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1. INTRODUCTION

The inverse Gaussian (IG) distribution was first introduced by Schrödinger
[12] and Smoluchowsky [18] as the probability distribution of the first passage
time in Brownian motion. This distribution was named as IG by Tweedie [17]
since there exists inverse relationship between the cumulant generating function
of the first passage time distribution and that of the normal distribution. The IG
distribution is also known as Wald’s distribution, especially in Russian literature.

The probability density function (pdf) of the IG(µ,λ) distribution is defined
as

(1.1) f(x;µ, λ) =

√
λ

2x3π
exp

(
−λ(x− µ)2

2µ2x

)
, x > 0, µ > 0, λ > 0,

where λ is a scale parameter and µ is the mean of the distribution.

The IG(µ,λ) distribution has the following attractive properties (see, Tian
[16]; Shi and Lv [14]; Seshadri [13]):

� it is closed under convolution;

� it is suitable to model positively-skewed data sets;

� it is the only distribution that shares many elegant properties with Gaussian
models among the distributions used to model positively skewed data, see
for example Tian [16].

Due to the aforementioned properties, the IG distribution has been widely
used in various fields such as cardiology, pharmacokinetics, linguistics, employ-
ment services, mathematical finance, demography, hydrology, management sci-
ences, etc. For example, Chhikara and Folks [1] considered the use of the IG dis-
tribution for a lifetime model. Folks and Chhikara [5] reviewed the development
of the IG distribution and of statistical methods based on it (Chhikara and Folks
[2]). Doksum and Hbyland [3] developed models for variable-stress-accelerated
life testing experiments based on Wiener processes and the IG distribution. Tak-
agi et al. [15] calculated the percentiles of the IG distribution and considered
the application of IG to occupational exposure data. Durham and Padgett [4]
used IG models to develop a new general method based on cumulative damage
for describing the failure of a system. Mudholkar and Tian [10] presented an
entropy characterization of the IG family. Kara et al. [7] considered the statisti-
cal inference problem for the geometric process when the distribution of the first
occurrence time is IG. Punzo [11] considered models based on the IG distribution
for the problem of fitting the distribution of insurance and economic data.

Testing the equality of means of k independent IG populations is one of
the common problems in statistics. The null and alternative hypotheses for this
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problem are defined as

(1.2) H0 : µ1 = µ2 = · · · = µk and H1 : not all µ′
is are equal,

respectively. Here, µi (i = 1, ..., k) is the mean of the ith population.

To test the null hypothesis against the alternative, analysis of reciprocals
(ANORE) F test is used under the assumption of homogeneity of scale param-
eters. This assumption is not always valid in most of the real-life problems,
therefore, in recent years, there have been many studies testing the equality of
several IG means under the assumption of heterogeneity of scale parameters. For
example, Tian [16] developed a test based on the generalized p-value (GP ) ap-
proach to test the equality of several IG means. Ma and Tian [9] proposed a
parametric bootstrap (PB) approach and compared it with the GP approach in
terms of the type I error rates. Shi and Lv [14] defined a new generalized pivot
quantity and the generalized p-value based on this pivot. Gökpınar et al. [6]
proposed a computational approach test (CAT ) using a simple test statistic to
assess the equality of several IG means under heterogeneity of scale parameters.
Different from Gökpınar et al. [6], in this study, we propose three different test
procedures by plugging the Wald (W ), score (S) and likelihood ratio (LR) test
statistics into CAT . W , S and LR test statistics are asymptotically equivalent.
However, they differ in small samples and therefore their type I errors are dif-
ferent from the nominal level for small samples in general. Consequently, in this
study we incorporate W , S and LR test statistics into CAT to improve their per-
formances in terms of Type I error rates. Restricted maximum likelihood (RML)
estimators are used in developing the proposed test procedures. In this study, in
contrast to Ma and Tian [9] who derived RML estimators of the parameters by
using expectation-maximization (EM) algorithm, the bisection method is used to
obtain the numerical solutions for the RML estimators by maximizing the profile
likelihood function under the null hypothesis.

This article is organized as follows. In Section 2, maximum likelihood (ML)
and RML estimators for the parameters of the IG distribution are obtained. In
Section 3, the PB approach proposed by Ma and Tian [9] and GP approach
proposed by Tian [16] are briefly reviewed. In Section 4, W , S and LR test
statistics are defined and the CAT procedure is explained for testing the equality
of IG means under heterogeneity of scale parameters. In Section 5, simulated
Type I error rates and powers of the existing and proposed tests are presented.
Proposed tests are illustrated by using a real data set in Section 6. Concluding
remarks are given in Section 7.

2. Maximum Likelihood and Restricted Maximum Likelihood Esti-
mators

Let Xij , i = 1, ..., k; j = 1, ..., ni be k independent random samples from
IG(µi,λi). Here, Xij represents the jth observation of the ith population and ni
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denotes the number of observations in the ith population. Then the log-likelihood
function (lnL1) under the unrestricted model (H1) is obtained as follows

(2.1) lnL1 =

k∑
i=1

ni

2
(lnλi − ln(2π))− 3

2

k∑
i=1

ni∑
j=1

lnXij −
k∑

i=1

ni∑
j=1

λi(Xij − µi)
2

2µ2
iXij

.

To obtain the ML estimators of the parameters µi and λi, we take the derivatives
of lnL1 with respect to the unknown parameters and then equate them to zero
as follows

(2.2)
∂ lnL1

∂µi
=

ni∑
j=1

λi(Xij − µi)

µ3
i

= 0

and

(2.3)
∂ lnL1

∂λi
=

ni

λi
−

ni∑
j=1

(Xij − µi)
2

µ2
iXij

= 0.

Solutions of these likelihood equations in (2.2) and (2.3) are the ML estimators
of the parameters µi and λi. They are obtained as

(2.4) µ̂i = X̄i, i = 1, ..., k,

and

(2.5) λ̂i =

 1

ni

ni∑
j=1

(
1/Xij − 1/X̄i

)−1

=
(
X−1

i − (X̄i)
−1

)−1
, i = 1, ..., k,

respectively. Here, X−1
i = (1/ni)

ni∑
j=1

(1/Xij). Similarly, under the restricted

model (H0), the log-likelihood function (lnL0) is obtained as

(2.6) lnL0 =

k∑
i=1

ni

2
(lnλi − ln(2π))− 3

2

k∑
i=1

ni∑
j=1

lnXij −
k∑

i=1

ni∑
j=1

λi(Xij − µ)2

2µ2Xij
.

By taking derivatives of lnL0 with respect to the parameters µ and λi and equat-
ing them to zero, the following likelihood equations are

(2.7)
∂ lnL0

∂µ
=

k∑
i=1

ni∑
j=1

(
λiXij

µ3
− λi

µ2

)
= 0

and

(2.8)
∂ lnL0

∂λi
=

ni

2λi
−

ni∑
j=1

(Xij − µ)2

2µ2Xij
= 0,
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respectively. Solutions of likelihood equations in (2.7) and (2.8) are called as
RML estimators. RML estimators of the parameters λi and µ are

(2.9) λ̃i =
niµ

2

ni∑
j=1

(Xij−µ)2

Xij

i = 1, ..., k

and

(2.10) µ̃ =

k∑
i=1

niλiX̄i

k∑
i=1

niλi

,

respectively.

It is obvious from Eqs. (2.9) and (2.10) that the estimators of the unknown
parameters have no explicit analytical solutions since there exists µ in the es-
timator of the parameter λi and vice versa. Therefore, the profile likelihood
method is used to eliminate the effect of nuisance parameters (λ1, ..., λk) and
consequently to estimate the parameter µ. The profile log-likelihood function
(lnL∗) is obtained by replacing λi in Eq. (2.6) with λ̃i given in Eq. (2.9) as

(2.11) lnL∗ =
1

2

k∑
i=1

ni

ln(niµ
2)− ln

 ni∑
j=1

(Xij − µ)2/Xij

+ constant.

Then we take the derivative of the profile log-likelihood function with respect to
the parameter µ as follows

(2.12)
∂ lnL∗

∂µ
=

k∑
i=1

ni

 1

µ
+

ni∑
j=1

(Xij − µ)/Xij

ni∑
j=1

(Xij − µ)2/Xij

 .

After rearranging the Eq. (2.12) and equating it to zero, we obtain the following
equality

(2.13)
k∑

i=1

ni(X̄i − µ)

µ(X̄i − 2µ+ µ2X−1
i )

= 0.

By solving Eq. (2.13), the restricted profile maximum likelihood (RPML) estima-
tor of µ denoted by µ̃∗ is obtained. Finally, by incorporating µ̃∗ into Eq. (2.9),
we obtain the RPML estimator of λi as

(2.14) λ̃∗
i =

ni(µ̃
∗)2

ni∑
j=1

(Xij−µ̃∗)2

Xij

, i = 1, ..., k.
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Unfortunately, the RPML estimator of µ has no closed form. Therefore, the
bisection method is used to obtain a numerical solution for the estimate value of
the parameter µ. It requires an interval in which a root of the given equation
must lie. Since the parameter µ is the common mean, the root of the given
equation, i.e., the estimate of the parameter µ, must lie between the smallest and
the largest group means. Hence, the bisection method always converges to a root
and the RPML estimate of the parameter µ is obtained.

3. Reviewing Some Existing Tests

In this section, we briefly describe the GP and PB approaches proposed
by Tian[16] and Ma and Tian [9], respectively.

3.1. Generalized p-value (GP ) approach

Tian [16] calculated the p-value based on the GP approach using the fol-
lowing algorithm.

Step 1 Rλi
= λiVi/vi ∼ χ2

(ni−1)/vi, i = 1, . . . , k, which is a generalized pivot for λi

is generated and Rµ̂ =

k∑
i=1

niRλi
x̄i

k∑
i=1

niRλi

is calculated. Here, Vi =
ni∑
j=1

(X−1
ij −X̄−1

i ),

vi is the observed value of Vi and x̄i =
ni∑
j=1

xij/ni.

Step 2 q =
k∑

i=1
niRλi

(x̄−1
i −R−1

µ̂ ) is calculated.

Step 3 Q ∼ χ2
(k−1) is generated.

Step 4 Step 2 and Step 3 are repeated m times.

Step 5 Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(Q ≥ q)/m.

Step 6 If p̂ < α, then H0 given in (1.2) is rejected.

3.2. Parametric Bootstrap (PB) approach

Ma and Tian [9] calculated the p-value based on the PB approach using
the following algorithm.
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Step 1 For a given data set xij , vi and x̄i are calculated. Here, vi is the ob-

served value of Vi =
ni∑
j=1

(X−1
ij − X̄−1

i ) and X̄i =
ni∑
j=1

Xij/ni, i = 1, ..., k; j =

1, ..., ni. Then RML estimates µ̃, λ̃1, λ̃2, ..., λ̃k are calculated via EM al-

gorithm. Based on these estimate values QB0 =
k∑

i=1
niλ̃i(x̄

−1
i − µ̃−1) is

computed.

Step 2 X̄Bi ∼ IG

(
k∑

i=1
niλ̂ix̄i/

k∑
i=1

niλ̂i, niλ̂i

)
and λBi ∼ χ2

(ni−1)/vi, i = 1, ..., k are

generated independently. Here λ̂i = ni/vi.

Step 3 QB =
k∑

i=1
niλBi

(
1

X̄Bi
− 1

µ̂B

)
is computed. Here, µ̂B =

k∑
i=1

niλBiX̄Bi

k∑
i=1

niλBi

.

Step 4 Step 2 and Step 3 are repeated m times and Q
(l)
B , l = 1, ...,m, are obtained.

Step 5 Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =

#(Q
(l)
B ≥ QB0)/m.

Step 6 If p̂ < α, then H0 given in (1.2) is rejected.

4. The Proposed CAT Procedure using Likelihood Based Test Statis-
tics

In this section, the likelihood based test statistics W , S and LR are derived
for testing the equality of IG means and then they are plugged into the CAT
procedure.

4.1. Wald (W ) test statistic

The test statistic W is defined as

(4.1) W = (µ̂− µ̃∗)′
(
Iµ,µ(µ̂, λ̂)

)−1
(µ̂− µ̃∗).

Here, µ̂ and µ̃∗ are the ML and RPML estimators of mean vector µ=(µ1, ..., µk),
respectively. Also, (µ̂− µ̃∗)′=(µ̂1 − µ̃∗, .., µ̂k − µ̃∗) and

Iµ,µ(µ,λ)=
(
Iµ,µ(µ,λ)− Iµ,λ(µ,λ)I

−1
λ,λ(µ,λ)Iλ,µ(µ,λ)

)−1
. To obtain Eq. (4.1)

the following steps are considered
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(i) By taking the second partial derivatives of the lnL1 with respect to the
parameters, expected information matrix

(4.2) I =

[
Iµ,µ(µ,λ) Iµ,λ(µ,λ)
Iλ,µ(µ,λ) Iλ,λ(µ,λ)

]
is obtained. Here,

(4.3) Iµ,µ(µ,λ) =


n1λ1

µ3
1

0 · · · 0

0 n2λ2

µ3
2

· · · 0

...
...

. . .
...

0 0 · · · nkλk

µ3
k

 ,

(4.4) Iµ,λ(µ,λ) = Iλ,µ(µ,λ) =


0 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 0


and

(4.5) Iλ,λ(µ,λ) =


n1

2λ2
1

0 · · · 0

0 n2

2λ2
2
· · · 0

...
...

. . .
...

0 0 · · · nk

2λ2
k

 .

(ii) Using Eqs. (4.3),(4.4) and (4.5)

(4.6) Iµ,µ(µ,λ) =


µ3
1

n1λ1
0 · · · 0

0
µ3
2

n2λ2
· · · 0

...
...

. . .
...

0 0 · · · µ3
k

nkλk


and

(4.7) (Iµ,µ(µ,λ))−1 =


n1λ1

µ3
1

0 · · · 0

0 n2λ2

µ3
2

· · · 0

...
...

. . .
...

0 0 · · · nkλk

µ3
k


are obtained.

(iii) By substituting (µ̂, λ̂) into the Eq. (4.7), we get

(4.8)
(
Iµ,µ(µ̂, λ̂)

)−1
= diag(niλ̂i/µ̂

3
i ) i = 1, ..., k.

(iv) The test statistic W is derived as follows

(4.9) W =

k∑
i=1

niλ̂i(µ̂i − µ̃∗)2

µ̂3
i

.
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4.2. Score (S) test statistic

The test statistic S is defined as

(4.10) S = U ′
µ(µ̃

∗, λ̃
∗
)
(
Iµ,µ(µ̃∗, λ̃

∗
)
)
Uµ(µ̃

∗, λ̃
∗
).

Here, µ̃∗ and λ̃
∗
are the RPML estimators of the vector of means µ=(µ1, . . . , µk)

and the vector of scale parameters λ=(λ1, . . . , λk). Uµ(µ̃
∗, λ̃

∗
) is the value of the

vector of score function Uµ(µ,λ) at the point (µ̃
∗, λ̃

∗
)=(µ̃∗, ..., µ̃∗, λ̃∗

1, ..., λ̃
∗
k). To

obtain the Eq. (4.10), the following steps are considered.

(i) By taking the first partial derivatives of the lnL1 with respect to the pa-
rameters

(4.11) U ′
µ(µ,λ) =

[
n1λ1(X̄1 − µ1)

µ3
1

, ...,
nkλk(X̄k − µk)

µ3
k

]
is obtained.

(ii) By substituting (µ̃∗, λ̃
∗
) into the Eq. (4.11), we get

(4.12) U ′
µ(µ̃

∗, λ̃
∗
) =

[
n1λ̃

∗
1(X̄1 − µ̃∗)

µ̃∗3 , ...,
nkλ̃

∗
k(X̄k − µ̃∗)

µ̃∗3

]
.

(iii) By substituting (µ̃∗, λ̃
∗
) into the Eq. (4.6), we get

(4.13)
(
Iµ,µ(µ̃∗, λ̃

∗
)
)
= diag(µ̃∗3/niλ̃

∗
i ) i = 1, ..., k.

(iv) The test statistic S is derived as follows

(4.14) S =

k∑
i=1

niλ̃
∗
i (µ̂i − µ̃∗)2

µ̃∗3 .

4.3. Likelihood ratio (LR) test statistic

The test statistic LR is derived as

LR = 2[lnL1(µ̂1, . . . , µ̂k; λ̂1, . . . , λ̂k)− lnL0(µ̃
∗, . . . , µ̃∗; λ̃∗

1, . . . , λ̃
∗
k)]

=

k∑
i=1

ni ln
λ̂i

λ̃∗
i

.
(4.15)

It should be noted that W, S and LR test statistics are approximated by a chi-
square distribution with (k−1) degrees of freedom under H0 and their values are
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asymptotically equivalent to each other. However, the mentioned approximation
to the distributions of the test statistics may not be accurate for small sample
sizes. This problem is also valid even for moderately large sample sizes. To elimi-
nate this problem, likelihood-based test statistics, which are the most appropriate
for PB methods can be used. The CAT procedure is a special case of PB meth-
ods; therefore, we incorporate the likelihood based test statistics W , S and LR
into the CAT and call these tests CATW , CATS and CATLR, respectively.

The algorithm of the CAT procedure based on T (T is any of W , S or LR)
test statistic is as follows:

Step 1 The observed value of the test statistic T , i.e., T0, is calculated.

Step 2 RPML estimators µ̃∗ and λ̃∗
i , i = 1, ..., k, are computed.

Step 3 Artificial samples Xij , i = 1, . . . , k; j = 1, . . . , ni from IG(µ̃∗, λ̃∗
i ) are gen-

erated under H0.

Step 4 For a large number of times, say m, step 3 is repeated. For each of the
replicated samples, the values of the test statistic T (l), l = 1, . . . ,m, are
calculated.

Step 5 Monte Carlo estimate of the p-value for testing (1.2) is calculated as p̂ =
#(T (l) ≥ T0)/m.

Step 6 If p̂ < α, then H0 given in (1.2) is rejected.

5. Simulation Study

In this section, the performances of the proposed tests CATW , CATS
and CATLR are compared with the GP approach proposed by Tian [16], the
PB approach proposed by Ma and Tian [9] and the CAT approach proposed by
Gökpınar et al. [6] with respect to the estimated Type I error rate and power
criteria via the MATLAB environment under the specified nominal level α =
0.050. In comparing the performances of the proposed tests and the existing tests,
5,000 random samples are generated from the IG(µi, λi), i = 1, . . . , k distribution
and m = 5, 000 Monte Carlo runs are used for each of the samples. In the
simulation study the following setup is used.
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Sample Sizes Parameter Values

(n1, n2, n3) (λ1, λ2, λ3) (µ1, µ2, µ3)

k=3

(8, 8, 8)
(15, 15, 15) (10, 11, 12) (2, 2.25, 2.5)
(30, 30, 30) (10, 12, 14) (2, 2.5, 3)
(8, 10, 12) (10, 15, 20) (2, 3, 4)
(10, 20, 30)

(n1, n2, n3, n4, n5) (λ1, λ2, λ3, λ4, λ5) (µ1, µ2, µ3, µ4, µ5)

Number of Groups k=5

(8, 8, 8, 8, 8)
(15, 15, 15, 15, 15) (10, 10, 11, 12, 12) (2, 2, 2.25, 2.5, 2.5)
(30, 30, 30, 30, 30) (10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3)
(8, 8, 10, 12, 12) (10, 10, 15, 20, 20) (2, 2, 3, 4, 4)
(10, 10, 20, 30, 30)

(n1, n2, n3, n4, n5, n6, n7) (λ1, λ2, λ3, λ4, λ5, λ6, λ7) (µ1, µ2, µ3, µ4, µ5, µ6, µ7)

k=7

(8, 8, 8, 8, 8, 8, 8)
(15, 15, 15, 15, 15, 15, 15) (10, 10, 11, 11, 11, 12, 12) (2, 2, 2.25, 2.25, 2.25, 3, 3)
(30, 30, 30, 30, 30, 30, 30) (10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3)
(8, 8, 10, 10, 10, 12, 12) (10, 10, 15, 15, 15, 20, 20) (2, 2, 3, 3, 3, 4, 4)
(10, 10, 20, 20, 20, 30, 30)

The estimated type I error rates for the proposed and the existing tests are
presented in Tables 1–3.

Tables 1–3 here.

It can be seen from Table 1 that the estimated type I error rates of the tests
are close to the nominal level, except for the PB approach when the number of
observations in the populations are equal to (n1, n2, n3) = (8, 8, 8), (8, 10, 12) and
(15, 15, 15). It can be seen from Table 2 that if the sample sizes are small and/or
different the estimated type I error rates for the GP approach are larger than
the nominal level. As seen from Table 3 that the estimated type I error rates
for the GP approach are always greater than 0.060. It should be noted that
the estimated type I error rates of the CATW , CATS, CATLR, PB and CAT
approaches are close to the nominal level α = 0.050 in all cases when the number
of groups is moderate to large. The estimated powers of the proposed and the
existing tests are presented in Tables 4–6. It should be noted that in Tables 4–6
the estimated type I error rates of the tests which are greater or equal to 0.060
are denoted by ***.

Tables 4–6 here.

It can be seen from Table 4 that CATS shows the worst performance in
all cases. In addition, the CATW outperforms the other tests when the sample
sizes are unequal. It can be seen from Table 5 that the performances of the
CATLR and PB tests are similar when the sample sizes are small and equal.
The CATW test is more powerful than the other tests when the sample sizes are
different. Also, CATW shows the best performance when the sample sizes are
moderately large and unequal while CATS shows the worst performance. Since
the simulation results given in Table 6 show a similar behavior as in Table 5, the
same conclusions are drawn from Table 6. Therefore, we do not repeat them for
the sake of brevity.
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6. Real Data Example

In this section, the fatigue life data taken from Leiva et al. [8] is analyzed to
illustrate the implementation of the proposed and the existing tests; see Table 7.
It contains fatigue life (T) of 6061-T6 aluminum pieces which were cut parallel
to the direction of rolling and oscillating at 18 cycles/s at maximum stress levels
of x1 = 2.1, x2 = 2.6 and x3 = 3.1 psi (×104); see Leiva et al. [8] for more
detailed information. These stress levels denote the groups whose means are to
be compared and the sample sizes of them are n1 = 101, n2 = 102 and n3 = 101,
respectively.

Table 7 here

Firstly we calculate the values of Lilliefors goodness of fit test and the
corresponding p-value for each of the three groups to test the assumption that
the data are from an IG distribution; see Table 8.

Table 8 here

It can be seen from Table 8 that the IG distribution provides a good fit for
each group of the fatigue life data, since the corresponding p-values are all greater
than the nominal level α = 0.050. Then, we compute the ML estimates (µ̂i, λ̂i)
of the parameters (µi, λi) and the RML estimates (µ̃, λ̃i) of the parameters (µ,
λi), i = 1, 2, 3, by using the equalities given in Section 2; see Table 9.

Table 9 here

The values of theW , S and LR test statistics based on the ML and RML es-
timates are calculated as 300141.0259, 41.2081 and 645.9193 using the Eqs. (4.9),
(4.14) and (4.15), respectively. In addition, to test the hypothesis of equality of
means, the p-values for the existing tests GP and PB and the proposed tests
CATW , CATS and CATLR are calculated using the algorithms given in Sec-
tions 3 and 4, respectively. The p-value for the CAT is calculated from the
algorithm given in Gökpınar et al. [6]. m=5,000 Monte Carlo runs are used in
calculating the p-values for the fatigue life data. p-values for the proposed and
the existing tests are obtained to be very close to zero. Therefore, the hypothesis
of equality of means is rejected for all tests at the significance level α = 0.050. It
should be noted that all the calculations are made using MATLAB software.

7. Conclusion

In this study, Wald, score and likelihood ratio test statistics are defined for
the problem of testing the equality of IG means. Then they are plugged into the
computational approach test procedure. The proposed tests are compared with
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the existing tests according to the estimated type I error rate and power criteria
via a Monte Carlo simulation study. The estimated type I error rates for the
proposed tests are close to the nominal level α = 0.050 in all cases considered in
the study. The computational approach test based on Wald test statistic appears
to be more powerful than the other tests especially when the sample sizes are not
equal among groups.
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(λ1, λ2, λ3) CATW CATS CATLR GP PB CAT

(n1, n2, n3) = (8, 8, 8)

(10, 11, 12) 0.0454 0.0486 0.0460 0.0400 0.0616 0.0382
(10, 12, 14) 0.0456 0.0454 0.0476 0.0404 0.0606 0.0398
(10, 15, 20) 0.0448 0.0440 0.0432 0.0374 0.0602 0.0358

(n1, n2, n3) = (15, 15, 15)

(10, 11, 12) 0.0558 0.0558 0.0554 0.0524 0.0636 0.0522
(10, 12, 14) 0.0554 0.0582 0.0558 0.0528 0.0658 0.0506
(10, 15, 20) 0.0482 0.0504 0.0492 0.0444 0.0588 0.0460

(n1, n2, n3) = (30, 30, 30)

(10, 11, 12) 0.0466 0.0464 0.0456 0.0458 0.0496 0.0456
(10, 12, 14) 0.0494 0.0498 0.0496 0.0468 0.0514 0.0504
(10, 15, 20) 0.0464 0.0448 0.0442 0.0436 0.0504 0.0442

(n1, n2, n3) = (8, 10, 12)

(10, 11, 12) 0.0482 0.0514 0.0496 0.0460 0.0654 0.0446
(10, 12, 14) 0.0462 0.0478 0.0464 0.0442 0.0636 0.0380
(10, 15, 20) 0.0500 0.0472 0.0498 0.0466 0.0600 0.0398

(n1, n2, n3) = (10, 20, 30)

(10, 11, 12) 0.0522 0.0522 0.0504 0.0494 0.0584 0.0454
(10, 12, 14) 0.0534 0.0546 0.0534 0.0522 0.0592 0.0498
(10, 15, 20) 0.0524 0.0534 0.0552 0.0542 0.0584 0.0452

Table 1: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=3.
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(λ1, λ2, λ3, λ4, λ5) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5) = (8, 8, 8, 8, 8)

(10, 10, 11, 12, 12) 0.0472 0.0486 0.0484 0.0676 0.0480 0.0322
(10, 10, 12, 14, 14) 0.0480 0.0486 0.0458 0.0614 0.0498 0.0310
(10, 10, 15, 20, 20) 0.0498 0.0514 0.0490 0.0610 0.0508 0.0338

(n1, n2, n3, n4, n5) = (15, 15, 15, 15, 15)

(10, 10, 11, 12, 12) 0.0536 0.0508 0.0506 0.0522 0.0524 0.0400
(10, 10, 12, 14, 14) 0.0460 0.0468 0.0450 0.0502 0.0470 0.0416
(10, 10, 15, 20, 20) 0.0530 0.0568 0.0564 0.0620 0.0572 0.0460

(n1, n2, n3, n4, n5) = (30, 30, 30, 30, 30, 30)

(10, 10, 11, 12, 12) 0.0530 0.0546 0.0548 0.0570 0.0556 0.0496
(10, 10, 12, 14, 14) 0.0508 0.0482 0.0486 0.0510 0.0494 0.0452
(10, 10, 15, 20, 20) 0.0500 0.0550 0.0536 0.0556 0.0528 0.0466

(n1, n2, n3, n4, n5) = (8, 8, 10, 12, 12)

(10, 10, 11, 12, 12) 0.0502 0.0510 0.0508 0.0600 0.0538 0.0350
(10, 10, 12, 14, 14) 0.0466 0.0494 0.0496 0.0602 0.0500 0.0376
(10, 10, 15, 20, 20) 0.0482 0.0472 0.0472 0.0602 0.0468 0.0332

(n1, n2, n3, n4, n5) = (10, 10, 20, 30, 30)

(10, 10, 11, 12, 12) 0.0516 0.0522 0.0500 0.0602 0.0492 0.0408
(10, 10, 12, 14, 14) 0.0516 0.0522 0.0500 0.0612 0.0492 0.0408
(10, 10, 15, 20, 20) 0.0486 0.0480 0.0496 0.0634 0.0472 0.0364

Table 2: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=5.
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(λ1, λ2, λ3, λ4, λ5, λ6, λ7) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 8, 8, 8, 8, 8)

(10, 10, 11, 11, 11, 12, 12) 0.0470 0.0510 0.0518 0.0774 0.0482 0.0298
(10, 10, 12, 12, 12, 14, 14) 0.0482 0.0482 0.0468 0.0716 0.0422 0.0272
(10, 10, 15, 15, 15, 20, 20) 0.0474 0.0550 0.0530 0.0770 0.0484 0.0350

(n1, n2, n3, n4, n5, n6, n7) = (15, 15, 15, 15, 15, 15, 15)

(10, 10, 11, 11, 11, 12, 12) 0.0518 0.0522 0.0526 0.0646 0.0516 0.0440
(10, 10, 12, 12, 12, 14, 14) 0.0506 0.0526 0.0534 0.0636 0.0516 0.0388
(10, 10, 15, 15, 15, 20, 20) 0.0488 0.0518 0.0498 0.0636 0.0492 0.0398

(n1, n2, n3, n4, n5, n6, n7) = (30, 30, 30, 30, 30, 30, 30)

(10, 10, 11, 11, 11, 12, 12) 0.0500 0.0536 0.0516 0.0610 0.0524 0.0462
(10, 10, 12, 12, 12, 14, 14) 0.0518 0.0554 0.0562 0.0620 0.0568 0.0494
(10, 10, 15, 15, 15, 20, 20) 0.0500 0.0532 0.0524 0.0624 0.0518 0.0454

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 10, 10, 10, 12, 12)

(10, 10, 11, 11, 11, 12, 12) 0.0434 0.0436 0.0442 0.0656 0.0436 0.0306
(10, 10, 12, 12, 12, 14, 14) 0.0486 0.0486 0.0508 0.0708 0.0444 0.0356
(10, 10, 15, 15, 15, 20, 20) 0.0516 0.0488 0.0502 0.0742 0.0458 0.0350

(n1, n2, n3, n4, n5, n6, n7) = (10, 10, 20, 20, 20, 30, 30)

(10, 10, 11, 11, 11, 12, 12) 0.0502 0.0576 0.0532 0.0670 0.0534 0.0442
(10, 10, 12, 12, 12, 14, 14) 0.0518 0.0500 0.0506 0.0678 0.0474 0.0408
(10, 10, 15, 15, 15, 20, 20) 0.0476 0.0484 0.0462 0.0604 0.0472 0.0400

Table 3: Simulated Type I error rates for the CATW , CATS, CATLR,
GP , PB and CAT tests when k=7.
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(λ1, λ2, λ3) (µ1, µ2, µ3) CATW CATS CATLR GP PB CAT

(n1, n2, n3) = (8, 8, 8)

(2, 2.25, 2.5) 0.1018 0.1028 0.1194 0.1066 *** 0.1006
(10, 11, 12) (2, 2.5, 3) 0.2120 0.1896 0.2392 0.2200 *** 0.2276

(2, 3, 4) 0.5226 0.3314 0.5486 0.5318 *** 0.5660

(2, 2.25, 2.5) 0.1096 0.0940 0.1128 0.1034 *** 0.1036
(10, 12, 14) (2, 2.5, 3) 0.2392 0.1940 0.2600 0.2402 *** 0.2510

(2, 3, 4) 0.5608 0.3254 0.5610 0.5430 *** 0.5800

(2, 2.25, 2.5) 0.1378 0.0914 0.1260 0.1138 *** 0.1160
(10, 15, 20) (2, 2.5, 3) 0.3110 0.1958 0.2952 0.2786 *** 0.2846

(2, 3, 4) 0.6432 0.3352 0.6238 0.6108 *** 0.6222

(n1, n2, n3) = (15, 15, 15)

(2, 2.25, 2.5) 0.1806 0.1616 0.1800 0.1750 *** 0.1848
(10, 11, 12) (2, 2.5, 3) 0.4906 0.4180 0.4814 0.4694 *** 0.4908

(2, 3, 4) 0.9016 0.7620 0.8864 0.8834 *** 0.9054

(2, 2.25, 2.5) 0.2076 0.1840 0.2062 0.1968 *** 0.2020
(10, 12, 14) (2, 2.5, 3) 0.5220 0.4462 0.5156 0.5068 *** 0.5308

(2, 3, 4) 0.9174 0.7596 0.9010 0.8974 *** 0.9228

(2, 2.25, 2.5) 0.2528 0.1918 0.2300 0.2228 0.2546 0.2290
(10, 15, 20) (2, 2.5, 3) 0.6060 0.4696 0.5748 0.5678 0.5966 0.5962

(2, 3, 4) 0.9546 0.7968 0.9372 0.9332 0.9414 0.9510

(n1, n2, n3) = (30, 30, 30)

(2, 2.25, 2.5) 0.3708 0.3466 0.3656 0.3622 0.3792 0.3734
(10, 11, 12) (2, 2.5, 3) 0.8344 0.8036 0.8292 0.8258 0.8410 0.8430

(2, 3, 4) 0.9982 0.9964 0.9986 0.9982 0.9984 0.9982

(2, 2.25, 2.5) 0.3984 0.3564 0.3796 0.3778 0.3966 0.3882
(10, 12, 14) (2, 2.5, 3) 0.8678 0.8272 0.8534 0.8502 0.8610 0.8656

(2, 3, 4) 0.9990 0.9952 0.9986 0.9980 0.9986 0.9986

(2, 2.25, 2.5) 0.4872 0.4090 0.4462 0.4420 0.4622 0.4570
(10, 15, 20) (2, 2.5, 3) 0.9174 0.8720 0.9024 0.8976 0.9080 0.9080

(2, 3, 4) 0.9998 0.9980 0.9996 0.9998 0.9998 0.9998

(n1, n2, n3) = (8, 10, 12)

(2, 2.25, 2.5) 0.1402 0.0964 0.1302 0.1218 *** 0.1188
(10, 11, 12) (2, 2.5, 3) 0.3066 0.1904 0.2808 0.2668 *** 0.2670

(2, 3, 4) 0.6680 0.3410 0.6166 0.6032 *** 0.6240

(2, 2.25, 2.5) 0.1492 0.0912 0.1302 0.1240 *** 0.1164
(10, 12, 14) (2, 2.5, 3) 0.3560 0.2136 0.3212 0.3082 *** 0.3094

(2, 3, 4) 0.7032 0.3448 0.6480 0.6402 *** 0.6564

(2, 2.25, 2.5) 0.1782 0.0898 0.1392 0.1322 *** 0.1262
(10, 15, 20) (2, 2.5, 3) 0.3900 0.2064 0.3408 0.3304 *** 0.3282

(2, 3, 4) 0.7658 0.3682 0.6958 0.6892 *** 0.7072

(n1, n2, n3) = (10, 20, 30)

(2, 2.25, 2.5) 0.2448 0.1264 0.1912 0.1878 0.1958 0.1778
(10, 11, 12) (2, 2.5, 3) 0.5624 0.3250 0.4854 0.4824 0.4842 0.4698

(2, 3, 4) 0.9112 0.5672 0.8634 0.8592 0.8502 0.8644

(2, 2.25, 2.5) 0.2514 0.1406 0.2032 0.2016 0.2176 0.1886
(10, 12, 14) (2, 2.5, 3) 0.5908 0.3352 0.5062 0.5016 0.5132 0.4956

(2, 3, 4) 0.9360 0.5970 0.8832 0.8796 0.8690 0.8874

(2, 2.25, 2.5) 0.2852 0.1472 0.2222 0.2244 0.2364 0.2040
(10, 15, 20) (2, 2.5, 3) 0.6412 0.3972 0.5624 0.5626 0.5684 0.5394

(2, 3, 4) 0.9564 0.6716 0.9162 0.9164 0.9066 0.9128

***:The estimated type I error rates of the tests which are greater than or equal to 0.060.

Table 4: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=3.
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(λ1, λ2, λ3, λ4, λ5) (µ1, µ2, µ3, µ4, µ5) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5) = (8, 8, 8, 8, 8)

(2, 2, 2.25, 2.5, 2.5) 0.1126 0.1266 0.1424 *** 0.1462 0.1092
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.2800 0.2886 0.3530 *** 0.3648 0.3104

(2, 2, 3, 4, 4) 0.6882 0.5216 0.7842 *** 0.8000 0.7744

(2, 2, 2.25, 2.5, 2.5) 0.1300 0.1106 0.1414 *** 0.1428 0.1126
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.3320 0.2964 0.3828 *** 0.4018 0.3490

(2, 2, 3, 4, 4) 0.7332 0.5032 0.7970 *** 0.8110 0.7900

(2, 2, 2.25, 2.5, 2.5) 0.1698 0.1172 0.1614 *** 0.1704 0.1304
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.4120 0.2690 0.4224 *** 0.4414 0.3868

(2, 2, 3, 4, 4) 0.8282 0.4770 0.8436 *** 0.8526 0.8390

(n1, n2, n3, n4, n5) = (15, 15, 15, 15, 15)

(2, 2, 2.25, 2.5, 2.5) 0.2640 0.2408 0.2600 0.2734 0.2642 0.2522
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.6962 0.6596 0.7048 0.7216 0.7186 0.7066

(2, 2, 3, 4, 4) 0.9816 0.9676 0.9890 0.9900 0.9900 0.9906

(2, 2, 2.25, 2.5, 2.5) 0.2790 0.2460 0.2778 0.2974 0.2876 0.2714
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.7140 0.6614 0.7232 0.7384 0.7310 0.7312

(2, 2, 3, 4, 4) 0.9918 0.9602 0.9904 0.9922 0.9914 0.9936

(2, 2, 2.25, 2.5, 2.5) 0.3378 0.2542 0.3128 *** 0.3220 0.2982
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.8102 0.6916 0.7866 *** 0.7998 0.7896

(2, 2, 3, 4, 4) 0.9950 0.9682 0.9944 *** 0.9954 0.9960

(n1, n2, n3, n4, n5) = (30, 30, 30, 30, 30)

(2, 2, 2.25, 2.5, 2.5) 0.5174 0.5080 0.5218 0.5356 0.5324 0.5226
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.9670 0.9626 0.9698 0.9708 0.9702 0.9714

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(2, 2, 2.25, 2.5, 2.5) 0.5746 0.5482 0.5730 0.5822 0.5812 0.5740
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.9810 0.9728 0.9804 0.9804 0.9810 0.9808

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(2, 2, 2.25, 2.5, 2.5) 0.6656 0.5830 0.6274 0.6366 0.6332 0.6196
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.9922 0.9832 0.9906 0.9912 0.9914 0.9896

(2, 2, 3, 4, 4) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(n1, n2, n3, n4, n5) = (8, 8, 10, 12, 12)

(2, 2, 2.25, 2.5, 2.5) 0.1718 0.1184 0.1612 *** 0.1616 0.1292
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.4234 0.2792 0.4190 *** 0.4180 0.3956

(2, 2, 3, 4, 4) 0.8606 0.4846 0.8500 *** 0.8470 0.8520

(2, 2, 2.25, 2.5, 2.5) 0.1942 0.1210 0.1726 *** 0.1704 0.1420
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.4752 0.2800 0.4500 *** 0.4508 0.4248

(2, 2, 3, 4, 4) 0.8762 0.4718 0.8636 *** 0.8566 0.8616

(2, 2, 2.25, 2.5, 2.5) 0.2184 0.1098 0.1780 *** 0.1708 0.1510
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.5506 0.2850 0.5000 *** 0.4940 0.4550

(2, 2, 3, 4, 4) 0.9298 0.4582 0.9026 *** 0.8962 0.9020

(n1, n2, n3, n4, n5) = (10, 10, 20, 30, 30)

(2, 2, 2.25, 2.5, 2.5) 0.3274 0.1516 0.2532 *** 0.2422 0.2304
(10, 10, 11, 12, 12) (2, 2, 2.5, 3, 3) 0.7514 0.4418 0.6770 *** 0.6580 0.6558

(2, 2, 3, 4, 4) 0.9912 0.7222 0.9792 *** 0.9740 0.9822

(2, 2, 2.25, 2.5, 2.5) 0.3394 0.1642 0.2612 *** 0.2502 0.2418
(10, 10, 12, 14, 14) (2, 2, 2.5, 3, 3) 0.7550 0.4274 0.6740 *** 0.6594 0.6650

(2, 2, 3, 4, 4) 0.9930 0.7252 0.9848 *** 0.9788 0.9870

(2, 2, 2.25, 2.5, 2.5) 0.3688 0.1674 0.2928 *** 0.2798 0.2680
(10, 10, 15, 20, 20) (2, 2, 2.5, 3, 3) 0.8206 0.4834 0.7488 *** 0.7340 0.7312

(2, 2, 3, 4, 4) 0.9944 0.7646 0.9896 *** 0.9852 0.9900

***:The estimated type I error rates of the tests which are greater than or equal to 0.060.

Table 5: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=5.
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(λ1, λ2, λ3, λ4, λ5, λ6, λ7) (µ1, µ2, µ3, µ4, µ5, µ6, µ7) CATW CATS CATLR GP PB CAT

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 8, 8, 8, 8, 8)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1082 0.1154 0.1292 *** 0.1246 0.0954
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.2386 0.2548 0.2934 *** 0.2856 0.2668

(2, 2, 3, 3, 3, 4, 4) 0.5970 0.4976 0.6876 *** 0.6808 0.6956

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1122 0.1064 0.1234 *** 0.1176 0.0960
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.2570 0.2582 0.3110 *** 0.3018 0.2844

(2, 2, 3, 3, 3, 4, 4) 0.6514 0.5010 0.7162 *** 0.7042 0.7330

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1412 0.1082 0.1392 *** 0.1312 0.1038
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3246 0.2614 0.3580 *** 0.3540 0.3258

(2, 2, 3, 3, 3, 4, 4) 0.7482 0.5286 0.7824 *** 0.7782 0.8010

(n1, n2, n3, n4, n5, n6, n7) = (15, 15, 15, 15, 15, 15, 15)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1898 0.1958 0.2112 *** 0.2044 0.1914
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.5696 0.5600 0.6168 *** 0.6128 0.6204

(2, 2, 3, 3, 3, 4, 4) 0.9702 0.9168 0.9752 *** 0.9746 0.9832

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2094 0.1966 0.2176 *** 0.2210 0.068
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.6228 0.5796 0.6476 *** 0.6504 0.6588

(2, 2, 3, 3, 3, 4, 4) 0.9804 0.9308 0.9822 *** 0.9826 0.9870

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2812 0.2262 0.2672 *** 0.2682 0.2462
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7222 0.6422 0.7256 *** 0.7324 0.7340

(2, 2, 3, 3, 3, 4, 4) 0.9928 0.9510 0.9896 *** 0.9896 0.9946

(n1, n2, n3, n4, n5, n6, n7) = (30, 30, 30, 30, 30, 30, 30)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.4520 0.4534 0.4722 *** 0.4678 0.4692
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9400 0.9262 0.9404 *** 0.9410 0.9474

(2, 2, 3, 3, 3, 4, 4) 1.0000 0.9998 1.0000 *** 1.0000 1.0000

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.4894 0.4600 0.4892 *** 0.4876 0.4892
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9640 0.9464 0.9604 *** 0.9618 0.9652

(2, 2, 3, 3, 3, 4, 4) 1.0000 0.9998 1.0000 *** 1.0000 1.0000

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.5968 0.5318 0.5752 *** 0.5760 0.5670
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.9790 0.9656 0.9752 *** 0.9750 0.9794

(2, 2, 3, 3, 3, 4, 4) 1.0000 1.0000 1.0000 *** 1.0000 1.0000

(n1, n2, n3, n4, n5, n6, n7) = (8, 8, 10, 10, 10, 12, 12)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1366 0.1086 0.1316 *** 0.1280 0.1112
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3630 0.7380 0.3652 *** 0.3506 0.3298

(2, 2, 3, 3, 3, 4, 4) 0.7752 0.5306 0.7788 *** 0.7572 0.7912

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1526 0.1020 0.1320 *** 0.1288 0.1114
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.3752 0.2830 0.3836 *** 0.3702 0.3524

(2, 2, 3, 3, 3, 4, 4) 0.8216 0.5490 0.8094 *** 0.7850 0.8248

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.1860 0.1162 0.1634 *** 0.1534 0.1378
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.4652 0.3202 0.4510 *** 0.4424 0.4148

(2, 2, 3, 3, 3, 4, 4) 0.8720 0.6136 0.8608 *** 0.8484 0.8690

(n1, n2, n3, n4, n5, n6, n7) = (10, 10, 20, 20, 20, 30, 30)

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2714 0.1678 0.2230 *** 0.2140 0.2008
(10, 10, 11, 11, 11, 12, 12) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.6850 0.4904 0.6396 *** 0.6248 0.6198

(2, 2, 3, 3, 3, 4, 4) 0.9818 0.8286 0.9698 *** 0.9624 0.9722

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.2916 0.1768 0.2434 *** 0.2352 0.2214
(10, 10, 12, 12, 12, 14, 14) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7168 0.5176 0.6736 *** 0.6576 0.6534

(2, 2, 3, 3, 3, 4, 4) 0.9888 0.8438 0.9780 *** 0.9680 0.9824

(2, 2, 2.25, 2.25, 2.25, 3, 3) 0.3482 0.2162 0.2938 *** 0.2826 0.2522
(10, 10, 15, 15, 15, 20, 20) (2, 2, 2.5, 2.5, 2.5, 3, 3) 0.7792 0.6010 0.7482 *** 0.7330 0.7146

(2, 2, 3, 3, 3, 4, 4) 0.9966 0.9236 0.9904 *** 0.9864 0.9902

***:The estimated type I error rates of the tests which are greater than or equal to 0.060.

Table 6: Simulated power values for the CATW , CATS, CATLR, GP ,
PB and CAT tests when k=7.
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stress levels (psi)

I: 2.1 × 104

370, 706, 716, 746, 785, 797, 844, 855, 858, 886, 886, 930, 960, 988, 999,
1000, 1010, 1016, 1018, 1020, 1055, 1085, 1102, 1102, 1108, 1115, 1120,
1134, 1140, 1199, 1200, 1200, 1203, 1222, 1235, 1238, 1252, 1258, 1262,
1269, 1270, 1290, 1293, 1300, 1310, 1313, 1315, 1330, 1355, 1390, 1416,
1419, 1420, 1420, 1450, 1452, 1475, 1478, 1481, 1485, 1502, 1505, 1513,
1522, 1522, 1530, 1540, 1560, 1567, 1578, 1594, 1602, 1604, 1608, 1630,
1642, 1674, 1730, 1750, 1750, 1763, 1768, 1781, 1782, 1792, 1820, 1868,
1881, 1890, 1893, 1895, 1910, 1923, 1924, 1945, 2023, 2100, 2130, 2215,
2268, 2440

II: 2.6 × 104

233, 258, 268, 276, 290, 310, 312, 315, 318, 321, 321, 329, 335, 336, 338,
338, 342, 342, 342, 344, 349, 350, 350, 351, 351, 352, 352, 356, 358, 358,
360, 362, 363, 366, 367, 370, 370, 372, 372, 374, 375, 376, 379, 379, 380,
382, 389, 389, 395, 396, 400, 400, 400, 403, 404, 406, 408, 408, 410, 412,
414, 416, 416, 416, 420, 422, 423, 426, 428, 432, 432, 433, 433, 437, 438,
439, 439, 443, 445, 445, 452, 456, 456, 460, 464, 466, 468, 470, 470, 473,
474, 476, 476, 486, 488, 489, 490, 491, 503, 517, 540, 560

III: 3.1 × 104

70, 90, 96, 97, 99, 100, 103, 104, 104, 105, 107, 108, 108, 108, 109,
109, 112, 112, 113, 114, 114, 114, 116, 119, 120, 120, 120, 121, 121, 123,
124, 124, 124, 124, 124, 128, 128, 129, 129, 130, 130, 130, 131, 131, 131,
131, 131, 132, 132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138,
138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 144, 144, 145,
146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157, 157, 157, 158, 159,
162, 163, 163, 164, 166, 166, 168, 170, 174, 196, 212

Table 7: Fatigue life of aluminum pieces submitted to the maximum in-
dicated stress level.

stress levels (psi) I: 2.1 × 104 II: 2.6 × 104 III: 3.1 × 104

Lilliefors test
Test statistic 0.0699 0.0452 0.0752

p-value 0.6011 0.9483 0.5154

Table 8: Lilliefors goodness of fit test for the stress levels (groups) and
the corresponding p-values.

stress levels ML RML

I µ̂1 = 1400.8 λ̂1 = 14222.3 λ̃1 = 13876.9

II µ̂2 = 397.9 λ̂2 = 15165.8 λ̃2 = 766.8

III µ̂3 = 133.7 λ̂3 = 4573.4 λ̃3 = 159.4
common mean µ̃ = 1334.8

Table 9: The ML and RML estimates for the parameters µi, µ and λi.
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