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1. INTRODUCTION

In the statistical literature, numerous distributions exist with two or more parameters.
However, multi-parameter distributions can have problems with estimation and prediction
due to non-identification. Therefore, in practice it is sometimes convenient to work with
one-parameter distributions. One of the most popular single-parameter distributions is the
half-normal (HN) distribution. In a recent study, Huang and Roth [10] demonstrated that
the HN distribution is not only used for lifetime data but also in pragmatic randomized
trials proving the convenience of the HN distribution for modeling different real data sets.
The probability density function (pdf) and cumulative distribution function (cdf) of the HN
distribution are given, respectively, by

f(x; θ) =
2

Γ
(

1
2

)
θ

exp
{
−
(x

θ

)2
}

, x > 0,

and

(1.1) F (x; θ) = 1−
Γ
(

1
2 ,
(

x
θ

)2)
Γ
(

1
2

) ,

where θ > 0 is a scale parameter and Γ(α, z) is the upper incomplete gamma function defined
by

Γ(α, z) =

∞∫
z

e−yyα−1dy, α, z > 0.

The distribution given with a cdf (1.1) will be denoted by HN(θ) for the remainder of this
study. Shanker et al. [23] derived some statistical properties of the HN distribution (they
called it Quasi-Exponential), such as moments, hazard and the hazard rate function, survival
function and mean residual function. The maximum likelihood estimator (MLE) of the scale
parameter is also studied. They examined the real data modeling capability of the HN
distribution using lifetime data from biomedical science.

In reliability applications, the data is generally collected under some censoring schemes
when the lifetime of the products is too long. One of the most popular schemes is progressive
censoring. It should be pointed out that progressive censoring is not only used for reliability
applications but also quite common in clinical trials due to the staggered entry. We refer
readers to [15], [16], [20] and [21] for progressive censoring with staggered entry. In this
paper, we consider the point and interval estimation (prediction) of the HN distribution
under the progressive censoring scheme. A progressively Type-II censoring scheme is well-
discussed by Balakrishnan and Aggarwala [4]. Progressively Type-II censored samples can
be explained as follows: Let n units are put on a life test. When the first failure is observed,
randomly selected r1 of the n− 1 surviving units are removed (withdrawn or censored) from
the test. When the second failure occurs, randomly selected r2 of the n− 2− r1 surviving
units are removed from the test and this process is repeated. At the time of the m-th failure,
the remaining rm = n−m− r1 − ··· − rm−1 surviving units are removed randomly from the

test. It can be easily observed that n = m+
m∑

i=1
ri. The progressively Type-II censored (PCII)

failure times are denoted by Xr
1:m:n < Xr

2:m:n < ··· < Xr
m:m:n.
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There are several studies discussing the estimation and prediction problem based on the
PCII sample. Seo and Kang [22] discussed the problem of point and interval estimation for
the scaled half-logistic distribution and proposed a method to estimate the scale parameter
using the pivotal quantity method under PCII samples. They also tackled the problem of
estimation and prediction for the two-parameter half-logistic distribution. Ma and Gui [17]
used the pivotal quantity method to derive the estimator for the inverse Rayleigh distribution
based on general PCII samples. They also derived an explicit estimator of the scale parameter
by the approximation of the likelihood equation using Taylor expansion. Khan [11] studied
on the predictive inference for the HN distribution under the Type II censoring scheme. In a
more recent study, Sindhu and Hussain [24] used Bayesian methods and made predictive in-
ference on the HN distribution for left-censored data. Asgharzadeh and Valiollahi [3] studied
prediction intervals for the PCII from proportional hazard rate models. El-Din and Shafay
[18] derived one-sample and two-sample Bayesian prediction intervals based on PCII using
Exponential, Pareto, Weibull and Burr Type X-II models. Dey et al. [5] discussed the param-
eter estimation problem for generalized inverted exponential distribution under PCII. The
studies conducted by Wang et al. [26], Hemmati [9] and Kinaci et al. [12] are also examples of
studies on deriving exact confidence intervals under PCII. Recently, Ahmadi et al. [2] studied
statistical inference for the two-parameter generalized half-normal distribution based on a
PCII sample.

In this study, the point estimation, interval estimation and prediction intervals are dis-
cussed for the HN model under PCII. This paper is organized as follows: In Section 2, the
maximum likelihood and an approximate maximum likelihood estimation are discussed. In
Section 3, pivotal type estimation is studied with an approximate version. Interval estimation
is also discussed through MLE, likelihood ratio statistic and a pivotal quantity in Section 4.
In Section 5, the prediction of the removed failure times is discussed. The predictive intervals
are derived in Section 6. In Section 7, a simulation study is performed to observe the be-
havior of the point and interval estimates. A simulation study is also conducted to compare
the predictors and predictive intervals. In Section 8, a numerical example is presented for
illustration. The concluding remarks are given in Section 9.

2. MLE AND APPROXIMATE MLE ESTIMATION

Let Xr
1:m:n < Xr

2:m:n < ··· < Xr
m:m:n be the progressively censored order statistics from

HN(θ). Then the log-likelihood function can be written by

(2.1) `(θ) ∝ −m log(θ)−
m∑

i=1

(xi

θ

)2
+

m∑
i=1

ri log
(

Γ
(

1
2
,
(xi

θ

)2
))

,

where xi is a realization of Xr
i:m:n for i = 1, 2, ...,m. The log-likelihood function (2.1) is

non-linear in parameter θ and MLE can not be obtained, explicitly. Therefore, nonlinear op-
timization methods such as Nelder-Mead or BFGS should be applied to get the MLE of the
scale parameter θ. Initial point selection is an important problem in nonlinear optimization
methods. An arbitrary initial point may lead us to misinterpretation. Therefore, the ana-
lytically obtained approximate MLE (AMLE) estimator, which does not require a searching
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method, will be discussed below. Let us consider a first-order likelihood equation

(2.2)
d`(θ)
dθ

= −m

θ
+

2
θ3

m∑
i=1

x2
i +

2
θ2

m∑
i=1

rixi exp
((

xi
θ

)2)
Γ
(

1
2 ,
(

xi
θ

)2) = 0.

We consider the random variable Z = X/θ, it is easy to know that Z has the standard
HN distribution (with θ=1) since the θ is a scale parameter. After some algebra, the Eq (2.2)
can be re-written by

(2.3) −m

θ
+

2
θ3

m∑
i=1

x2
i +

2
θ2

m∑
i=1

rixi
exp
(
−z2

i

)
Γ
(

1
2 , z2

i

) = 0,

where zi is a realization of Zr
i:m:n = Xr

i:m:n/θ which is progressively censored order statistic
from standard HN distribution for i = 1, 2, ...,m.

Since equation (2.3) can not be solved analytically, we approximate the tricky part
exp(−z2

i )
Γ( 1

2
,z2

i )
by expanding it in Taylor series around vi = E(Zr

i:m:n). By the way, we can write

(2.4) G(Zr
i:m:n) = Ur

i:m:n

by using the probability integral transformation, where Zr
i:m:n is the i-th the progressively

censored order statistic from standard HN distribution with cdf

(2.5) G(z; θ) = 1−
Γ
(

1
2 , z2

)
Γ
(

1
2

) , z > 0,

and Ur
i:m:n is the standard uniform progressively censored order statistic.

According to Balakrishnan and Aggarwala [4], and using transformation (2.4) one can
write

(2.6) vi = E(Zr
i:m:n) ≈ G−1(pi),

where

(2.7) pi = E(Ur
i:m:n) = 1−

m∏
j=m−i+1

j + rm−j+1 + ···+ rm

j + 1 + rm−j+1 + ···+ rm
.

Using equations (2.5)–(2.7), vi can be determined by solving the equation

(2.8) Γ
(

1
2
, v2

i

)
= Γ

(
1
2

)
(1− pi), i = 1, 2, ...,m.

Let us turn back to (2.3) and we now focus on the Taylor expansion on the part

H(zi) =
exp
(
−z2

i

)
Γ
(

1
2 , z2

i

) .

Let h be the first-order derivative of the function H which is given by

h(zi) = −
2zi exp

(
−z2

i

)
Γ
(

1
2 , z2

i

) +
exp
(
−z2

i

)
exp(−zi)

Γ2
(

1
2 , z2

i

)√
zi

.
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Then

H(zi) ≈ H(vi) + (zi − vi)h(vi)

= Ai + Bizi,(2.9)

where

Ai = H(vi)− vih(vi)(2.10)

=
Γ
(

1
2 , v2

i

)(
1− 2v2

i

)
exp
(
v2
i

)
− 2vi

Γ2
(

1
2 , v2

i

)
and

Bi = h(vi)(2.11)

=
2vi exp

(
v2
i

)
Γ
(

1
2 , v2

i

) +
2

Γ2
(

1
2 , v2

i

) .
Eventually, using (2.9) in (2.3), we can reach to the approximate likelihood equation

−m

θ
+

2
θ3

m∑
i=1

x2
i +

2
θ2

m∑
i=1

rixi

(
Ai + Bi

xi

θ

)
= 0.

After some algebra, AMLE of the parameter θ can be obtained by

(2.12) θ̃ =
c +

√
c2 + 4mb + 4md

2m
,

where

b = 2
m∑

i=1

(Xr
i:m:n)2,

c = 2
m∑

i=1

riX
r
i:m:nAi,

and

d = 2
m∑

i=1

ri(Xr
i:m:n)2Bi.

It is noticed that the estimate (2.12) is not novel but it is another form of the MMLE
given in Ahmadi et al. [2]. It is important here that the following revision brings us to the
original ML estimate of θ without any searching methods.

Revised estimates: Following a suggestion by Lee et al. [13], we now calculate Ai

and Bi in (2.10)–(2.11) with replacing vi by

(2.13) vi =
xi,

θ̃
, 1 ≤ i ≤ m.

and calculate the revised estimate θ̃revised by using (2.12). This process should be repeated a
few times until the coefficients stabilize sufficiently enough. The flowchart is given in Figure 1
to illustrate the revising process.
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Figure 1: Flow chart for revised estimates.

3. A PIVOTAL QUANTITY ESTIMATION

In the previous section, AMLE is obtained for the scale parameter θ. In this section,
the pivotal quantity type inference is discussed. This method is adopted from the results in
Ma and Gui [17]. Let Xr

1:m:n < Xr
2:m:n < ··· < Xr

m:m:n be a PCII sample from the HN(θ). Let

Y r
i:m:n = − log

Γ
(

1
2 ,
(

Xr
i:m:n
θ

)2
)

Γ
(

1
2

)
, i = 1, 2, ...,m.

It can be easily seen that, Y r
1:m:n < Y r

2:m:n < ··· < Y r
m:m:n are PCII samples from a standard

exponential distribution. Let us consider the following transformations:

S1 = nY r
1:m:n,

Si =

n−
i−1∑
j=1

(rj + 1)

(Y r
i:m:n − Y r

i−1:m:n

)
, i = 2, ...,m.
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According to Thomas and Wilson [25], S1, S2, ..., Sm are also independent and identically dis-
tributed from a standard exponential distribution. It is well-known that the pivotal quantity

W (θ) = 2
m∑

i=1

Si

= 2
m∑

i=1

(ri + 1)Y r
i:m:n

= −2
m∑

i=1

(ri + 1) log

Γ
(

1
2 ,
(

Xr
i:m:n
θ

)2
)

Γ
(

1
2

)
(3.1)

is distributed χ2 distribution with 2m degrees of freedom.

Ma and Gui [17] pointed out that the pivotal quantity W (θ)/(2m + 2) converges to one
in probability as m →∞. In this case, the pivotal type estimate θ∗ of θ can be proposed by
solving the equation

(3.2)
m∑

i=1

(ri + 1)

− log

Γ
(

1
2 ,
(

Xi:m:n
θ

)2
)

Γ
(

1
2

)

 = m + 1.

However, (3.2) does not allow for an explicit solution for θ. Since one-dimensional searching
method can be used to get the pivotal type estimate of θ, the approximation method discussed
in the previous section can also be applied to solve the (3.2). Let us start the re-write (3.2)
by

(3.3)
m∑

i=1

(ri + 1)

{
− log

(
Γ
(

1
2 , z2

i

)
Γ
(

1
2

) )}
= m + 1,

where zi is a realization of Zr
i:m:n = Xr

i:m:n/θ which is standard progressively censored order
statistic from HN (1) for i = 1, 2, ...,m.

We expand the tricky part

K(zi) = − log

(
Γ
(

1
2 , z2

i

)
Γ
(

1
2

) )
around the point vi = E(Zr

i:m:n) which is already defined in (2.8). Let k denotes the first-order
derivative of K and it is given by

k(zi) =
2 exp

(
−z2

i

)
Γ
(

1
2 , z2

i

) .

Hence, we can write

K(zi) ≈ K(vi) + (zi − vi)k(vi)

= Ci + Dizi, i = 1, 2, ...,m,

where

Ci = K(vi)− vik(vi)(3.4)

= − log

(
Γ
(

1
2 , v2

i

)
Γ
(

1
2

) )
−

2vi exp
(
−v2

i

)
Γ
(

1
2 , v2

i

) ,
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and

Di = k(vi)(3.5)

=
2 exp

(
−v2

i

)
Γ
(

1
2 , v2

i

) .

Hence, the left-hand side of (3.3) can be approximated by

m∑
i=1

(ri + 1)
(

Ci + Di
Xr

i:m:n

θ

)
= m + 1

and the approximate pivotal quantity type estimate is obtained by

(3.6) θ∗(a) =

m∑
i=1

(ri + 1)Xr
i:m:nDi

m + 1−
m∑

i=1
(ri + 1)Ci

.

Revised estimates: We now use the method proposed by Lee et al. [13], and calculate
Ci and Di in the (3.4)–(3.5) by replacing vi by

vi =
xi,

θ∗
, 1 ≤ i ≤ m.

and calculate the revised estimate θ
∗(a)
revised by using (3.6). This process should also be repeated

a few times until the coefficients stabilize sufficiently enough.

4. INTERVAL ESTIMATIONS

In this section, we discuss the confidence interval estimation of the parameter θ based
on progressively censored data Xr

1:m:n < Xr
2:m:n < ··· < Xr

m:m:n from the HN(θ). In the ML
theory, it is well-known that

θ̂ ≈ AN
(
θ, I−1(θ)

)
,

where

I(θ) = −E

(
d2

dθ2
`(θ)

)
is the Fisher Information. It can be estimated by

I
(
θ̂
)

= −
(

d2

dθ2
l(θ)

)∣∣∣∣
θ̂

and standard error of θ̂ is estimated by SE
(
θ̂
)

=
√

I−1
(
θ̂
)
. Then we can write an approxi-

mate (1− α)100% confidence interval for θ as follows:

(4.1)
(
θ̂ − z1−α

2
SE
(
θ̂
)
, θ̂ + z1−α

2
SE
(
θ̂
))

,

where za is the a-th quantile of the standard normal distribution.
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Let us define

W (θ) = −2
m∑

i=1

(ri + 1)Q(θ), θ > 0,

where

Q(θ) = log

Γ
(

1
2 ,
(

Xr
i:m:n
θ

)2
)

Γ
(

1
2

)
.

It is well-known that the pivot W (θ) is distributed as χ2 with 2m degrees of freedom. The
following lemma is given before introducing a new confidence interval (CI) for the parameter θ.

Lemma 4.1. Suppose that 0 < a1 < a2 < ··· < am < ∞. Then, W (θ) is strictly de-

creasing in θ for any θ > 0. Furthermore, if t > 0, the equation W (θ) = t has a unique solution

for any θ > 0.

Proof: Let us consider the first-order derivative of Q(θ) in θ which is given by

dQ(θ)
dθ

= −
2 exp(−a2

i
θ2 )x

√
πθ2
(
erf(x)

(
ai
θ

)
− 1
) ,

where erf(·) is a well-known error function and it is defined as

erf(x) =
2√
π

x∫
0

exp
(
−t2
)
dt.

Since the erf(x)(x) ∈ [0, 1), it is observed that dQ(θ)
dθ > 0. This indicates that dW (θ)

dθ < 0 and
W (θ) is decreasing function in θ. Furthermore, limθ→0 W (θ) = ∞ and limθ→∞W (θ) = 0.
Thus, if t > 0, W (θ) = t has a unique solution for any θ > 0.

Let χ2
(a)2m denotes the a-th quantile of the χ2 distribution with 2m degrees of freedom.

The following theorem gives an exact CI for parameter θ.

Theorem 4.1. A (1− α)100% exact CI for θ is constructed by

(4.2)
(
W−1

(
χ2

(1−α/2)2m

)
,W−1

(
χ2

(α/2)2m

))
,

where W−1(t) is the solution of equation W (θ) = t.

Proof: The proof follows from Lemma 4.1 and the fact W (θ) ∼ χ2
(2m)

Corollary 4.1. An approximately (1− α)100% CI for θ is constructed by

(4.3)


m∑

i=1
(ri + 1)DiX

r
i:m:n

χ2
(1−α/2)2m

2 −
m∑

i=1
(ri + 1)Ci

,

m∑
i=1

(ri + 1)DiX
r
i:m:n

χ2
(α/2)2m

2 −
m∑

i=1
(ri + 1)Ci

,

where Ci and Di are defined as in (3.4) and (3.5) respectively.

Proof: The proof is analogous to that of Theorem 4.1 in Ma and Gui [17].
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By the way, there is another method called the uncorrected likelihood ratio (ULR)
interval, which has desirable properties. The ULR intervals are discussed in Doganaksoy
and Schmee [6] and Doganaksoy [7]. The ULR interval can be described as follows: Under
some mild regularity conditions, if the θ is the true parameter, then the likelihood ratio
statistic Λ = −2

(
`(θ)− `

(
θ̂
))

is distributed as χ2 with degrees of freedom 1, where ` is the

log-likelihood function as in (2.1) and θ̂ is the MLE of θ. The test statistic Λ can be used
for testing H0 : θ = θ0 against H0 : θ 6= θ0 with critical region Λ > χ2

(1)(1− α). Then, we

conclude that the ULR confidence interval for θ readily arises a nice set
{

θ : Λ < χ2
(1)(α)

}
.

Using this fact, 100(1− α)% ULR CI limits

(4.4) (θL, θU )

that satisfy

(4.5) −2
(
`(θ)− `

(
θ̂
))

− χ2
(1)(1− α) = 0

with θL < θ̂ and θU > θ̂.

It is noticed by Fraser [8] that the ULR and asymptotically normal (AN) CIs are
asymptotically equivalent. The ULR CIs are transformation invariant, unlike the AN method.
Furthermore, the ULR CIs always produce limits inside of the parameter space.

In the following section, the prediction problem is discussed for the removed failure
times within the PCII scheme.

5. PREDICTION

Let Xr
1:m:n < Xr

2:m:n < ··· < Xr
m:m:n be progressively censored sample from the HN(θ)

distribution and Y = Yj:rk
denotes the j-th order statistics related to the removed sample of

size rk at the progressive stage k. Using the theorem in Ng et al. [19], the conditional pdf of
Y |Xr

k:m:n can be written by

fY |Xr
k:m:n

(y|xk) =
rk!

(j − 1)!(rk − j)!
f(y)(F (y)− F (xk))

j−1

×(1− F (y))rk−j(1− F (xk))
−rk (y > xk),

where y and xk are the realizations of Y and Xr
j:m:n. Then, the predictive log-likelihood

function is given by

`(y, θ) ∝ `(θ)− log(θ)−
(y

θ

)2

+(j − 1) log
{

Γ
(

1
2
,
(xk

θ

)2
)
− Γ

(
1
2
,
(y

θ

)2
)}

+(rk − j) log
{

Γ
(

1
2
,
(y

θ

)2
)}

−rk log
{

Γ
(

1
2
,
(xk

θ

)2
)}

.(5.1)
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The predictive log-likelihood (5.1) is non-linear in y and parameter θ, and they can not
be obtained explicitly. Therefore nonlinear optimization methods such as Nelder-Mead or
BFGS should be applied to get the maximum likelihood predictor (MLP) of Y and predictive
maximum likelihood estimate (PMLE) of the scale parameter θ. The MLP and PMLE are
denoted by Ŷ and θ̂P , respectively. It is noted that the MLP of Y is the same as Xr

k:m:n for
j = 1.

From Lemma 3.1 in Seo and Kang [22], the pivot

(5.2) Wθ(Y ) =
1− F (Y )
1− F (xk)

=
Γ
(

1
2 ,
(

Y
θ

)2)
Γ
(

1
2 ,
(

xk
θ

)2)
has beta distribution with parameters rk − j + 1 and j.

When the parameter θ is known or given, we can obtain a predictor for Y by solving
the following equation:

(5.3) Wθ(Y ) =
Γ
(

1
2 ,
(

Y
θ

)2)
Γ
(

1
2 ,
(

xk
θ

)2) ≈ E(Brk−j+1,j) =
rk − j + 1

rk + 1
,

where Brk−j+1,j beta random variable with parameters rk − j + 1 and j. This predictor is
denoted by Ŷ2. If θ is unknown, we can use θ̂P for θ in (5.3), then a new predictor of Y can
be obtained by the solution of the equation

Wθ̂P
(Y ) =

rk − j + 1
rk + 1

,

where θ̂P is PMLE of θ and this predictor is denoted by Ŷ3.

Presently, we aim to obtain some predictors which give explicit predictions. Let us
define

p∗ = E(Uj:rk
|Uk:m:n > F (xk))

=
rk!(1− F (xk))

−rk

(j − 1)!(rk − j)!

1∫
F (xk)

y(y − F (xk))
j−1(1− y)rk−jdy

=
rk!(1− F (xk))

−rk

(j − 1)!(rk − j)!

j−1∑
i1=0

rk−j∑
i2=0

(
j − 1

ii

)(
rk − j

i2

)

×(−1)i1+i2F i1(xk)
(

1− F j−i1+i2+1(xk)
j − i1 + i2 + 1

)
,(5.4)

where Uk:m:n is the k-th standard uniform progressive censored statistic and Uj:rk
is the

standard uniform j-th ordinary order statistics related to removed sample of size rk at the
stage k. Using the same methodology in Section 3, we can also write

(5.5) Nθ(Y ) = − log

Γ
(

1
2 ,
(

Y
θ

)2)
Γ
(

1
2

)
 ≈ L + M

Y

θ
,
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where

L = − log

(
Γ
(

1
2 , ξ2

)
Γ
(

1
2

) )
−

2ξ exp
(
−ξ2

)
Γ
(

1
2 , ξ2

) ,

M =
2 exp

(
−ξ2

)
Γ
(

1
2 , ξ2

) ,

and
ξ = E(Yj:Rk

) ≈ G−1(p∗).

Using (2.5) and (5.4), ξ can be determined by solving the following equation:

Γ
(

1
2
, ξ2

)
= Γ

(
1
2

)
(1− p∗).

We are now ready to give a new explicit predictor. Using (5.5) in (5.3), a new predictor
of Y is given by

Ŷ4 =

θ

− log

Γ
(

1
2 ,
(

xk
θ

)2)
Γ
(

1
2

) rk − j + 1
rk + 1

− L


M

,

where θ is given or known. If the θ is unknown, another predictor of Y can be defined as

Ŷ5 =

θ̂P

− log

Γ
(

1
2 ,
(

xk

θ̂P

)2
)

Γ
(

1
2

) rk − j + 1
rk + 1

− L


M

.

In the following section, the predictive intervals are discussed for failure times of progressively
removed units.

6. PREDICTIVE INTERVALS

In this section, we discuss the predictive intervals (PIs) for Y . Using maximum likeli-
hood theory, an approximately predictive interval for Y can be written by

(6.1)
(
Ŷ − z1−α

2
SE
(
Ŷ
)
, Ŷ + z1−α

2
SE
(
Ŷ
))

,

where SE
(
Ŷ
)

can be found in a similar way in Section 4 by using the negative Hessian matrix
of predictive log-likelihood function (5.1).

Let us consider the pivot (5.2) to construct a new PI for Y . For this purpose, we need
the following lemma.

Lemma 6.1. Suppose that 0 < a1 < a2 < ··· < am < ∞. Then, Wθ(y) is strictly de-

creasing in y for any y > 0. Furthermore, if t > 0, the equation Wθ(y) = t has a unique

solution for any y > 0.

Proof: The proof is similar to the proof of Lemma 4.1 and it is omitted.
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Let β(a) be the a-th quantile of the beta distribution with parameters rk − j + 1 and j.
Then the following theorem gives an exact PI of Y .

Theorem 6.1. An exact 100(1−α)% predictive interval for Y can be constructed by

(6.2)
(
W−1

θ

(
β(1−α/2)

)
,W−1

θ

(
β(α/2)

))
,

where scale parameter θ is known.

Proof: The proof follows by using Lemma 6.1 and Lemma 3.1 in Seo and Kang [22].

Corollary 6.1. When the scale parameter θ is unknown, an approximately 100(1−α)%
predictive interval for Y can be given by

(6.3)
(
W−1

θ̂P

(
β(1−α/2)

)
,W−1

θ̂P

(
β(α/2)

))
,

where θ̂P is PMLE of θ.

However, PIs in (6.2)–(6.3) cannot be obtained explicitly. In the following, we provide
an explicit solution for the PI bounds. Using the pivot in (5.2), we have

1− α ≈ P
(
β(α/2) < Wθ(Y ) < β(1−α/2)

)
= P

(
Γ
(

1
2
,
(xk

θ

)2
)

β(α/2) < Γ

(
1
2
,

(
Y

θ

)2
)

< Γ
(

1
2
,
(xk

θ

)2
)

β(1−α/2)

)

= P

− log

Γ
(

1
2 ,
(

xk
θ

)2)
β(1−α/2)

Γ
(

1
2

)
 < Nθ(Y ) < − log

Γ
(

1
2 ,
(

xk
θ

)2)
β(α/2)

Γ
(

1
2

)
.(6.4)

By substituting (5.5) in (6.4), we have the following corollaries.

Corollary 6.2. An approximately 100(1− α)% predictive interval for Y can be con-

structed by

(6.5)


θ

− log

Γ
(

1
2 ,
(

xk
θ

)2)
β(1−α/2)

Γ
(

1
2

)
− L


M

,

θ

− log

Γ
(

1
2 ,
(

xk
θ

)2)
β(α/2)

Γ
(

1
2

)
− L


M


,

where the scale parameter θ is known.
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Corollary 6.3. When the scale parameter θ is unknown, an approximately 100(1−α)%
predictive interval for Y can be constructed by

(6.6)



θ̂P

− log

Γ
(

1
2 ,
(

xk

θ̂P

)2)
β(1−α/2)

Γ
(

1
2

)
− L


M

,

θ̂P

− log

Γ
(

1
2 ,
(

xk

θ̂P

)2)
β(α/2)

Γ
(

1
2

)
− L


M


.

In the following section, all estimation and prediction methods are compared through
the Monte Carlo simulation.

7. SIMULATION STUDY

In this section, we perform a simulation study to observe the performance of estimators,
predictors, confidence intervals and predictive intervals discussed in Sections 2-6. Several
censoring schemes are used in this study. 5000 trials are used in the simulation. The bias,
variance and mean squared errors (MSEs) of the estimates θ̂, θ̃, θ̃revised, θ

∗, θ∗(a) and θ
∗(a)
revised

are simulated. 100 iteration is performed to reach all the revised estimates. The coverage
probabilities (CPs) and average lengths (ALs) of the CIs given in (4.1)–(4.4) are calculated.
Furthermore, the bias and mean squared prediction errors (MSPEs) of the predictors Ŷ1, Ŷ2,
Ŷ3, Ŷ4 and Ŷ5 are simulated. The CPs and ALs of the PIs given in (6.1), (6.2), (6.3), (6.5)
and (6.6) are also calculated. The nominal value is fixed at α = 0.05 for all CIs and PIs.

In the following tables, the CIs has given in (4.1)–(4.4) are denoted by CI1, CI2, CI3,
CI4 and CI5 respectively. The PIs given in (6.1), (6.2), (6.3), (6.5) and (6.6) are denoted by
PI1, PI2, PI3, PI4 and PI5. A little part of the simulation results are presented in Tables
1–4, and the rest of the tables are included in the supplementary file.

According to Table 1 and the rest of the results in the supplementary file, it is concluded
that θ̂ and θ̃revised have identical MSEs and bias. This result shows that the revised AMLE
tends to MLE. θ∗, θ∗(a) and θ

∗(a)
revised are worse than the others with a slight difference in terms

of MSEs. It is observed that the censoring made at the first stage is a better choice to get
low MSEs. It is also observed from Table 2 that the CI2, CI3 and CI4 have desired CPs even
if small sample cases. However, the CPs of CI1 are not at the desired level for a small sample
case but it reaches to the nominal value for the moderate size of m. It should be pointed out
that CI4 (ULR) has the smallest average length in almost all censoring schemes.

According to Tables 3–4 and the rest of the results in the supplementary file, it is
concluded that as j increases, the MSPEs of all predictors increases whereas the MSPEs of
predictors decrease as k increases. The MSPEs of Ŷ2 and Ŷ4 are the same where Ŷ2 is obtained
by a numerical method and Ŷ4 is obtained explicitly. Then we concluded that Ŷ4 should be
used to predict the Y instead of Ŷ2 when the the θ is known. The MSPEs of Ŷ3 and Ŷ5 are
almost the same where Ŷ3 is obtained by a numerical method and Ŷ5 is obtained explicitly.
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It is concluded that Ŷ5 should be used to predict the Y instead of Ŷ3 when the θ is unknown.
The Ŷ5 has better MSPEs than the Ŷ1 has when the small values of j. This pattern is reversed
for the large values of j.

Table 1: MSEs, bias (in parenthesis) and variances for estimates of the scale parameter (θ̂=1).

n m Censoring Schemes θ̂ eθ eθrevised θ∗ θ∗(a) θ
∗(a)
revised

10 10
�
10∗0

�
0.0487 (−0.0253) 0.0487 (−0.0253) 0.0487 (−0.0253) 0.0565 (−0.1347) 0.0518 (−0.0965) 0.0498 (−0.0799)

0.0480 0.0480 0.0480 0.0384 0.0425 0.0435

20 10
�
10∗1

�
0.0583 (−0.0236) 0.0621 (0.0021) 0.0583 (−0.0236) 0.0654 (−0.1437) 0.0596 (−0.0955) 0.0584 (−0.0838)

0.0577 0.0621 0.0577 0.0448 0.0505 0.0513

10
�
5, 8∗0, 5

�
0.0584 (−0.0238) 0.0600 (−0.0094) 0.0584 (−0.0238) 0.0655 (−0.1440) 0.0588 (−0.0902) 0.0583 (−0.0841)

0.0579 0.0599 0.0579 0.0447 0.0507 0.0513

10
�
5, 5, 8∗0

�
0.0507 (−0.0252) 0.0508 (−0.0230) 0.0507 (−0.0252) 0.0586 (−0.1368) 0.0541 (−0.0986) 0.0519 (−0.0807)

0.0501 0.0503 0.0501 0.0399 0.0443 0.0454

10
�
8∗0, 5, 5

�
0.0689 (−0.0154) 0.07001 (−0.0077) 0.0689 (−0.0154) 0.0724 (−0.1424) 0.0667 (−0.0848) 0.0664 (−0.0799)

0.0687 0.0700 0.0687 0.0522 0.0595 0.0601

10
�
4∗0, 5, 5, 4∗0

�
0.0560 (−0.0237) 0.0562 (−0.0205) 0.0560 (−0.0237) 0.0634 (−0.1415) 0.0591 (−0.1014) 0.0565 (−0.0825)

0.0554 0.0558 0.0554 0.0434 0.0488 0.0497

20
�
20∗0

�
0.0244 (−0.0119) 0.0244 (−0.0119) 0.0244 (−0.0119) 0.0270 (−0.0716) 0.0257 (−0.0496) 0.0250 (−0.0404)

0.0243 0.0243 0.0243 0.0219 0.0232 0.0234

40 20
�
20∗1

�
0.0295 (−0.0113) 0.0326 (0.0137) 0.0295 (−0.0113) 0.0319 (−0.0770) 0.0303 (−0.0497) 0.0298 (−0.0429)

0.0293 0.0325 0.0293 0.0260 0.0278 0.0280

20
�
10, 18∗0, 10

�
0.0296 (−0.0116) 0.0301 (−0.0028) 0.0296 (−0.0116) 0.0319 (−0.0772) 0.0299 (−0.0457) 0.0298 (−0.0431)

0.0294 0.0301 0.0294 0.0259 0.0278 0.0279

20
�
10, 10, 18∗0

�
0.0249 (−0.0119) 0.0250 (−0.0109) 0.0249 (−0.0119) 0.0276 (−0.0722) 0.0263 (−0.0502) 0.0256 (−0.0406)

0.0248 0.0249 0.0248 0.0223 0.0237 0.0239

20
�
18∗0, 10, 10

�
0.0324 (−0.0106) 0.0326 (−0.0068) 0.0324 (−0.0106) 0.0345 (−0.0798) 0.0324 (−0.0460) 0.0323 (−0.0442)

0.0323 0.0325 0.0323 0.0281 0.0303 0.0304

20
�
9∗0, 10, 10, 9∗0

�
0.0281 (−0.0112) 0.0282 (−0.0095) 0.0281 (−0.0112) 0.0307 (−0.0755) 0.0296 (−0.0529) 0.0287 (−0.0420)

0.0279 0.0281 0.0279 0.0250 0.0268 0.0269

50 50
�
50∗0

�
0.0095 (−0.0039) 0.0095 (−0.0039) 0.0095 (−0.0039) 0.0103 (−0.0300) 0.0101 (−0.0206) 0.0100 (−0.0165)

0.0095 0.0095 0.0095 0.0094 0.0097 0.0097

100 50
�
50∗1

�
0.0116 (−0.0038) 0.0143 (0.0178) 0.0116 (−0.0038) 0.0123 (−0.0324) 0.0121 (−0.0209) 0.0120 (−0.0175)

0.0116 0.0140 0.0116 0.0113 0.0117 0.0117

50
�
25, 48∗0, 25

�
0.0116 (−0.0040) 0.0117 (0.0001) 0.0116 (−0.0040) 0.01236 (−0.0325) 0.0119 (−0.0186) 0.0119 (−0.0177 )

0.0116 0.0117 0.0116 0.0113 0.0116 0.0116

50
�
25, 25, 48∗0

�
0.0096 (−0.0039) 0.0096 (−0.0036) 0.0096 (−0.0039) 0.0104 (−0.0301) 0.0102 (−0.0207) 0.0100 (−0.0165)

0.0096 0.0096 0.0096 0.0095 0.0098 0.0098

50
�
48∗0, 25, 25

�
0.0129 (−0.0037) 0.0129 (−0.0021) 0.0129 (−0.0037) 0.0135 (−0.0337) 0.0131 (−0.0187) 0.0131 (−0.0182)

0.0129 0.0129 0.0129 0.0124 0.0128 0.0128

50
�
24∗0, 25, 25, 24∗0

�
0.0110 (−0.0037) 0.0110 (−0.0031) 0.0110 (−0.0037) 0.0118 (−0.0316) 0.0117 (−0.0222) 0.0114 (−0.0171)

0.0110 0.0110 0.0110 0.0108 0.0112 0.0112

Table 2: CPs and ALs of CI for the scale parameter θ̂ at the 0.95 confidence level (θ̂=1).

CPs ALs
n m Censoring Schemes

CI1 CI2 CI3 CI4 CI1 CI2 CI3 CI4

10 10 (10∗0) 0.8988 0.9504 0.9516 0.9464 0.8530 1.0435 0.9810 0.9613

20 10 (10∗1) 0.9014 0.9542 0.9518 0.9512 0.9427 1.1611 1.0788 1.0739

10 (5, 8∗0, 5) 0.8918 0.9514 0.9438 0.9452 0.9417 1.1570 1.0658 1.0731
10 (5, 5, 8∗0) 0.9052 0.9512 0.9540 0.9478 0.8798 1.0793 1.0167 0.9937
10 (8∗0, 5, 5) 0.9010 0.9492 0.9462 0.9460 0.9852 1.2102 1.1193 1.1263
10 (4∗0, 5, 5, 4∗0) 0.8976 0.9490 0.9518 0.9478 0.9236 1.1426 1.0762 1.0492

20 (20∗0) 0.9208 0.9514 0.9488 0.9448 0.6115 0.6791 0.6634 0.6488

40 20 (20∗1) 0.9234 0.9486 0.9490 0.9464 0.6741 0.7504 0.7260 0.7191

20 (10, 18∗0, 10) 0.9266 0.9518 0.9496 0.9510 0.6737 0.7479 0.7188 0.7188
20 (10, 10, 18∗0) 0.9292 0.9488 0.9524 0.9468 0.6194 0.6899 0.6738 0.6576
20 (18∗0, 10, 10) 0.9226 0.9488 0.9488 0.9490 0.7078 0.7852 0.7561 0.7566
20 (9∗0, 10, 10, 9∗0) 0.9252 0.9452 0.9472 0.9454 0.6584 0.7359 0.7196 0.7013

50 50 (50∗0) 0.9368 0.9580 0.9550 0.9530 0.3895 0.4088 0.4068 0.3988

100 50 (50∗1) 0.9374 0.9490 0.9506 0.9490 0.4295 0.4509 0.4458 0.4407

50 (25, 48∗0, 25) 0.9422 0.9508 0.9510 0.9518 0.4306 0.4507 0.4437 0.4418
50 (25, 25, 48∗0) 0.9450 0.9510 0.9546 0.9498 0.3928 0.4128 0.4106 0.4022
50 (48∗0, 25, 25) 0.9346 0.9482 0.9484 0.9476 0.4504 0.4707 0.4637 0.4625
50 (24∗0, 25, 25, 24∗0) 0.9352 0.9500 0.9494 0.9466 0.4167 0.4393 0.4372 0.4273
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The CPs of PI3 and PI5 are at the nominal level for small values of j. When j increases,
CPs of PI3 and PI5 decrease from the nominal level 0.95. It should be pointed out that the as
j increases, CPs are may decrease to 0.88, 0.91 and 0.93 for m = 20, 40 and 100, respectively.
Fortunately, increasing m overcomes the low CPs problem. Also, the PI2 and PI4 keep the
nominal level since the PI2 is an exact predictive interval and PI4 is an approximated version
of PI2 with a Taylor expansion. The CPs of PI1 increase first to the nominal level and then
decrease when the j increases. We conclude that PI3 should be used for small and large
values of j, respectively. PI1 can be used for moderate values of j. That is, if r10 = 10, PI1
may be used to construct the PI of Y , for j = 6, 7, 8, otherwise, PI3 should be used instead
of PI1. As j increases, the ALs of all predictive intervals increase whereas they get smaller
for large values of k. PI1 and PI3 have almost the same AL when they have the same CPs.
PI2 (PI3) has smaller ALs than PI4 (PI5) for all cases discussed here.

Table 3: MSEs, bias (in parenthesis) for Ŷi and CPs [ ], ALs [ ] for PIi
when θ̂=1, m=20, r=(5,5,...,5).

CSs k j Ŷ1 [PI1] Ŷ2 [PI2] Ŷ3 [PI3] Ŷ4[PI4] Ŷ5 [PI5]

(5*m) k=5 j=2 0.0437 (−0.1042) 0.0329 (−0.0070) 0.0365 (−0.0109) 0.0329 (−0.0070) 0.0365 (−0.0109)
CPs [0.8898] [0.9518] [0.9324] [0.9296] [0.9118]
ALs [0.6862] [0.6940] [0.6848] [0.7609] [0.7503]

j=3 0.0631 (−0.0940) 0.0544 (−0.0273) 0.0642 (−0.0307) 0.0544 (−0.0273) 0.0642 (−0.0307)
CPs [0.9184] [0.9478] [0.9124] [0.9302] [0.9010]
ALs [0.8560] [0.8778] [ 0.8713] [0.9589] [0.9513]

j=4 0.0907 (−0.0879) 0.0837 (−0.0502) 0.1014 (−0.0555) 0.0837 (−0.0502) 0.1014 (−0.0555)
CPs [0.9262] [0.9486] [0.9078] [0.9348] [0.9086]
ALs [1.1337] [1.0959] [1.0871] [1.2107] [1.2005]

j=5 0.1785 (−0.1140) 0.1737 (−0.1392) 0.2122 (−0.1444) 0.1737 (−0.1392) 0.2123 (−0.1444)
CPs [0.9244] [0.9490] [0.9012] [0.9458] [0.9172]
ALs [1.7537] [1.5142] [1.5060] [1.7623] [1.7522]

k=10 j=2 0.0429 (−0.1079) 0.0313 (−0.0127) 0.0350 (−0.0144) 0.0313 (−0.0127) 0.0350 (−0.0143)
CPs [0.8786] [0.9538] [0.9324] [0.9358] [0.9170]
ALs [0.6404] [0.6712] [0.6673] [0.7336] [0.7279]

j=3 0.0592 (−0.0947) 0.0505 (−0.0276) 0.0598 (−0.0313) 0.0505 (−0.0276) 0.0598 (−0.0312)
CPs [0.9156] [0.9476] [0.9184] [0.9374] [0.9122]
ALs [0.8970] [0.8548] [0.8480] [0.9322] [0.9232]

j=4 0.0913 (−0.0989) 0.0833 (−0.0594) 0.1022 (−0.0660) 0.0833 (−0.0594) 0.1022 (−0.0660)
CPs [0.9230] [0.9480] [0.9072] [0.9398] [0.9082]
ALs [1.0754] [1.0738] [1.0630] [1.1846] [1.1713]

j=5 0.1719 (−0.1189) 0.1664 (−0.1390) 0.2071 (−0.1518) 0.1664 (−0.1390) 0.2071 (−0.1517)
CPs [0.9294] [0.9516] [0.9120] [0.9454] [0.9170]
ALs [1.3226] [1.4936] [1.4737] [1.7355] [1.7109]

k=15 j=2 0.0389 (−0.1030) 0.0283 (−0.0105) 0.0319 (−0.0130) 0.0283 (−0.0105) 0.0319 (−0.0217)
CPs [0.8746] [0.9480] [0.9266] [0.9301] [0.9082]
ALs [0.6047] [0.6382] [0.6325] [0.6942] [0.6857]

j=3 0.0561 (−0.0936) 0.0475 (−0.0265) 0.0567 (−0.0306) 0.0475 (−0.0265) 0.0567 (−0.0303)
CPs [0.9132] [0.9476] [0.9140] [0.9336] [0.9042]
ALs [0.7431] [0.8203] [0.8129] [0.8919] [0.8813]

j=4 0.0860 (−0.0978) 0.0779 (−0.0579) 0.0962 (−0.0626) 0.0779 (−0.0579) 0.0962 (−0.0624)
CPs [0.9248] [0.9482] [0.9106] [0.9410] [0.9086]
ALs [1.0573] [1.0395] [1.0321] [1.1441] [1.1333]

j=5 0.1550 (−0.0988) 0.1508 (−0.1202) 0.1866 (−0.1280) 0.1508 (−0.1202) 0.1866 (−0.1278)
CPs [0.9336] [0.9514] [0.9112] [0.9444] [0.9160]
ALs [1.4495] [1.4608] [1.4490] [1.6924] [1.6756]
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Table 4: MSEs, bias (in parenthesis) for Ŷi and CPs [ ], ALs [ ] for PIi
when θ̂=1, m=20, r=(10,10,...,10).

CSs k j Ŷ1 [PI1] Ŷ2 [PI2] Ŷ3 [PI3] Ŷ4[PI4] Ŷ5 [PI5]

(10*m) k=5 j=2 0.0151 (−0.0671) 0.0105 (−0.0023) 0.0172 (−0.0018) 0.0105 (−0.0013) 0.0117 (−0.0018)
CPs [0.8540] [0.9528] [0.9360] [0.9404] [0.9220]
ALs [0.3494] [0.3881] [0.3893] [0.4114] [0.4124]

j=3 0.0193 (−0.0589) 0.0159 (−0.0048) 0.0184 (−0.0061) 0.0159 (−0.0048) 0.0184 (−0.0060)
CPs [0.9040] [0.9496] [0.9218] [0.9354] [0.9130]
ALs [0.4719] [0.4746] [0.4721] [0.5005] [0.4976]

j=4 0.0224 (−0.0509) 0.0199 (−0.0055) 0.0245 (−0.0175) 0.0199 (−0.0055) 0.0245 (−0.0075)
CPs [0.9310] [0.9488] [0.9170] [0.9418] [0.9110]
ALs [0.5689] [0.5484] [0.5450] [0.5763] [0.5725]

j=5 0.0284 (−0.0488) 0.0261 (−0.0111) 0.0338 (−0.0130) 0.0261 (−0.0111) 0.0338 (−0.0130)
CPs [0.9344] [0.9438] [0.8986] [0.9356] [0.8926]
ALs [0.6365] [0.6174] [0.6147] [0.6479] [0.6447]

j=6 0.0343 (−0.0478) 0.0320 (−0.0169) 0.0439 (−0.0222) 0.0320 (−0.0169) 0.0439 (−0.0222)
CPs [0.9344] [0.9500] [0.8900] [0.9420] [0.8898]
ALs [0.6699] [0.6886] [0.6815] [0.7229] [0.7152]

j=7 0.0409 (−0.0465) 0.0389 (−0.0230) 0.5556 (−0.0293) 0.0389 (−0.0230) 0.05556 (−0.0293)
CPs [0.9426] [0.9512] [0.8878] [0.9414] [0.8894]
ALs [0.7445] [0.7692] [0.7616] [0.8104] [0.8021]

j=8 0.0539 (−0.0536) 0.0516 (−0.0407) 0.0780 (−0.0420) 0.0516 (−0.0407) 0.0780 (−0.0420)
CPs [0.9346] [0.9512] [0.8764] [0.9482] [0.8766]
ALs [0.8408] [0.8733] [0.8719] [0.9276] [0.9257]

j=9 0.0754 (−0.0553) 0.0731 (−0.0594) 0.1128 (−0.0641) 0.0731 (−0.0594) 0.1128 (−0.0641)
CPs [0.9420] [0.9526] [0.8710] [0.9432] [0.8798]
ALs [1.0038] [1.0361] [1.0310] [1.1206] [1.1148]

j=10 0.1513 (−0.0698) 0.1538 (−0.1347) 0.2165 (−0.1382) 0.1538 (−0.1347) 0.2170 (−0.1379)
CPs [0.9348] [0.9480] [0.8738] [0.9482] [0.8800]
ALs [1.5188] [1.4091] [1.4053] [1.6079] [1.6033]

k=10 j=2 0.0137 (−0.0634) 0.0097(0.0001) 0.0108 (−0.0011) 0.0097(0.0001) 0.0108 (−0.0010)
CPs [0.8544] [0.9542] [0.9370] [0.9398] [0.9258]
ALs [0.3423] [0.3792] [0.3762] [0.4013] [0.3975]

j=3 0.0182 (−0.0604) 0.0146 (−0.0070) 0.0172 (−0.0081) 0.0146 (−0.0070) 0.0172 (−0.0080)
CPs [0.9050] [0.9540] [0.9246] [0.9454] [0.9162]
ALs [0.4557] [0.4647] [0.4626] [0.4895] [0.4866]

j=4 0.0222 (−0.0539) 0.0193 (−0.0089) 0.0244 (−0.0102) 0.0193 (−0.0089) 0.0244 (−0.0101)
CPs [0.9266] [0.9542] [0.9162] [0.9468] [0.9138]
ALs [0.5367] [0.5381] [0.5359] [0.5651] [0.5621]

j=5 0.0284 (−0.0509) 0.0258 (−0.0132) 0.0343 (−0.0142) 0.0258 (−0.0132) 0.0343 (−0.0142)
CPs [0.9328] [0.9462] [0.9016] [0.9394] [0.8958]
ALs [0.5935] [0.6073] [0.6059] [0.6369] [0.6346]

j=6 0.0333 (−0.0476) 0.0310 (−0.0164) 0.0435 (−0.0217) 0.0310 (−0.0164) 0.0435 (−0.0217)
CPs [0.9366] [0.9524] [0.8880] [0.9416] [0.8860]
ALs [0.7046] [0.6787] [0.6716] [0.7122] [0.7043]

j=7 0.0401 (−0.0466) 0.0379 (−0.0232) 0.0553 (−0.0268) 0.0379 (−0.0232) 0.0553 (−0.0268)
CPs [0.9422] [0.9546] [0.8890] [0.9462] [0.8856]
ALs [0.7768] [0.7597] [0.7554] [0.8000] [0.7949]

j=8 0.0535 (−0.0557) (0.0511)-0.0418 (0.0769)-0.0458 0.0511 (−0.0418) 0.0769 (−0.0458)
CPs [0.9348] [0.9554] [0.8762] [0.9512] [8784]
ALs [0.8871] [0.8643] [0.8598] [0.9176] [0.9121]

j=9 0.0751 (−0.0599) 0.0736 (−0.0635) 0.1106 (−0.0687) 0.0736 (−0.0635) 0.1106 (−0.0687)
CPs [0.9340] [0.9498] [0.8758] [0.9474] [0.8808]
ALs [1.1053] [1.0274] [1.0217] [1.1106] [1.1037]

j=10 0.1401 (−0.0639) 0.1413 (−0.1266) 0.2050 (−0.1345) 0.1413 (−0.1266) 0.2054 (−0.1343)
CPs [0.9372] [0.9528] [0.8748] [0.9482] [0.8874]
ALs [1.3007] [1.4006] [1.3915] [1.5969] [1.5859]

k=15 j=2 0.0129 (−0.0611) 0.0092(0.0004) 0.0103 (−0.0005) 0.0092(0.0004) 0.0103 (−0.0004)
CPs [0.8506] [0.9516] [0.9282] [0.9340] [0.9168]
ALs [0.3302] [0.3653] [0.3629] [0.3856] [0.3819]

j=3 0.0174 (−0.0580) 0.0140 (−0.0056) 0.0166 (−0.0079) 0.0140 (−0.0056) 0.0166 (−0.0077)
CPs [0.8992] [0.9476] [0.9184] [0.9394] [0.9144]
ALs [0.4316] [0.4496] [0.4451] [0.4727] [0.4670]

j=4 0.0221 (−0.0569) 0.0189 (−0.0122) 0.0237 (−0.0144) 0.0189 (−0.0122) 0.0237 (−0.0143)
CPs [0.9192] [0.9444] [0.9056] [0.9380] [0.9044]
ALs [0.5284] [0.5224] [0.5187] [0.5479] [0.5427]

j=5 0.0253 (−0.0499) 0.0229 (−0.0124) 0.0300 (−0.0142) 0.0229 (−0.0124) 0.0300 (−0.0141)
CPs [0.9348] [0.9536] [0.9032] [0.9438] [0.9034]
ALs [0.6051] [0.5915] [0.5891] [0.6198] [0.6159]

j=6 0.0322 (−0.0528) 0.0295 (−0.0216) 0.0418 (−0.0256) 0.0295 (−0.0216) 0.0418 (−0.0255)
CPs [0.9328] [0.9528] [0.8858] [0.9464] [0.8888]
ALs [0.6727] [0.6632] [0.6579] [0.6955] [0.6887]

j=7 0.0400 (−0.0496) 0.0378 (−0.0254) 0.0549 (−0.0329) 0.0378 (−0.0254) 0.0549 (−0.0328)
CPs [0.9356] [0.9474] [0.8764] [0.9410] [0.8788]
ALs [0.7739] [0.7448] [0.7358] [0.7839] [0.7734]

j=8 0.0497 (−0.0466) 0.0479 (−0.0329) 0.0718 (−0.0364) 0.0479 (−0.0329) 0.0718 (−0.0363)
CPs [0.9424] [0.9486] [0.8852] [0.9432] [0.8864]
ALs [0.8077] [0.8496] [0.8458] [0.9014] [0.8961]

j=9 0.0734 (−0.0581) 0.0715 (−0.0619) 0.1099 (−0.0646) 0.0715 (−0.0619) 0.1099 (−0.0645)
CPs [0.9378] [0.9514] [0.8686] [0.9474] [0.8682]
ALs [0.9801] [1.0135] [1.0107] [1.0947] [1.0902]

j=10 0.1332 (−0.0635) 0.1367 (−0.1266) 0.1952 (−0.1327) 0.1367 (−0.1266) 0.1956 (−0.1324)
CPs [0.9426] [0.9556] [0.8858] [0.9504] [0.8916]
ALs [1.4331] [1.3869] [1.3801] [1.5792] [1.5699]
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8. ILLUSTRATIVE EXAMPLE

The real dataset represents the survival times of 121 patients with breast cancer ob-
tained from a large hospital in a period from 1929 to 1938 in Lee [14]. For the complete data,
the parameter estimation of the θ is obtained by ML methodology. The likelihood values,
MLE of θ with the standard error, some goodness of fit tests such as Anderson-Darling (A),
Cramer-von Mises (W) and Kolmogrov-Smirnov(K) test statistic, and corresponding p values
(in parentheses) are given in Table 5. HN plot is also presented in Figure 2 which indicates
the possibility to model for breast cancer data. In addition, since the p-values for the good-
ness of fit tests reported in Table 5 are greater than 0.05, the hypothesis that the data comes
from the HN distribution cannot be rejected at a significance level 0.05.

Table 5: Some results for survival times of 121 patients data when complete data.

` A W K θ̂ SE

−579.4310 0.6606 0.0896 0.0548 82.2258 5.2856
(0.5922) (0.6388) (0.8596)
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Figure 2: Half-Normal plot for the real data.

Let us censoring the complete data with scheme r =

109 times “0”︷ ︸︸ ︷
109 ∗ 0 , 5, 5

. Then the

progressively censored data is produced by: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5,
8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8,
17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2,
29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0,
40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0,
51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0,
67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 129.0.
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Using this progressively censored data, θ̂, θ̃, θ̃revised, θ∗, θ∗(a) and θ
∗(a)
revised give the estimates

87.1066, 97.7986, 87.1079, 84.9575, 85.1070 and 85.5067 respectively. CI1, CI2,CI3 and CI4
are also calculated as (75.3322, 98.8810), (75.7754, 99.3832), (74.9352, 98.5545) and (76.5309,
97.1066). Using this progressively censored data, predictions and predictive intervals are given
in Table 6.

Table 6: PMLEs, MLPs and PIs for the first real data.

k j Yj θ̂P Ŷ1 Ŷ3 Ŷ5 PI1 PI3 PI5

110 2 117 88.1947 117.5966 120.3328 121.6912 (101.1574, 134.0358) (110.5625, 141.9586) (110.9140, 147.9162)
3 125 88.4368 128.4170 128.0046 129.1463 (102.7937, 154.0403) (113.5498, 157.2334) (113.6089, 164.7992)
4 129 88.7842 140.7604 138.3815 139.2926 (106.9345, 174.5862) (118.4837, 179.0106) (118.5047, 189.3842)
5 139 89.3816 160.4515 155.1442 155.7899 (112.6896, 208.2134) (127.2086, 222.6391) (127.6536, 241.9852)

111 2 111 88.7016 136.7600 139.1889 140.9083 (121.8496, 151.6704) (130.3967, 158.9649) (131.0636, 164.8641)
3 126 88.9844 146.1106 146.1730 147.6439 (123.2522, 168.9689) (133.0780, 173.1843) (133.3209, 180.5102)
4 127 89.3725 158.1813 155.712 156.9107 (126.6520, 189.7105) (137.5327, 193.7159) (137.5481, 203.5679)
5 154 89.9751 175.3795 171.2774 172.1548 (131.3465, 219.4126) (145.4661, 235.4339) (145.6123, 253.4672)

9. CONCLUDING REMARKS

This study addresses the problem of estimating the scale parameter of HN distribution
under progressively Type-II censoring. An approximate maximum likelihood, pivotal type
and approximate pivotal type estimators (predictors) are derived and confidence intervals
(predictors) are constructed for the scale parameter. The performance of the derived esti-
mators (predictors) is compared under different censoring schemes. In addition, a numerical
example is presented. It is concluded that under progressive Type-II censoring, the above-
mentioned estimators (predictors) and CIs (PIs) can be used in HN distribution and they
are competitive with the MLEs (PMLEs). Furthermore, some of our estimators (predictors)
are explicitly obtained unlike MLEs (PMLEs). Considering several methods and proving
their superior performances with different criterias, this study contributes to estimation and
prediction problems in different ways.
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