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esteban.carcamo@alumnos.uv.cl

Carolina Marchant
– Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
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212 E. Cárcamo, C. Marchant, G. Ibacache-Pulgar and V. Leiva

1. INTRODUCTION

Semi-parametric structures are a powerful tool in statistical modeling when incorporat-
ing covariates that can contribute parametrically or nonparametrically in the model [20, 21].
The Birnbaum–Saunders (BS) distribution has received considerable attention in recent years,
due to its theoretical arguments associated with cumulative damage processes, its properties,
and its relation with the normal distribution. Specifically, the amount of cumulative damage
that allows the BS distribution to be generated is assumed to follow a normal distribution.
The BS model corresponds to a unimodal, positively skewed, two-parameter distribution and
with support in the positive real numbers. The BS distribution has its genesis from engi-
neering, but it has been also mathematically justified and applied to solve environmental
problems [7, 8, 28, 31, 35, 40, 48].

Extensive work has been done on different aspects with regard to the BS distribu-
tion during the last two decades. The main addressed topics are related to mathematical
and statistical properties of this distribution, point and interval estimation with classical or
Bayesian methods, hypothesis testing, log-linear and non-linear regression models, random
number generators, development of packages in the R software, generalizations and reparam-
eterizations, multivariate versions, and extensions to temporal and spatial modeling; for a
recent and detailed review on these issues, see [3, 30].

A new parameterization of the BS (RBS) distribution stated in [46, 47] is based on its
mean and precision parameters. By using this parametrization, a type of generalized linear
model (GLM) was formulated in [27] based on the BS distribution although this does not
belong to the exponential family. Such a formulation permits us to model the mean and
variance simultaneously, maintaining the original scale of the data with no transformations
on the modeled variable, because it is well known that transformations reduce interpretability.
Statistical modeling based on BS distributions has considerably attracted the attention of a
number of researchers; see, for example, [10, 32, 42, 49]. To the best of our knowledge, no
semi-parametric models based on the RBS distribution have been derived until now in the
literature.

Diagnostic analytics is an important step to be considered in all data modeling. Diag-
nostics can be conducted by goodness-of-fit techniques, residual analysis, and global/local
influence methods. Goodness-of-fit methods allow us to assess the adequacy of a model to
a data set. Residual analysis is a helpful tool for evaluating the fit of a statistical model.
Several types of residuals for BS regressions were proposed in [27, 29], stating by simulations
which of them has better performance. Global influence techniques remove cases and evaluate
their effect on the fitted model. Local influence was proposed in [9] and permits us to detect
the effect of perturbations on the estimates of model parameters. Local influence methods
for RBS regression models were derived in [27] by calculating the normal curvatures under
different perturbation schemes. To the best of our knowledge, no diagnostic analytics in
semi-parametric additive models (SAM) based on BS distributions have been considered in
the literature at present.

Our main objective is to formulate a novel RBS semi-parametric additive regression
model (RBS-SAM). This semi-parametric model enables us to describe the mean and variance
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simultaneously. Our secondary objectives are:

(i) to estimate the model parameters with the maximum penalized likelihood (MPL)
method and a back-fitting algorithm;

(ii) to describe the nonparametric structure with cubic smoothing splines;

(iii) to derive local influence for model diagnostics by calculating the normal curva-
tures under different perturbations;

(iv) to implement the obtained results in the R software;

(v) to apply the results to real data associated with pollutant contents in Santiago
of Chile — one of the most polluted cities in the world [33, 8, 40].

These data were secured from the website of the Chilean Ministry of Environment. Our
numerical illustrations were developed with the R software [41].

The application presented in this study is motivated by the fact that inclusion of non-
parametric functions greatly enhances the modeling when accommodating non-linear effects
of covariates [21, 20]. These covariates correspond in our case to contents of pollutants and
meteorological variables as atmospheric pressure, precipitation, relative humidity, tempera-
ture, and wind speed [40]. Semi-parametric estructures have been successfully used to model
non-linear components [23]. In addition, the application considered in the present study is
supported by theoretical arguments that permit us to justify the use of BS distributions for
describing environmental data. This argumentation was formalized in [28] employing a novel
mathematical model for environmental sciences based on physical laws.

This article is organized as follows. Section 2 provides an overview of BS distributions,
introduces the RBS-SAM, and considers a penalized log-likelihood function for parameter
estimation. In Section 3, we obtain the MPL estimators, use a back-fitting algorithm, derive
the penalized score vector and Hessian matrix, determine the degrees of freedom, select the
smoothing parameter, and conduct inference for the corresponding parameters. In Section 4,
the main concepts of local influence and the derivation of normal curvatures for some pertur-
bation schemes are presented. Section 5 introduces the empirical application of the proposed
model to an environmental data set. In Section 6, some concluding remarks and ideas for
future research are given.

2. PARAMETRIC SPECIFICATION AND NONPARAMETRIC COMPONENT

In this section, an overview of BS distributions, the RBS-SAM structure, and the
corresponding penalized log-likelihood function for parameter estimation are stated.

2.1. The BS distribution and related models

Next, we present the traditional BS distribution and related models. If a random vari-
able Y ∗ is BS distributed with shape (α> 0) and scale (β > 0) parameters, we employ the nota-
tion Y ∗∼ BS(α, β). Note that Z = (1/α)((Y ∗/β)1/2− (β/Y ∗)1/2) ∼ N(0, 1) if Y ∗∼ BS(α, β).
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Hence, each BS distributed random variable Y ∗ may be obtained as a transformation of a
standard normal distributed random variable Z by means of

(2.1) Y ∗ = β

αZ
2

+

√(
αZ

2

)2

+ 1

2

.

Note from the formula stated in (2.1) that the quantile function or 100q-th quantile of the
BS distribution is directly generated as

(2.2) y∗(q;α, β) = β

αz(q)
2

+

√(
αz(q)

2

)2

+ 1

2

, 0 < q ≤ 1,

where z(q) is the 100q-th quantile of the standard normal distribution. We observe that, if q =
0.5, then z(0.5) = 0, which corresponds to the mean, median and mode of Z ∼ N(0, 1). Thus,
from the quantile function defined in (2.2), we have that y∗(0.5;α, β) = β, which confirms
that the scale parameter β > 0 is also the BS median. The expression given in (2.1) is used
for generating random numbers of the BS distribution and also for deriving goodness-of-fit
tools associated with this distribution.

Let Y ∗∼ BS(α, β). Then, the probability density function of Y ∗ is stated as

fY ∗(y;α, β) =
1√
2π

exp
(
− 1

2α2

(
y

β
+
β

y
− 2
))

1
2αβ

((
y

β

)−1/2

+
(
y

β

)−3/2
)
,(2.3)

for y,α,β > 0. Properties of Y ∗∼BS(α, β) are: bY ∗∼BS(bα, β), with b>0; 1/Y ∗∼BS(α, 1/β).
Also, the mean and variance of Y ∗ are E(Y ∗) = β(1 +α2/2) and Var(Y ∗) = β2α2(1 + 5α2/4).

It is worth noting that diverse models related to the BS distribution have been derived.
The probability density function formulated in (2.3) corresponds to the traditional BS dis-
tribution and this is quite flexible. However, new versions of the BS distribution have been
proposed with different properties and shapes even more flexible. For some recent works on
these new versions and their mathematical and statistical features, the interested reader is re-
ferred to [2] for a mixture Birnbaum–Saunders distribution with applications in biomedicine;
to [1] for skew BS distributions with illustrations in fatigue of materials; to [5] for a transmuted
BS distribution with examples in problems of engineering and medicine; to [36, 37, 38, 45]
for unit and quantile BS distributions considering applications in economy, medicine and
politics; to [43] for a bimodal BS distribution with illustrations using environmental and
medical data; and to [13] for a BS-gamma distributed claim size applied to insurance.

2.2. RBS distribution

The RBS distribution is a novel model related to the traditional BS case, based on the
parameters µ, δ > 0, where µ is a scale parameter and the distribution mean, whereas δ is
a shape and precision parameter. In this case, the notation Y ∼ RBS(µ, δ) is used. Based
on this reformulation of the BS distribution, the probability density function of the random
variable Y ∼ RBS(µ, δ) is given by

(2.4) fY (y;µ, δ) =
exp(δ/2)

√
δ + 1

4 y3/2√πµ

(
y +

δµ

δ + 1

)
exp
(
−δ

4

(
y(δ + 1)
δµ

+
δµ

y(δ + 1)

))
,
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where y, µ, δ > 0. The mean and variance of Y are stated as E(Y ) = µ and Var(Y ) = µ2/φ,
respectively, with φ = (δ + 1)2/(2δ + 5) so that, as mentioned, δ is a precision parameter.
Note that, for fixed values of µ, Var(Y ) → 0 as δ →∞, but if δ → 0, then Var(Y ) → 5µ2. In
addition, Var(Y ) is similar to the variance of the gamma distribution, which has a quadratic
relation with its mean. It is also possible to show that b Y ∼ RBS(b µ, δ), with b > 0, and
1/Y ∼ RBS(µ∗, δ), where µ∗ = (δ + 1)/(δµ).

2.3. Modeling

Let Y = (Y1, ..., Yn)> be independent random variables, where Yi ∼ RBS(µi, δ), for i ∈
{1, ..., n}, and y = (y1, ..., yn)> are the corresponding observations of Y . Then, we define the
RBS-SAM structure based on (2.4) by the systematic component expressed as

(2.5) h(µi) = ηi = x>i β + f1(t1i) + ···+ fs(tsi), i ∈ {1, ..., n},

or, equivalently,

(2.6) h(µi) = x>i β + n>1i
f1 + ···+ n>si

fs,

where x>i = (1, xi2 , ..., xip) is the i-th row of observed values for the covariates matrix X and
β = (β1, ..., βp)> is a vector of regression parameters to be estimated. In addition, n>ki

denotes
the i-th row of the incidence matrix Nk, whose (i, l)-th element is equal to the indicator
function 1 (tki

= t0kl
);fk = (ξk1 , ..., ξkrk

)> is an rk×1 vector such that ξkj
= fk(t0kj

), where fk
is an arbitrary unidimensional (scalar) smooth function that quantifies the effect of the k-th
covariate tk for k ∈ {1, ..., s} (note that fk is different from the vector fk above defined);
and t0kj

, for l ∈ {1, ..., rk}, are the distinct and ordered values of the covariate tk. Note that
the model stated in (2.5) is formed by both parametric and nonparametric components. In
effect, for p < n, x>i β is the parametric component of the model and n>1i

f1 + ···+n>si
fs is the

corresponding nonparametric component. In matrix terms, (2.6) can be written as h(µ) =
Xβ +N1f1 + ···+Nsfs, where µ = (µ1, ..., µn)> and µi = h−1(x>i β +n>1i

f1 + ···+n>si
fs),

for i ∈ {1, ..., n}, with h−1 being the inverse of the link function h: R R+, which is strictly
monotone, positive, and at least twice differentiable; for example, h(µ) = log(µ) or h(µ) =

√
µ.

Formally, in the RBS-SAM, we have that Var(Yi) is a function of µi and, consequently,
of the covariates xi. Then, because we are modeling the mean based on a particular structure,
we are also modeling the variance due to Var(Yi) = µ2

i /φ. Therefore, problems where a non-
constant variance is present could be analyzed by using this model as well.

2.4. Penalized likelihood function

The RBS-SAM log-likelihood function defined in (2.5) for θ = (β>,f>1 , ...,f
>
s , δ)

>

is given by

(2.7) `(θ) =
n∑
i=1

`i(µi, δ; yi),
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where

`i(µi, δ; yi) =
δ

2
− log(16π)

2
− 1

2
log
(

(δ + 1)y3
i µi

(δ yi + yi + δµi)2

)
− yi(δ + 1)

4µi
− δ2µi

4(δ + 1)yi
.

To avoid the problem of overfitting and non-identification of the parameter β, we can incor-
porate a penalty term in the log-likelihood function of the model, denoted here by J(fk),
on each smooth function fk, with fk belonging to the Sobolev function space defined as
W(2)

2 ≡ {fk: f
(1)
k , f

(2)
k ∈ L2[ak, bk]}, where fk is an absolutely continuous function and

f
(2)
k (tk) = d2fk(tk)/dt2k. Therefore, in our case, the log-likelihood function given in (2.7)

is now expressed as a penalized function stated by

`p(θ, λ1, ..., λs) = `(θ) +
s∑

k=1

λ∗kJ(fk),(2.8)

where λk is a constant that depends on the smoothing parameter λk ≥ 0 that controls the
trade-off between goodness-of-fit and the selected smoothness functions.

Different types of penalties have been proposed depending on the method to fit the
nonparametric curves. We consider, as a measure of the curvature of the functions, the
formula established as

(2.9) J(fk) =
∫ bk

ak

f
(2)
k (tk)2dtk.

The first term on the right side of (2.8) measures the goodness of fit, whereas the second term,
defined by (2.9), penalizes the roughness of each fk with a fixed parameter λk. In this case,
the selection of fk leads to a cubic spline with knots at the points t0kl

, that is, this is a third
degree polynomial partitioned on each interval [tkl

, tkl+1
], for l ∈ {1, ..., rk − 1}. According to

[14], J(fk) can be written as J(fk) = f>k Kkfk, where Kk is an rk × rk non-negative-definite
matrix that depends only on the knots t0k. Then, if we consider λ∗k = −λk/2, the penalized
log-likelihood function given in (2.8) may be expressed as

(2.10) `p(θ,λ) = `(θ)−
s∑

k=1

λk
2
f>k Kkfk,

where λ = (λ1, ..., λs)> denotes an s× 1 vector of smoothing parameters. Note that an essen-
tial aspect of the semi-parametric modeling process is related to the selection of smoothing
parameters. In the literature there are several efficient methods of selection, among which
cross validation, generalized cross validation, Akaike information criterion (AIC) and mean
average squared error can be mentioned.

3. PARAMETERS ESTIMATION AND INFERENCE

In this section, we discuss the process of obtaining MPL estimators, as well as the
derivation of a back-fitting algorithm, the penalized score vector, the penalized Hessian
matrix, the determination of degrees of freedom, the selection of the smoothing parameter,
and the corresponding statistical inference.
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3.1. Penalized score function

Assuming that the function given in (2.10) is regular with respect to β, f1, ...,fs and
δ, we have that the penalized score function vector of θ is stated as

Up(θ) =
∂`p(θ,λ)

∂θ
=


Uβ

p (θ)
Uf1

p (θ)
...

Ufs
p (θ)

U δp(θ)

,

whose elements of the vector have the form Uβ
p (θ) =X>Daz,U

fk
p (θ) =N>

k Daz−λkKkfk,
for k ∈ {1, ..., s}, and U δp(θ) = tr

(
Db

)
, where Da = diag{a1, ..., an} and Db = diag{b1, ..., bn}

are n× n matrices, while z = (z1, ..., zn)>, with

zi = − 1
2µi

+
δ

(δ yi + yi + δµi)
+
yi(δ + 1)

4µi2
− δ2

4yi(δ + 1)
,

bi =
1
2
− 1

2(δ + 1)
+

(yi + µi)
(δ yi + yi + δµi)

− yi
4µi

− δ(δ + 2)µi
4(δ + 1)2yi

, ai =
1

h′(µi)
,(3.1)

where h′ is the derivative of h. In the RBS-SAM context, the MPL estimators of the model
parameters cannot be obtained in an explicit form and need to be calculated by solving
a non-linear equation. The Fisher scoring method was used in [27] to estimate the RBS
regression parameters. We propose to adjust the RBS-SAM by combining the proposals
given in [21, 27] to jointly determine the regression coefficients, the smooth functions, and
the precision parameter based on penalized likelihood criterion.

3.2. Penalized Hessian and information matrix

Let ῭
p(θ) be the p∗ × p∗ penalized Hessian matrix with its (j∗, l∗)-th element being

given by ∂2`p(θ,λ)/∂θj∗θl∗ , for j∗, l∗ ∈ {1, ..., p∗} and p∗ = 1 + p+
∑s

k=1 rk. After algebraic
manipulation, we find that the corresponding penalized Hessian matrix has the form

῭
p(θ) =

∂2`p(θ,λ)
∂θ∂θ>

=



῭ββ
p (θ) ῭βf1

p (θ) ··· ῭βfs
p (θ) ῭βδ

p (θ)
῭βf>1
p (θ) ῭f1f1

p (θ) ··· ῭f1fs
p (θ) ῭f1δ

p (θ)
...

...
. . .

...
...

῭βf>s
p (θ) ῭f1f>s

p (θ) ··· ῭fsfs
p (θ) ῭fsδ

p (θ)
῭βδ
p (θ) ῭f1δ

p (θ) ··· ῭fsδ
p (θ) ῭δδ

p (θ)

,(3.2)

whose elements of the matrix can be written as

῭ββ
p (θ) = X>DcX, ῭βfk

p (θ) = X>DcNk, k ∈ {1, ..., s},
῭βδ
p (θ) = X>Dam, ῭fkδ

p (θ) = N>
k Dam, ῭δδ

p (θ) = tr(Dd),

῭fkf
k
′

p (θ) =


−N>

k DcNk − λkKk, k = k
′
,

N>
k DcNk

′ , k 6= k
′
,
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whereDa = diag{a1, ...,an},Dc = diag{c1, ..., cn},Dd = diag{d1, ..., dn}, andm= (m1, ...,mn)>,
with ai being stated as in (3.1) and

ci =
∂2`i(µi, δ)

∂µ2
i

(
dµi
dηi

)2

+
∂`i(µi, δ)
∂µi

(
∂

∂µi

dµi
dηi

)
dµi
dηi

,

di =
1

2(δ + 1)2
− (yi + µi)2

(δ yi + yi + δµi)2
− µi

2(δ + 1)3yi
,

mi =
yi

(δ yi + yi + δµi)2
+

yi
4µ2

i

− δ(δ + 2)
4(δ + 1)2yi

, i ∈ {1, ..., n}.

In addition, calculating the expectation of the matrix − ῭
p(θ) given in (3.2), we obtain the

p∗ × p∗ penalized expected information matrix expressed as

Ip(θ) =



Iββ
p (θ) Iβf1

p (θ) ··· Iβfs
p (θ) Iβδ

p (θ)

Iβf>1
p (θ) If1f1

p (θ) ··· If1fs
p (θ) If1δ

p (θ)
...

...
. . .

...
...

Iβf>s
p (θ) If1f>s

p (θ) ··· Ifsfs
p (θ) Ifsδ

p (θ)
Iβδ

p (θ) If1δ
p (θ) ··· Ifsδ

p (θ) Iδδp (θ)

,(3.3)

where each element of the matrix can be written as

Iββ
p (θ) = X>DvX, Iβfk

p (θ) = X>DvNk, k ∈ {1, ..., s},
Iβδ

p (θ) = X>Das, Ifkδ
p (θ) = N>Das, Iδδp (θ) = tr(Du),

I
fkf

k
′

p (θ) =


N>
k DvNk + λkKk, k = k

′
,

N>
k DvNk′ k 6= k

′
,

with Dv = diag{v1, ..., vn}, Du = diag{u1, ..., un} and s = (s1, ..., sn)>, considering

vi =
δa2
i

2µ2
i

+
δ2a2

i

(δ+1)2
J (θ), ui =

(δ2 +3δ+1)
2δ2(δ+1)2

+
µ2
i

(δ+1)4
J (θ), si =

1
2µi(δ+1)

+
δµi

(δ+1)3
J (θ),

for i ∈ {1, ..., n}, where

J (θ) = E

((
Y +

µδ

(δ + 1)

)−2
)

=
∫ ∞

0

√
δ + 1 exp(δ/2)
4
√
πµy3/2

(
y +

δµ

δ + 1

)−2

exp

(
− δ

4

(
(δ + 1)y
δµ

+
δµ

(δ + 1)y

))
dy.

Note that, in the RBS-SAM, the property of orthogonality between parameters vectors (β,fk)
and δ is not verified, unlike what is observed in other models, as the class of GLM, among
others. In general, the orthogonality property simplifies the estimation process, in the sense
that it allows the parameters to be estimated separately. More details about this issue in the
semi-parametric context can be found in [21].

3.3. Finding the solution in practice: Iterative process

To estimate the model parameters by the MPL method, we solve the equation Up(θ) = 0.
However, as mentioned, no closed-form expressions for the MPL estimate of θ are available.
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Then, an iterative method for non-linear optimization is needed, such as the Fisher scoring or
Newton or quasi-Newton algorithms, where the Broyden–Fletcher–Goldfarb–Shanno method
provides often good results. Considering that the matrix − ῭

p(θ) can be non-positive definite,
we suggest replacing it with the matrix −Ip(θ) and using the Fisher scoring method. Then,
the algorithm for estimating θ is given by

θ(m+1) = θ(m) + (Ip(θ)−1)(m)Up(θ)(m), m ∈ {0, 1, ...},

which is equivalent to solving the matrix equation


X>DvX X>DvN1 ··· X>DvNs X>Das
N>

1 DvX N>
1 DvN1 + λ1K1 ··· N>

1 DvNs N>
1 Das

...
...

. . .
...

...
N>
s DvX N>

s DvN1 ··· N>
s DvNs + λsKs N

>
s Das

s>DaX s>DaN1 ··· s>DaNs tr(Du)


(m)


∆(m+1,m)
β

∆(m+1,m)
f1

...
∆(m+1,m)

fs

∆(m+1,m)
δ



=


X>Daz
N>

1 Daz − λ1K1f1
...

N>
s Daz − λsKsfs

tr(Db)


(m)

(3.4)

where ∆(m+1,m)
β = β(m+1)−β(m), ∆(m+1,m)

fk
= f

(m+1)
k −f (m)

k and ∆(m+1,m)
δ = δ(m+1)− δ(m).

Then, after algebraic manipulation, we obtain expressions for the iterative solutions stated
as

β(m+1) = (X>D(m)
v X)−1X>D(m)

v

(
ψ

(m)
β −D(m)

v,a s∆
(m+1,m)
δ −

s∑
k=1

Nk∆
(m+1,m)
fk

)
,

f
(m+1)
k = (N>

k D
(m)
v Nk + λkK)−1N>

k D
(m)
v

×
(
ψ

(m)
fl

−D(m)
v,a s∆

(m+1,m)
δ −X∆(m+1,m)

β −
s∑

k=1,k 6=`
Nk∆

(m+1,m)
fk

)
, k ∈ {1, ..., s},

δ(m+1) = tr−1(D(m)
u )

×
(
tr(D(m)

b ) + tr(D(m)
u )δ(m) − s>D(m)

a X∆(m+1,m)
β − s>D(m)

a

s∑
k=1

Nk∆
(m+1,m)
fk

)
,

where ψ(m)
β =D(m)

v,a z(m) +Xβ(m) and ψ(m)
fl

=D(m)
v,a z(m) +Nlf

(m)
l , with D(m)

v,a =D(m)−1

v D
(m)
a .

In general, the system of equations given in (3.4) is consistent and the back-fitting
algorithm stated as in (3.5) converges to a solution for any starting values if the Dv weight
matrix is symmetric and positive-definite. Additionally, this solution is unique under no
concurvity in the data [4, 21].
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When δ is known, it is possible to obtain simplified expressions for the iterative solutions
of β(m+1) and f (m+1)

k . Indeed, after some algebraic manipulation, we get that

β(m+1) = (X>D(m)
v X)−1X>D(m)

v

(
ψ

(m)
β −

s∑
k=1

Nk∆
(m+1,m)
fk

)
,

f
(m+1)
k = (N>

k D
(m)
v Nk + λkK)−1N>

k D
(m)
v

(
ψ

(m)
fl

−X∆(m+1,m)
β −

s∑
k=1,k 6=`

Nk∆
(m+1,m)
fk

)
,

for k ∈ {1, ..., s}, or, equivalently,

β(m+1) = (X>D(m)
v X)−1X>D(m)

v

(
r(m)
v,a −

s∑
k=1

Nkf
(m+1)
k

)
,

f
(m+1)
k = (N>

k D
(m)
v Nk + λkK)−1N>

k D
(m)
v

(
r(m)
v,a −Xβ(m+1) −

s∑
k=1,k 6=`

Nkf
(m+1)
k

)
,

where r(m)
v,a = D

(m)
(v,a)z

(m) + η(m), with η(m) = Xβ(m) +
∑s

k=1Nkf
(m)
k . It is possible to prove

that these expressions correspond to the weighted back-fitting (Gauss–Seidel) iterations con-
sidering r(m)

v,a as a dependent modified variable and Dv as a matrix of weights that changes
with each iteration of the process. A general formula for these iterations is stated as

f
(m+1)
l = S

(m)
l

(
r(m)
v,a −

s∑
k=0,k 6=l

Nkf
(m+1)
k

)
, l ∈ {0, 1, ..., s},(3.5)

where r(m)
v,a = D

(m)
v,a z(m) + η(m), with η(m) =

∑s
k=0Nkf

(m)
k , N0 = X, f0 = β, and

S
(m)
0 = (N>

0 D
(m)
v N0)−1N>

0 D
(m)
v ,S

(m)
k = (N>

k D
(m)
v Nk+λkKk)−1N>

k D
(m)
v , k ∈ {1, ..., s}.

Note that if the nonparametric component is not present in the model formulated in (2.5),
the iterative process presented in (3.5) reduces to the expressions proposed in [27], that is, to
β(m+1) = (X>D

(m)
v X)−1X>D

(m)
v z

(m)
β , where z(m)

β =D
(m)
v,a z(m) +Xβ(m). A similar formula

can be obtained for the case where the parametric component is absent in the model and
only a smooth function is considered as linear predictor. Specifically, the iterative process
would reduce to f (m+1) = (N>D

(m)
v N)−1N>D

(m)
v z

(m)
f , where z(m)

f = D
(m)
v,a z(m) +Nf (m).

Thus, at convergence, β̂ and f̂ can be interpreted as least squares estimators of D1/2
bv ẑβ and

D
1/2
bv ẑf against the columns of D1/2

bv X and D1/2
bv N , respectively, where ẑβ = D

bv,baẑ +Xβ̂
and ẑf = D

bv,baẑ +Nf̂ .

3.4. Approximate standard errors

Next, we consider the problem of estimating the variance-covariance matrix of the MPL
estimator θ̂. Considering the fact that we obtain the MPL estimate of θ through the Fisher
scoring algorithm, it is reasonable to derive the corresponding variance-covariance matrix by
using the inverse of the penalized Fisher information matrix [20, 50, 51]. To compute the



Birnbaum–Saunders semi-parametric additive modeling 221

inverse matrix of Ip(θ) given in (3.3), consider

I11
p =


Iββ

p (θ) Iβf1
p (θ) ··· Iβfs

p (θ)

Iβf>1
p (θ) If1f1

p (θ) ··· If1fs
p (θ)

...
...

. . .
...

Iβf>s
p (θ) If1f>s

p (θ) ··· Ifsfs
p (θ)

, I12
p =


Iβδ

p (θ)
If1δ

p (θ)
...

Ifsδ
p (θ)

, I22
p = Iδδp .

Thus, the matrix Ip(θ) can be written as

Ip(θ) =

(
I11

p I12
p

I12>
p I22

p

)
.(3.6)

Assuming that all the necessary inverses exist, some algebraic manipulations on the expression
stated in (3.6) show that the inverse matrix of Ip(θ) assumes a block form given by

I−1
p (θ) =

 I11.1
p −I11.1

p I12
p I22−1

p

−I22−1

p I12>
p I11.1

p I22.1
p

,
where I11.1

p = (I11
p −I12

p I22−1

p I12>
p )−1 and I22.1

p = I22−1

p +I22−1

p I12>
p I11.1

p I12
p I22−1

p . There-
fore, the asymptotic variance-covariance matrix of θ̂ is defined as

Ĉov(θ̂) ≈ I−1
p (θ)

∣∣
bθ
.(3.7)

In particular, we have that Ĉov(β̂, f̂1, ..., f̂s) ≈ I11.1
p

∣∣
bθ

and Ĉov(δ̂) ≈ I22.1
p

∣∣
bθ
. To approximate

the pointwise standard errors (SE) bands for nonparametric functions fk, one can evaluate
the accuracy of the estimators f̂k for different locations within the range of interest [17]. In
our case, these SE bands are constructed using the corresponding diagonal elements of the
matrix Ĉov(β̂, f̂1, ..., f̂s) as estimators of the SE of fk. Indeed, we can consider as approximate
pointwise SE bands the expression defined as SE(fk(t0l )) = f̂k(t0l )± 2(V̂ar(f̂k(t0l )))

1/2, where
Var(f̂k(tl)) is the l-th principal diagonal element of the matrix stated in (3.7), for l ∈ {1, ..., r}.
Note that t0l corresponds to the knots associated with each variable whose contribution to
the model is nonparametric.

Observe that the asymptotic approach based on the penalized Fisher information matrix
to approximate the variance-covariance matrix of θ̂ has been used by several authors, and has
resulted in an efficient tool to approximate the SEs of θ̂ and construct SE bands for smooth
functions [22, 23, 50].

3.5. Degrees of freedom

Next, we define the degrees of freedom associated with the parametric and nonpara-
metric components. In the latter case, they correspond to the number of effective parameters
that are being considered in the nonparametric modeling, and that are used in the selection
of the smoothing parameters. Our definition of degrees of freedom is based on the conver-
gence of the iterative process given in (3.5) to select f̂l, for l ∈ {0, 1, ..., s}. Indeed, fixing δ
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and λk, we obtain f̂l = Ŝlr̂
∗
v,a, for l ∈ {0, 1, ..., s}, where r̂∗v,a = r̂v,a −

∑s
k=0,k 6=lNkf̂k, with

r̂v,a = D̂v,aẑ + η̂, η̂ =
∑s

k=0Nkf̂k and

Ŝ0 = (N>
0 D̂vN0)−1N>

0 D̂v,

Ŝk = (N>
k D̂vNk + λkKk)−1N>

k D̂v, k ∈ {1, ..., s}.

In the literature concerning to additive models, there are different definitions for the degrees
of freedom, depending on the context in which they are used [6]. In our case, the degrees of
freedom associated with the parametric component, N0f̂0 namely, are defined as

dfN0 = tr
{
N0(N>

0 D̂vN0)−1N>
0 D̂v

}
= p ,

where p is the rank of N0 = X. In addition, the degrees of freedom for the nonparametric
component, Nkf̂k namely, are stated as

df(λk) = tr
{
Nk(N>

k D̂vNk + λkKk)−1N>
k D̂v

}
,(3.8)

which measure the individual effect contribution of the k-th nonparametric component.

3.6. Selection of smoothing parameters

Note that, based on [23], we consider a grid of values for the smoothing parameter and
select one of them for which the AIC is minimized. Alternatively, we can consider the inverse
relationship between the degrees of freedom and the smoothing parameter [23], and select
the value of this parameter associated with a specific value of the degrees of freedom.

In the previous sections, the smoothing parameters λk were assumed fixed. However, in
practice situations, the smoothing parameters should be selected from the data. A criterion
to select the smoothing parameters based on the AIC is described below. Before proposing a
criterion to select the smoothing parameters, remember that, under the RBS-SAM, we have
a total of 1 + p+ df(λ) parameters to be determined, with df(λ) =

∑s
k=1 df(λk) denoting the

number of effective parameters involved in the modeling of the smooth functions. In this case,
the AIC (or alternatively the Bayesian information criterion) can be used for selecting the
smoothing parameters λk. The idea is to minimize a function with respect to λ formulated
as

AIC(λ) = −2`p(θ̂,λ) + 2(1 + p+ df(λ)),

where `p(θ̂,λ) denotes the penalized log-likelihood function evaluated at θ̂ for a fixed λ.
A grid (surface) for different values of λ and its corresponding AIC(λ) are helpful to choose
the suitable smoothing parameters.

Other approach to selecting the smoothing parameters is when the degrees of freedom
given in (3.8) depends only on λk and, therefore, the corresponding smoothing parameter
can be specified. In other words, we specify an objective df(λk) for a function and then find
the value λk that achieves this objective. Such an approach has been used by a number of
authors [6, 18, 22, 44].
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4. DIAGNOSTIC ANALYTICS

In this section, we derive the local influence method for different perturbation schemes
to assess the potential influence of some observations on the RBS-SAM. These schemes are
the case-weight, response and precision parameter perturbations.

4.1. The local influence method

Let ω = (ω1, ..., ωn)> be an n× 1 vector of perturbations restricted to some open subset
Ω ∈ Rn and `p(θ,λ;ω) be the logarithm of the perturbed penalized likelihood function. It
is assumed that exists ω0 ∈ Ω, a vector of no perturbation, such that `p(θ,λ;ω0) = `p(θ,λ).
To assess the influence of small perturbations on the MPL estimate θ̂, we can consider the
likelihood displacement stated as

LD(ω) = 2
(
`p(θ̂,λ)− `p(θ̂ω,λ)

)
≥ 0,

where θ̂ω is the MPL estimate under `p(θ,λ;ω). The measure LD(ω) is helpful for assessing
the distance between θ̂ and θ̂ω. In [9], it was suggested to study the local behavior of LD(ω)
around ω0. The procedure consists of selecting a unit direction d ∈ Ω, with ‖d‖ = 1, and
then to consider the plot of LD(ω0 +ad) against a, where a ∈ R. This plot is called lifted line.
Each lifted line may be characterized by considering the normal curvature Cd(θ) around a = 0.
The suggestion is to assume the direction d = dmax corresponding to the largest curvature
Cdmax(θ). The index plot of dmax can identify those cases that, under small perturbations,
provoke an importante potential influence on LD(ω). According to [9], the normal curvature
at the unitary direction d is expressed as

Cd(θ) = −2
(
d>∆>

p
῭−1
p ∆pd

)
,

with

῭
p =

∂2`p(θ,λ)
∂θ∂θ>

∣∣∣∣
θ=bθ

, ∆p =
∂2`p(θ,λ;ω)
∂θ∂ω>

∣∣∣∣
θ=bθ, ω=ω0

.

Note that − ῭
p is the penalized observed information matrix evaluated at θ̂ (see Subsec-

tion 3.2) and ∆p is the penalized perturbation matrix evaluated at θ̂ and ω0. Observe that
Cd(θ) denotes the local influence on the estimate θ̂ after perturbing the model or data. In [11],
it was proposed to study the normal curvature at the direction d = ei, where ei is an n× 1
vector with a one at the i-th position and zeros at the remaining positions. Thus, the normal
curvature, called total local influence of the i-th case, assumes the form Cei(θ) = 2|cii|, for
i ∈ {1, ..., n}, where cii is the i-th principal diagonal element of the matrix C = ∆>

p
῭−1
p ∆p.

The local influence results presented in the following sections are extensions of the work
presented in [27] but for the case where the linear predictor includes a parametric term and
also an additive term of smooth functions.
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4.2. Case-weight perturbation

The perturbation of case-weight is considered to identify observations with high contri-
bution to the likelihood function and that can exercise strong influence on the MPL estimates.
Let us to consider the attributed weights for the cases in the penalized log-likelihood function
as

`p(θ,λ;ω) =
n∑
i=1

ωi`i(θ)−
s∑

k=1

λk
2
f>k Kkfk,

where ω = (ω1, ..., ωn)> is the vector of weights, with 0 ≤ ωi ≤ 1, for i ∈ {1, ..., n}, and ω0 =
(1, ..., 1)> denotes the vector of no perturbation. Differentiating `p(θ,λ;ω) with respect to
the elements of θ and ω, we obtain

∂2`p(θ,λ;ω)
∂β∂ω

∣∣∣
θ=bθ, ω=ω0

= X>D̂aD̂z,

∂2`p(θ,λ;ω)
∂fk∂ω

∣∣∣
θ=bθ, ω=ω0

= N>
k D̂aD̂z, k ∈ {1, ..., s},

∂2`p(θ,λ;ω)
∂δ∂ω

∣∣∣
θ=bθ,ω=ω0

= b̂,

for i ∈ {1, ..., n}, with Da and b being defined in previous sections, whereas that Dz =
diag{z1, ..., zn}.

4.3. Response perturbation

According to [27], the additive perturbation on the i-th response is given by yiωi =
yi + ωis(yi), where s(yi) = (µ̂2

i /φ̂)1/2 and ωi ∈ R, for i ∈ {1, ..., n}. Then, the perturbed
penalized log-likelihood function is constructed from the expression defined in (2.10) with yi
being replaced by yiω, that is,

`p(θ,λ;ω) = `(θ;ω)−
s∑

k=1

λk
2
f>k Kkfk,

where ` is given in (2.7) with yiωi in the place of yi, for i ∈ {1, ..., n},. Here, the vector of
no perturbation is stated as ω0 = (0, ..., 0)>. Differentiating `p(θ,λ;ω) with respect to the
elements of θ and ω, we obtain, after some algebraic manipulation, that

∂2`p(θ,λ;ω)
∂β∂ω

∣∣∣
θ=bθ, ω=ω0

= X>D̂aD̂ψD̂ϑ,
∂2`p(θ,λ;ω)

∂δ∂ω

∣∣∣
θ=bθ, ω=ω0

= τ̂>Dϑ,

∂2`p(θ,λ;ω)
∂fk∂ω

∣∣∣
θ=bθ, ω=ω0

= N>
k D̂aD̂ψD̂ϑ, k ∈ {1, ..., s},

where D̂ϑ = diag{ϑ̂1, ..., ϑ̂n}, D̂ψ = diag{ψ̂1, ..., ψ̂n}, and D̂τ = diag{τ̂1, ..., τ̂n}, with ϑ̂i =
s(yi),

ψ̂i = − δ̂(δ̂ + 1)

(δ̂yi + yi + δ̂µ̂i)2
+

(δ̂ + 1)
4µ̂2

i

+
δ̂2

4(δ̂ + 1)y2
i

,

τ̂i = − µ̂i

(δ̂yi + yi + δ̂µ̂i)2
− 1

4µ̂i
+

δ̂(δ̂ + 2)µ̂i
4y2
i (δ̂ + 1)2

, i ∈ {1, ..., n}.
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4.4. Perturbation on the precision parameter

Perturbation of the precision parameter is used for evaluating the sensitivity of the
MPL estimate to small modifications of δ. Initially, the RBS-SAM assumes that the pre-
cision parameter is constant across data. However, under the perturbed model, the preci-
sion parameter is non-constant across cases, this is, Yi ∼ RBS

(
µi, δi

)
, where δi = δ/ωi, with

ωi > 0, for i ∈ {1, ..., n}. Under this perturbation, the vector of no perturbation is given by
ω0 = (1, ..., 1)>. Then, the perturbed penalized log-likelihood function is constructed from
the expression given in (2.10) with δ being replaced by δi. Taking derivatives of `p(θ,λ;ω)
with respect to the elements of θ and ω, we obtain, after some algebraic manipulation, that

∂2`p(θ,λ;ω)
∂β∂ω

∣∣∣
θ=bθ, ω=ω0

= X>D̂aD̂$,

∂2`p(θ,λ;ω)
∂fk∂ω

∣∣∣
θ=bθ, ω=ω0

= N>
k D̂aD̂$, k ∈ {1, ..., s},

∂2`p(θ,λ;ω)
∂δ∂ω

∣∣∣
θ=bθ, ω=ω0

= ϕ̂>,

where D̂$ = diag{$̂1, ..., $̂n} and ϕ = (ϕ̂1, ..., ϕ̂n)>, with

$i = − δ̂yi

(δ̂yi + yi + δ̂µ̂i)2
− δ̂yi

4µ̂2
i

+
δ̂2(δ̂ + 2)

4yi(δ̂ + 1)2
, i ∈ {1, ..., n},

ϕ̂i = −1
2

+
1

2(δ̂ + 1)2
− yi(yi + µ̂i)

(δ̂yi + yi + δ̂µ̂i)2
+

yi
4µ̂i

+
δ̂2µ̂i(δ̂ + 3)

4yi(δ̂ + 1)3
+

δ̂µ̂i

yi(δ̂ + 1)3
.

5. APPLICATION TO REAL POLLUTION DATA

In this section, we provide the empirical application of the proposed model to environ-
mental data obtained from the website of the Chilean Ministry of Environment using the R

software. This application is motivated, as mentioned, by the fact that inclusion of nonpara-
metric functions greatly enhances the modeling when accommodating non-linear effects of
covariates. These covariates correspond in our case to contents of pollutants and meteoro-
logical variables as atmospheric pressure, precipitation, relative humidity, temperature, and
wind speed, with the response variable being the particulate matter (PM) content.

5.1. Data and definition of the problem

PM pollution is one of the main global urban environmental problems, affecting human
health and life quality. According to the World Health Organization (WHO), nine out of
every ten people on the planet breathe air that contains high levels of pollutants and seven
million people die every year due to this cause (www.who.int). PM is classified according to
its diameter, because particle size determines sites of deposition within the respiratory tract.

www.who.int
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Coarser particles (those with a diameter over 10 micrometers–µm–) do not penetrate into
airways. Instead, these particles are deposited in the upper respiratory tract and are cleared
by cilia action. Inhalable particles measuring less than 10 µm are called PM10, whereas
those smaller than 2.5 µm are called PM2.5. As size decreases, there is a higher possibility
for PM to penetrate deeper into smaller alveoli and airways. Specifically, various effects are
produced from exposure to PM, but the nature of those induced effects vary according to
the PM composition. Indeed, there is evidence of an increase in the risk of cardiovascular
diseases and mortality from exposure to PM2.5, which occurs even after short time periods
[8].

In Chile, according to the Ministry of the Environment, 3,494 people died prematurely
due to critical air levels during 2017 mainly due to extreme contents of PM2.5, and nine
million inhabitants are exposed to levels of pollution that exceeds the air quality standards
(https://bit.ly/2u40gDq). Santiago of Chile is one of the most polluted cities in the world
in terms of PM2.5 and PM10, because of a combination of anthropogenic, meteorological and
topographic factors [31]. Several studies indicate that inhabitants of Santiago are under risk,
because of the city’s poor air quality. As urban air quality declines, the risk of stroke, heart
disease, lung cancer, and chronic and acute respiratory diseases, including asthma, increases
for the people who live in cities with high air pollution levels. Specifically for Santiago,
several investigations provide evidence that exposure to air pollutants produces a risk to the
inhabitants of this city; see [34] and references therein.

Periodic episodes of extreme levels of air pollution sometimes occur for certain at-
mospheric contaminants. Such episodes and their associated high contents vary with geo-
graphical and meteorological fluctuations, depending on changes in both source and type
of emissions. Because of these variations, PM contents are treated as non-negative random
variables that can be modeled by statistical distributions. Frequently, these distributions
are asymmetrical and present positive skewness [31]. The current official methodology em-
ployed by the Chilean authority in Santiago to predict PM10 contents is based on a multiple
regression model using contents of atmospheric pollutants and meteorological variables as
covariates [39]. It helps to forecast the maximum value of the 24-hour average content of
PM10 in µg/normalized cubic meters (Nm3) for the period from 00:00 to 24:00 hours of the
next day. Furthermore, in 2015, through Supreme Decree number 15/2015 and resolution
number 9664/2015, it was instructed by the Chilean Ministry of Health to declare sanitary
alert employing also PM2.5 contents.

5.2. Descriptive data analysis

We consider the environmental data set related to air pollution. In particular, the data
provided by the National Air Quality Information System (https://sinca.mma.gob.cl)
corresponding to air pollution in the commune of Pudahuel in Santiago during the critical
episodes management (CEM) period (01 April 2019 to 31 August 2019). In this application,
we are interested on detecting the association of polluting contents with meteorological vari-
ables by utilizing the RBS-SAM. For motivating the semi-parametric models, we consider
PM2.5 as response variable and two covariates, PM10 contents and WIND (speed wind in
meters/second). In the CEM period, we work with a total of 153 observations.

https://bit.ly/2u40gDq
https://sinca.mma.gob.cl
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Table 1 provides a descriptive summary of PM2.5, which includes mean (y), median
(MD), standard deviation (SD), coefficient of variation (CV), coefficient of skewness (CS),
coefficient of kurtosis (CK), minimum (y(1)), maximum (y(n)), and the total of observations
(n). Figure 1 contains the histogram and boxplot of PM2.5 contents. The primary air quality
regulation for PM2.5 is 50µg/Nm3, as 24-hour level.

Table 1: Descriptive statistics for the response variable PM2.5 in the CEM period
with data from Santiago, Chile.

y MD SD CV CS CK y(1) y(n) n

42.27 37 21.51 0.51 0.89 3.26 8 105 153

According to Table 1, the primary regulation is exceeded for the response; see, for ex-
ample, the maximum contents registered in the CEM period. Note that CS = 0.89, indicating
a slight asymmetry in the data of the response variable, and its CK = 3.26, indicating a prob-
ability density function with heavy tails in relation to the normal distribution. In addition,
from the histogram displayed in Figure 1, we note that the values of PM2.5 have an empirical
distribution that is positively skewed, while from Figure 1(b), we identify case #63 as an
atypical observation in the boxplot. Consequently, from Table 1 and Figure 1, we propose
that the RBS-SAM may be suitable for describing the mean of the data, the non-constant
variance and asymmetry detected in the distribution of these data.
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Figure 1: Histogram (a) and boxplot (b) for the response variable PM2.5 in CEM period
with data from Santiago, Chile.

Figure 2 contains the scatter plots between the response variable and each covariate.
In Figure 2(a), we see that the linear correlation between PM2.5 and the covariate PM10
seems to be positive, which is supported by the correlation coefficient between both variables
(0.9261). In addition, we observe that the variability of PM2.5 tends to increase as the
PM10 values increase, which could be an indication of a non-constant variance in the data.
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Figure 2(a) also shows evidence that the straight line do not go through the origin, so that
considering the intercept in the parametric component of the selected model could be helpful.
Figure 2(b) indicates that the relationship between PM2.5 and WIND seems to be non-linear.

50 100 150 200

20

40

60

80

100

PM10

P
M

2
.5

(a)

0.5 1.0 1.5

20

40

60

80

100

WIND

P
M

2
.5

(b)

Figure 2: Scatter plots of PM2.5 versus PM10 (a) and PM2.5 versus WIND (b)
with data from Santiago, Chile.

After this descriptive data analysis, we can see that the response variable presents char-
acteristics of the RBS distribution, such as positive asymmetry. In addition, as mentioned,
the BS distribution has mathematical arguments that allows us to justify its use when de-
scribing environmental data. Furthermore, from the scatter plots, note that the covariates
contribute linearly and non-linearly to the response variable. Therefore, a semi-parametric
structure may be proposed to model PM2.5 contents as a function of PM10 and WIND,
contributing parametrically and nonparametrically to the model, respectively.

5.3. Model fitting

The trends described in the exploratory data analysis suggest an RBS-SAM among
PM2.5 and the covariates, assuming the identity link function, that is,

h(µi) = µi = β1 + xiβ2 + f(ti), i ∈ {1, ..., 153},

where xi and ti denotes the values of PM10 and WIND from the i-th case, respectively,
(β1, β2)> is a parameter vector, and f is a smooth function. We apply the procedure described
in Subsection 3.6 to select the smoothing parameter, which results to be λ = 0.0001.

To estimate the parameters of the parametric component of the model, we maximize
the penalized log-likelihood function as described in Subsection 3.3, obtaining β̂1 = −30.013,
β̂2 = 0.387 and δ̂ = 60.991, whose corresponding SEs are 0.000095, 0.0068 and 0.0000011,
respectively. To assess that the RBS-SAM is adequate to describe the mean of the response
variable, we verify the assumptions established for the model. First, note that β1 and β2

are highly significant at 5%, since both empirical p-values (omitted here) are close to zero,
as expected by the exploratory data analysis that we performed. Thus, the parametric
component of the selected model seems to be adequate.
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5.4. Residual analysis

Figure 3 shows the plot of the partial residuals defined as

r
(p)
i = µ̂i − (β̂1 + xiβ̂2), i ∈ {1, ..., n}.

We note that the effect of the WIND covariate seems to be non-linear on the mean of the
PM2.5 response variable, which indicates that it is reasonable to quantify such an effect
through a smooth function.

0.5 1.0 1.5

10

20

30

40

50

60

WIND

p
a

rt
ia

l 
re

s
id

u
a

l

Figure 3: Plot of partial residuals versus WIND covariate with the estimated smooth function
overlapped with data from Santiago, Chile.

Figure 4 contains the theoretical quantile versus empirical quantile (QQ) plot (a),
histogram (b) and index plot (c) for the standardized residuals defined as

r
(s)
i =

yi − µi√
V̂ar(Yi)

=
φ̂1/2(yi − µ̂i)√

µ̂2
i

, i ∈ {1, ..., n},

with φ and µi being stated in Subsections 2.2, for the model formulated in (2.5).

To verify the distributional assumption established in the model, we consider Figure 4(a).
This figure does not show inusual features, so that the response variable seem to be well
described by the RBS-SAM. In addition, the independence assumption is also verified. In
Figure 4(b), we see a considerable symmetry of the standardized residuals. From Figure 4(c),
we note that the standardized residuals take values in the interval [−2.0, 2.0] mostly, except
for some values that are outside the bands defined as two times the standard deviation for
each residual.

For comparative purposes, we also consider a generalized additive model (GAM) [15, 16]
assuming a Gaussian family with link function equal to identity to describe the data set of
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pollution. The estimates of the parametric part of the model are β̂1 = 0.668 and β̂2 = 0.428,
whose estimated SEs are 1.956 and 0.018, respectively, with a total of three degrees of freedom
associated with this fit.
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Figure 4: QQ plot (a), histogram (b), and index plot (c) for the standardized residuals of RBS-SAM
with data from Santiago, Chile.

Figure 5 shows a residual analysis of the model. Observe the behavior of the tails
of the distribution in Figure 5(a) and 5b. In addition, in Figure 5(c), note that there are
several points outside the bands defined as twice the standard deviation of the residuals. The
corresponding AIC of the fitted model is 1081.612. According to the AIC, the RBS-SAM
presents a better fit, since the value of the AIC is 1032.003, with this value being less than
the value obtained for the adjusted GAM.
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Figure 5: QQ-plot (a), histogram (b), and index plot (c) for the standardized residuals of GAM
with data from Santiago, Chile.
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5.5. Local influence analysis

Figures 6 (a)–(c) present the index plots of Ci for the case-weight scheme. Considering
Figure 6 (a)–(b), we notice that cases #9 and #151 have the highest potential influence on
β̂ and δ̂, whereas case #63 is more influential on f̂ ; see Figure 6(c).

Figures 6 (d)–(f) display the index plot of Ci for the response perturbation scheme. We
observe that case #151 has a small influence on β̂ and δ̂, whereas that cases #74 and #151
have the highest potential influence on f̂ .

Figures 6 (g)–(i) show the index plot of Ci for the precision perturbation scheme. We
see that cases #9 and #151 have the highest potential influence on β̂ and δ̂, whereas case
#63 is the more influential on f̂ ; see Figure 6(i). Note that cases #9, #63, #74 and #151
correspond to 09 April, 02 June, 13 June, and 29 August 2019, respectively.

We now analyze how the MPL estimates change when the cases detected as potentially
influential are removed. To perform this analysis, the set of case(s) {9}, {63}, {151}, {9, 63},
{9, 151}, {63, 151}, and {9, 63, 151} are removed and the estimates of the parameters are cal-
culated again. Table 2 provide the relative changes (RC) in the parameter estimates, in their
corresponding estimated SEs, and the associated p-value. These changes are calculated from
RC

bβj(i)
= |(β̂j − β̂j(i))/β̂j | × 100% and RC

SE(bβj)(i)
= |(SE(β̂j)− SE(β̂j)(i))/SE(β̂j)| × 100%,

where β̂j(i) and SE(β̂j)(i) denote the MPL estimates of βj and their corresponding SEs,
obtained after extracting case i, for j ∈ {1, 2} and i ∈ {1, ..., 153}. Table 2 reports that the
highest values of RCs are associated with β1, in particular, for cases {9} and {9, 63}, corre-
sponding to the most influential observations on the parametric, nonparametric and precision
components. Note that the influential cases on the parametric component are not necessarily
the same on the nonparametric component, as reported in [24]. In addition, note that the
significance of the parameters at 5% does not change since the p-values remain below 0.01.
Table 2 reports that the diagnostic measures derived here identify potentially influential cases,
being them cases {9, 63}, which affect the inference of the model, but not their significance.
These cases correspond to the dates: 09 April 2019 and 02 June 2019 of the CEM period.
Note that, for case #9, a low PM2.5 content was recorded, close to the minimum, as well as
for PM10, while the wind speed was high and close to the maximum recorded. Regarding
case #63, this was the day with maximum PM2.5 content recorded throughout the CEC
period, while on this day the wind speed recorded the minimum measurement. In addition,
for case #151, the PM2.5 content registered its minimum value in the CEC period and the
PM10 content was very close to the minimum value recorded, while the wind speed reached
its maximum value. Considering the above results, the maximum or minimum PM2.5 con-
tent for cases #9, #63 and #151 are strongly related to wind speed, since on those days this
speed reached extreme measurements. In summary, the diagnostic analytics based on the
local influence method and residuals confirm that the RBS-SAM presented in Section 2 is
suitable for modeling environmental data, even if there are outliers and potentially influential
observations.
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Figure 6: Index plots of Ci for β (a,d,g), δ (b,e,h) and f (c,f,i) under case-weight (a,b,c);
response (d,e,f); and precision (g,h,i) perturbations with data from Santiago, Chile.
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Table 2: RCs (in %) in MPL estimates and in the corresponding estimated SEs for the
indicated removed case(s), and respective p-values using environmental data
and the RBS-SAM with data from Santiago, Chile.

Removed case(s) RCs in the estimate of β1 β2 δ

Parameter — — —
None SE — — —

(p-value) < 0.01 < 0.01 —

Parameter 8.52 0.14 1.18
{9} SE 0.15 1.55 7.85

(p-value) < 0.01 < 0.01 —

Parameter 0.47 0.37 0.94
{63} SE 0.26 1.57 7.94

(p-value) < 0.01 < 0.01 —

Parameter 1.28 0.27 1.52
{151} SE 1.09 2.17 9.23

(p-value) < 0.01 < 0.01 —

Parameter 7.29 0.41 2.14
{9, 63} SE 0.21 1.67 7.75

(p-value) < 0.01 < 0.01 —

Parameter 2.84 0.33 1.12
{9, 151} SE 1.33 2.40 9.37

(p-value) < 0.01 < 0.01 —

Parameter 0.92 0.84 2.49
{63, 151} SE 1.03 2.29 9.13

(p-value) < 0.01 < 0.01 —

Parameter 2.13 0.90 2.10
{9, 63, 151} SE 1.25 2.52 9.27

(p-value) < 0.01 < 0.01 —

6. CONCLUDING REMARKS

In this study, we proposed and derived a reparametrized Birnbaum–Saunders semi-
parametric additive model. This model allowed us to describe the mean of a random variable
whose dispersion is non-constant through covariates. These covariates can contribute para-
metrically or nonparametrically in the model. Furthermore, it was possible to maintain the
original scale of the data, since performing transformations on the modeled variable can re-
duce interpretability. We used a back-fitting algorithm to obtain the maximum penalized
likelihood estimates by using the cubic smoothing splines.

To find potentially influential observations, we derived local influence techniques for
the proposed model under case-weight, response variable and precision parameter perturba-
tions. We apply the proposed model to real pollution data, verifying that the reparametrized
Birnbaum–Saunders semi-parametric additive model is adequate to work with this type of
data.
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As future research, a package in R will be implemented so that various users have this
model computationally to their disposal to be applied in practice. Currently, the R codes
are available from the authors upon request. Also, the reparametrized Birnbaum–Saunders
semi-parametric model can be extended to the reparametrized Birnbaum–Saunders semi-
parametric case with varying precision, thin-plate spline, and partially varying-coefficient
models. In addition, the use of functional, latent, spatial, and temporal structures, as well as
reduction of dimensionality employing partial least squares regression, and mixture models
that can facilitate the parameters estimation, are aspects to be considered in further studies
with optimism because they have been explored in the Birnbaum–Saunders parametric case
[12, 19, 25, 26, 35].
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