2.5) 0.1096 0.0940 0.1128 0.1034 *** 0.1036
(10, 12, 14) (2, 2.5, 3) 0.2392 0.1940 0.2600 0.2402 *** 0.2510

(2, 3, 4) 0.5608 0.3254 0.5610 0.5430 *** 0.5800

(2, 2.25, 2.5) 0.1378 0.0914 0.1260 0.1138 *** 0.1160
(10, 15, 20) (2, 2.5, 3) 0.3110 0.1958 0.2952 0.2786 *** 0.2846

(2, 3, 4) 0.6432 0.3352 0.6238 0.6108 *** 0.6222

(n1, n2, n3) = (15, 15, 15)

(2, 2.25, 2.5) 0.1806 0.1616 0.1800 0.1750 *** 0.1848
(10, 11, 12) (2, 2.5, 3) 0.4906 0.4180 0.4814 0.4694 *** 0.4908

(2, 3, 4) 0.9016 0.7620 0.8864 0.8834 *** 0.9054

(2, 2.25, 2.5) 0.2076 0.1840 0.2062 0.1968 *** 0.2020
(10, 12, 14) (2, 2.5, 3) 0.5220 0.4462 0.5156 0.5068 *** 0.5308

(2, 3, 4) 0.9174 0.7596 0.9010 0.8974 *** 0.9228

(2, 2.25, 2.5) 0.2528 0.1918 0.2300 0.2228 0.2546 0.2290
(10, 15, 20) (2, 2.5, 3) 0.6060 0.4696 0.5748 0.5678 0.5966 0.5962

(2, 3, 4) 0.9546 0.7968 0.9372 0.9332 0.9414 0.9510

(n1, n2, n3) = (30, 30, 30)

(2, 2.25, 2.5) 0.3708 0.3466 0.3656 0.3622 0.3792 0.3734
(10, 11, 12) (2, 2.5, 3) 0.8344 0.8036 0.8292 0.8258 0.8410 0.8430

(2, 3, 4) 0.9982 0.9964 0.9986 0.9982 0.9984 0.9982

(2, 2.25, 2.5) 0.3984 0.3564 0.3796 0.3778 0.3966 0.3882
(10, 12, 14) (2, 2.5, 3) 0.8678 0.8272 0.8534 0.8502 0.8610 0.8656

(2, 3, 4) 0.9990 0.9952 0.9986 0.9980 0.9986 0.9986

(2, 2.25, 2.5) 0.4872 0.4090 0.4462 0.4420 0.4622 0.4570
(10, 15, 20) (2, 2.5, 3) 0.9174 0.8720 0.9024 0.8976 0.9080 0.9080

(2, 3, 4) 0.9998 0.9980 0.9996 0.9998 0.9998 0.9998

(n1, n2, n3) = (8, 10, 12)

(2, 2.25, 2.5) 0.1402 0.0964 0.1302 0.1218 *** 0.1188
(10, 11, 12) (2, 2.5, 3) 0.3066 0.1904 0.2808 0.2668 *** 0.2670

(2, 3, 4) 0.6680 0.3410 0.6166 0.6032 *** 0.6240

(2, 2.25, 2.5) 0.1492 0.0912 0.1302 0.1240 *** 0.1164
(10, 12, 14) (2, 2.5, 3) 0.3560 0.2136 0.3212 0.3082 *** 0.3094

(2, 3, 4) 0.7032 0.3448 0.6480 0.6402 *** 0.6564

(2, 2.25, 2.5) 0.1782 0.0898 0.1392 0.1322 *** 0.1262
(10, 15, 20) (2, 2.5, 3) 0.3900 0.2064 0.3408 0.3304 *** 0.3282

(2, 3, 4) 0.7658 0.3682 0.6958 0.6892 *** 0.7072

(n1, n2, n3) = (10, 20, 30)

(2, 2.25, 2.5) 0.2448 0.1264 0.1912 0.1878 0.1958 0.1778
(10, 11, 12) (2, 2.5, 3) 0.5624 0.3250 0.4854 0.4824 0.4842 0.4698

(2, 3, 4) 0.9112 0.5672 0.8634 0.8592 0.8502 0.8644

(2, 2.25, 2.5) 0.2514 0.1406 0.2032 0.2016 0.2176 0.1886
(10, 12, 14) (2, 2.5, 3) 0.5908 0.3352 0.5062 0.5016 0.5132 0.4956

(2, 3, 4) 0.9360 0.5970 0.8832 0.8796 0.8690 0.8874

(2, 2.25, 2.5) 0.2852 0.1472 0.2222 0.2244 0.2364 0.2040
(10, 15, 20) (2, 2.5, 3) 0.6412 0.3972 0.5624 0.5626 0.5684 0.5394

(2, 3, 4) 0.9564 0.6716 0.9162 0.9164 0.9066 0.9128

***: The estimated type I error rates of the tests which are greater than or equal to 0.060.
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Table 5: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=5.

(λ1, λ2, λ3, λ4, λ5) (µ1, µ2, µ3, µ4, µ5) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5) = (8, 8, 8, 8, 8)

(2, 2, 2.25, 2.5, 2.5) 0.1126 0.1266 0.1424 *** 0.1462 0.1092
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.2800 0.2886 0.3530 *** 0.3648 0.3104

(2, 2, 3, 4, 4) 0.6882 0.5216 0.7842 *** 0.8000 0.7744

(2, 2, 2.25, 2.5, 2.5) 0.1300 0.1106 0.1414 *** 0.1428 0.1126
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.3320 0.2964 0.3828 *** 0.4018 0.3490

(2, 2, 3, 4, 4) 0.7332 0.5032 0.7970 *** 0.8110 0.7900

(2, 2, 2.25, 2.5, 2.5) 0.1698 0.1172 0.1614 *** 0.1704 0.1304
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.4120 0.2690 0.4224 *** 0.4414 0.3868

(2, 2, 3, 4, 4) 0.8282 0.4770 0.8436 *** 0.8526 0.8390

(n1, n2, n3, n4, n5) = (15, 15, 15, 15, 15)

(2, 2, 2.25, 2.5, 2.5) 0.2640 0.2408 0.2600 0.2734 0.2642 0.2522
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.6962 0.6596 0.7048 0.7216 0.7186 0.7066

(2, 2, 3, 4, 4) 0.9816 0.9676 0.9890 0.9900 0.9900 0.9906

(2, 2, 2.25, 2.5, 2.5) 0.2790 0.2460 0.2778 0.2974 0.2876 0.2714
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.7140 0.6614 0.7232 0.7384 0.7310 0.7312

(2, 2, 3, 4, 4) 0.9918 0.9602 0.9904 0.9922 0.9914 0.9936

(2, 2, 2.25, 2.5, 2.5) 0.3378 0.2542 0.3128 *** 0.3220 0.2982
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.8102 0.6916 0.7866 *** 0.7998 0.7896

(2, 2, 3, 4, 4) 0.9950 0.9682 0.9944 *** 0.9954 0.9960

(n1, n2, n3, n4, n5) = (30, 30, 30, 30, 30)

(2, 2, 2.25, 2.5, 2.5) 0.5174 0.5080 0.5218 0.5356 0.5324 0.5226
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.9670 0.9626 0.9698 0.9708 0.9702 0.9714

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(2, 2, 2.25, 2.5, 2.5) 0.5746 0.5482 0.5730 0.5822 0.5812 0.5740
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.9810 0.9728 0.9804 0.9804 0.9810 0.9808

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(2, 2, 2.25, 2.5, 2.5) 0.6656 0.5830 0.6274 0.6366 0.6332 0.6196
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.9922 0.9832 0.9906 0.9912 0.9914 0.9896

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(n1, n2, n3, n4, n5) = (8, 8, 10, 12, 12)

(2, 2, 2.25, 2.5, 2.5) 0.1718 0.1184 0.1612 *** 0.1616 0.1292
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.4234 0.2792 0.4190 *** 0.4180 0.3956

(2, 2, 3, 4, 4) 0.8606 0.4846 0.8500 *** 0.8470 0.8520

(2, 2, 2.25, 2.5, 2.5) 0.1942 0.1210 0.1726 *** 0.1704 0.1420
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.4752 0.2800 0.4500 *** 0.4508 0.4248

(2, 2, 3, 4, 4) 0.8762 0.4718 0.8636 *** 0.8566 0.8616

(2, 2, 2.25, 2.5, 2.5) 0.2184 0.1098 0.1780 *** 0.1708 0.1510
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.5506 0.2850 0.5000 *** 0.4940 0.4550

(2, 2, 3, 4, 4) 0.9298 0.4582 0.9026 *** 0.8962 0.9020

(n1, n2, n3, n4, n5) = (10, 10, 20, 30, 30)

(2, 2, 2.25, 2.5, 2.5) 0.3274 0.1516 0.2532 *** 0.2422 0.2304
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.7514 0.4418 0.6770 *** 0.6580 0.6558

(2, 2, 3, 4, 4) 0.9912 0.7222 0.9792 *** 0.9740 0.9822

(2, 2, 2.25, 2.5, 2.5) 0.3394 0.1642 0.2612 *** 0.2502 0.2418
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.7550 0.4274 0.6740 *** 0.6594 0.6650

(2, 2, 3, 4, 4) 0.9930 0.7252 0.9848 *** 0.9788 0.9870

(2, 2, 2.25, 2.5, 2.5) 0.3688 0.1674 0.2928 *** 0.2798 0.2680
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.8206 0.4834 0.7488 *** 0.7340 0.7312

(2, 2, 3, 4, 4) 0.9944 0.7646 0.9896 *** 0.9852 0.9900

***: The estimated type I error rates of the tests which are greater than or equal to 0.060.
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Table 6: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=7.

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) (µ1, µ2, µ3, µ4, µ5, µ6, µ7) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 8, 8, 8, 8, 8)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1082 0.1154 0.1292 *** 0.1246 0.0954
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.2386 0.2548 0.2934 *** 0.2856 0.2668

(2, 2, 3, 3, 3, 4, 4) 0.5970 0.4976 0.6876 *** 0.6808 0.6956

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1122 0.1064 0.1234 *** 0.1176 0.0960
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.2570 0.2582 0.3110 *** 0.3018 0.2844

(2, 2, 3, 3, 3, 4, 4) 0.6514 0.5010 0.7162 *** 0.7042 0.7330

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1412 0.1082 0.1392 *** 0.1312 0.1038
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3246 0.2614 0.3580 *** 0.3540 0.3258

(2, 2, 3, 3, 3, 4, 4) 0.7482 0.5286 0.7824 *** 0.7782 0.8010

(n1, n2, n3, n4, n5, n6, n7) = (15, 15, 15, 15, 15, 15, 15)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1898 0.1958 0.2112 *** 0.2044 0.1914
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.5696 0.5600 0.6168 *** 0.6128 0.6204

(2, 2, 3, 3, 3, 4, 4) 0.9702 0.9168 0.9752 *** 0.9746 0.9832

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2094 0.1966 0.2176 *** 0.2210 0.068
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.6228 0.5796 0.6476 *** 0.6504 0.6588

(2, 2, 3, 3, 3, 4, 4) 0.9804 0.9308 0.9822 *** 0.9826 0.9870

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2812 0.2262 0.2672 *** 0.2682 0.2462
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7222 0.6422 0.7256 *** 0.7324 0.7340

(2, 2, 3, 3, 3, 4, 4) 0.9928 0.9510 0.9896 *** 0.9896 0.9946

(n1, n2, n3, n4, n5, n6, n7) = (30, 30, 30, 30, 30, 30, 30)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.4520 0.4534 0.4722 *** 0.4678 0.4692
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9400 0.9262 0.9404 *** 0.9410 0.9474

(2, 2, 3, 3, 3, 4, 4) 1.0000 0.9998 1.0000 *** 1.0000 1.0000

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.4894 0.4600 0.4892 *** 0.4876 0.4892
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9640 0.9464 0.9604 *** 0.9618 0.9652

(2, 2, 3, 3, 3, 4, 4) 1.0000 0.9998 1.0000 *** 1.0000 1.0000

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.5968 0.5318 0.5752 *** 0.5760 0.5670
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9790 0.9656 0.9752 *** 0.9750 0.9794

(2, 2, 3, 3, 3, 4, 4) 1.0000 1.0000 1.0000 *** 1.0000 1.0000

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 10, 10, 10, 12, 12)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1366 0.1086 0.1316 *** 0.1280 0.1112
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3630 0.7380 0.3652 *** 0.3506 0.3298

(2, 2, 3, 3, 3, 4, 4) 0.7752 0.5306 0.7788 *** 0.7572 0.7912

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1526 0.1020 0.1320 *** 0.1288 0.1114
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3752 0.2830 0.3836 *** 0.3702 0.3524

(2, 2, 3, 3, 3, 4, 4) 0.8216 0.5490 0.8094 *** 0.7850 0.8248

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1860 0.1162 0.1634 *** 0.1534 0.1378
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.4652 0.3202 0.4510 *** 0.4424 0.4148

(2, 2, 3, 3, 3, 4, 4) 0.8720 0.6136 0.8608 *** 0.8484 0.8690

(n1, n2, n3, n4, n5, n6, n7) = (10, 10, 20, 20, 20, 30, 30)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2714 0.1678 0.2230 *** 0.2140 0.2008
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.6850 0.4904 0.6396 *** 0.6248 0.6198

(2, 2, 3, 3, 3, 4, 4) 0.9818 0.8286 0.9698 *** 0.9624 0.9722

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2916 0.1768 0.2434 *** 0.2352 0.2214
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7168 0.5176 0.6736 *** 0.6576 0.6534

(2, 2, 3, 3, 3, 4, 4) 0.9888 0.8438 0.9780 *** 0.9680 0.9824

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.3482 0.2162 0.2938 *** 0.2826 0.2522
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7792 0.6010 0.7482 *** 0.7330 0.7146

(2, 2, 3, 3, 3, 4, 4) 0.9966 0.9236 0.9904 *** 0.9864 0.9902

***: The estimated type I error rates of the tests which are greater than or equal to 0.060.
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It can be seen from Table 1 that the estimated type I error rates of the tests are close
to the nominal level, except for the PB approach when the number of observations in the
populations are equal to (n1, n2, n3) = (8, 8, 8), (8, 10, 12) and (15, 15, 15). It can be seen
from Table 2 that if the sample sizes are small and/or different the estimated type I error
rates for the GP approach are larger than the nominal level. As seen from Table 3 that the
estimated type I error rates for the GP approach are always greater than 0.060. It should be
noted that the estimated type I error rates of the CATW , CATS, CATLR, PB and CAT

approaches are close to the nominal level α = 0.050 in all cases when the number of groups is
moderate to large. The estimated powers of the proposed and the existing tests are presented
in Tables 4–6. It should be noted that in Tables 4–6 the estimated type I error rates of the
tests which are greater or equal to 0.060 are denoted by ***.

It can be seen from Table 4 that CATS shows the worst performance in all cases. In
addition, the CATW outperforms the other tests when the sample sizes are unequal. It can
be seen from Table 5 that the performances of the CATLR and PB tests are similar when
the sample sizes are small and equal. The CATW test is more powerful than the other tests
when the sample sizes are different. Also, CATW shows the best performance when the
sample sizes are moderately large and unequal while CATS shows the worst performance.
Since the simulation results given in Table 6 show a similar behavior as in Table 5, the same
conclusions are drawn from Table 6. Therefore, we do not repeat them for the sake of brevity.

6. REAL DATA EXAMPLE

In this section, the fatigue life data taken from Leiva et al. [8] is analyzed to illustrate
the implementation of the proposed and the existing tests; see Table 7. It contains fatigue
life (T) of 6061-T6 aluminum pieces which were cut parallel to the direction of rolling and
oscillating at 18 cycles/s at maximum stress levels of x1 = 2.1, x2 = 2.6 and x3 = 3.1 psi
(×104); see Leiva et al. [8] for more detailed information. These stress levels denote the
groups whose means are to be compared and the sample sizes of them are n1 = 101, n2 = 102
and n3 = 101, respectively.

Firstly we calculate the values of Lilliefors goodness of fit test and the corresponding
p-value for each of the three groups to test the assumption that the data are from an IG
distribution; see Table 8.

It can be seen from Table 8 that the IG distribution provides a good fit for each group
of the fatigue life data, since the corresponding p-values are all greater than the nominal level
α = 0.050. Then, we compute the ML estimates (µ̂i, λ̂i) of the parameters (µi, λi) and the
RML estimates (µ̃, λ̃i) of the parameters (µ, λi), i = 1, 2, 3, by using the equalities given in
Section 2; see Table 9.

The values of the W , S and LR test statistics based on the ML and RML estimates are
calculated as 300141.0259, 41.2081 and 645.9193 using the (4.9), (4.14) and (4.15), respec-
tively. In addition, to test the hypothesis of equality of means, the p-values for the existing
tests GP and PB and the proposed tests CATW , CATS and CATLR are calculated using
the algorithms given in Sections 3 and 4, respectively. The p-value for the CAT is calculated
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from the algorithm given in Gökpınar et al. [6]. m=5,000 Monte Carlo runs are used in
calculating the p-values for the fatigue life data. p-values for the proposed and the existing
tests are obtained to be very close to zero. Therefore, the hypothesis of equality of means
is rejected for all tests at the significance level α = 0.050. It should be noted that all the
calculations are made using MATLAB software.

Table 7: Fatigue life of aluminum pieces submitted to
the maximum indicated stress level.

stress levels (psi)

I: 2.1× 104

370, 706, 716, 746, 785, 797, 844, 855, 858, 886, 886, 930, 960, 988, 999,
1000, 1010, 1016, 1018, 1020, 1055, 1085, 1102, 1102, 1108, 1115, 1120,
1134, 1140, 1199, 1200, 1200, 1203, 1222, 1235, 1238, 1252, 1258, 1262,
1269, 1270, 1290, 1293, 1300, 1310, 1313, 1315, 1330, 1355, 1390, 1416,
1419, 1420, 1420, 1450, 1452, 1475, 1478, 1481, 1485, 1502, 1505, 1513,
1522, 1522, 1530, 1540, 1560, 1567, 1578, 1594, 1602, 1604, 1608, 1630,
1642, 1674, 1730, 1750, 1750, 1763, 1768, 1781, 1782, 1792, 1820, 1868,
1881, 1890, 1893, 1895, 1910, 1923, 1924, 1945, 2023, 2100, 2130, 2215,
2268, 2440

II: 2.6× 104

233, 258, 268, 276, 290, 310, 312, 315, 318, 321, 321, 329, 335, 336, 338,
338, 342, 342, 342, 344, 349, 350, 350, 351, 351, 352, 352, 356, 358, 358,
360, 362, 363, 366, 367, 370, 370, 372, 372, 374, 375, 376, 379, 379, 380,
382, 389, 389, 395, 396, 400, 400, 400, 403, 404, 406, 408, 408, 410, 412,
414, 416, 416, 416, 420, 422, 423, 426, 428, 432, 432, 433, 433, 437, 438,
439, 439, 443, 445, 445, 452, 456, 456, 460, 464, 466, 468, 470, 470, 473,
474, 476, 476, 486, 488, 489, 490, 491, 503, 517, 540, 560

III: 3.1× 104

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109,
109, 112, 112, 113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123,
124, 124, 124, 124, 124, 128, 128, 129, 129, 130, 130, 130, 131, 131, 131,
131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138,
138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145,
146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159,
162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212

Table 8: Lilliefors goodness of fit test for the stress levels (groups)
and the corresponding p-values.

stress levels (psi) I: 2.1× 104 II: 2.6× 104 III: 3.1× 104

Lilliefors test
Test statistic 0.0699 0.0452 0.0752

p-value 0.6011 0.9483 0.5154

Table 9: The ML and RML estimates for the parameters µi, µ and λi.

stress levels ML RML

I µ̂1 = 1400.8 λ̂1 = 14222.3 λ̃1 = 13876.9

II µ̂2 = 397.9 λ̂2 = 15165.8 λ̃2 = 766.8

III µ̂3 = 133.7 λ̂3 = 4573.4 λ̃3 = 159.4
common mean µ̃ = 1334.8
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7. CONCLUSION

In this study, Wald, score and likelihood ratio test statistics are defined for the problem
of testing the equality of IG means. Then they are plugged into the computational approach
test procedure. The proposed tests are compared with the existing tests according to the
estimated type I error rate and power criteria via a Monte Carlo simulation study. The
estimated type I error rates for the proposed tests are close to the nominal level α = 0.050
in all cases considered in the study. The computational approach test based on Wald test
statistic appears to be more powerful than the other tests especially when the sample sizes
are not equal among groups.
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