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1. INTRODUCTION

With increasing diversity of real-life problems and applications that includes compli-
cated phenomena, there is a growing interest by researchers in developing new lifetime distri-
butions to overcome complicated models. Consequently, significant progress has been made
towards constructing numerous classes of new distributions to generate more flexible distri-
butions instead of the classical ones to provide more accurate data modeling. Kumaraswamy
(1980) was the first who suggested proposing new distribution by taking baseline distribution,
and then Azzalini (1985) introduced a system for generating new distributions by adding a
skewing parameter to a symmetric distribution.

The ideas of generating a new class of distributions graduated and can be classified into
five schemes; the first one is by using differential equations, the second one is by generating a
weighted form of the baseline distribution. The third one concerns adding additional param-
eter(s) to the baseline distribution. The fourth scheme is to discretize the continuous density
function. The last scheme is a distribution transformation scheme that modifies a probability
distribution function by forming a stochastic representation of baseline distribution such that
the new relationship must satisfy the distribution theory assumptions.

In this article, we are interested in the last scheme to regenerate a new class of lifetime
distribution. In the literature, there are several generators proposed based on different math-
ematical functional relationships. For instance, Mudholkar and Srivastava (1993) defined
the exponentiated class of distributions by exponentiating a given baseline distribution with
a positive parameter. Marshall and Olkin (1997), applied the transformation scheme to the
survival function by adding an additional shape parameter to the transformation scheme. Eu-
gene et al. (2002), used beta as a generator to develop Beta-G class of distributions. Zografos
and Balakrishnan (2009) suggested the gamma-G class of distributions. Transmuted family
of distributions was developed by Shaw and Buckley (2007); then later Shaw and Buckley
(2009) proposed the quadratic rank transmutation map, while Cordeiro and de Castro (2011)
proposed the Kumaraswamy-generated family.

Recently, Alzaatreh et al. (2013) defined and studied a new T-X family. Logarithmic
transformation was proposed by Maurya et al. (2016) and an extension of this generator was
proposed by Aslam et al. (2020). Moreover, many used trigonometry functions to provide
distribution generators, for instance, Kumar et al. (2015) used Sine function to develop a
new class of distributions while modification of this scheme by using Cosine-Sine (CS) trans-
formation proposed by Chesneau et al. (2019). Vast modification has been made by many
authors to identify a new generator of family of distributions (Kumar et al., 2021; Goldoust
et al., 2019; Zaidi et al., 2021; Altun et al., 2021; Zichuan et al., 2020).

In similar fashion, this article will propose a new distribution generator based on the
exponential function to provide new class of parameter lifetime distribution. Let Y be a non-
negative continuous random variable with baseline cumulative distribution function (CDF)
F (y, θ) and probability distribution function (PDF) f(y, θ); where θ ∈ (0,∞) is real valued
represents the distribution parameter, then the stochastic presentation of the proposed CDF
for generating a new class of distributions can be defined as:

(1.1) G(y, θ, α) = F (y, θ)e−α F (y,θ) y > 0; α ≥ 0



Stochastic generator of a new family of lifetime distributions with illustration 141

where F (y, θ) = 1− F (y, θ). Noting that when α = 0, then the proposed distribution is
exactly the same as the baseline distribution.

This family will be called as exponential transformation (ET), i.e., ET (y, θ, α).
Now, the PDF of ET family can be obtaining by finding the first derivative of equation (1.1):

(1.2) g(y, θ, α) = f(y, θ)e−α F (y,θ) (1 + α F (y, θ)) ; y > 0;α ≥ 0.

This family can be joined to T-X family by (Alzaatreh et al., 2013) as follows: For a general
baseline CDF of a continuous probability distribution denoted by F (y, θ), a new CDF having
the form

G(y, θ, α) =
∫ F (y,θ)

0
r(t)dt

where r(t) is a PDF defined over (0, 1), and R(t) is the associated CDF. Accordingly, the
PDF g(y, θ, α) can be obtained as

g(y, θ, α) = f(y, θ) r(F (y, θ)).

If we used r(t) in the following functional form:

r(t) = (1 + αt) e−α(1−t).

Then, the proposed family could be considered as member of the T-X family. As an illus-
tration of the proposed family, the exponential distribution will be considered as baseline
distribution. In this article, the third scheme will be used to generate new class of lifetime
distribution.

The remainder of this article proceeds as follows. Section 2 provides some characteriza-
tions of the ET family, including shapes of CDF, PDF, reliability measures such as survival
and hazard rate. Section 3 is dedicated to the mathematical properties of the ET family
such as moments, quantiles, order statistics and entropies. In Section 4, the estimation of
parameters is studied. Section 5 offers detailed simulation experiments on model performance
and assessment. Section 6 is devoted to studying illustrative examples based on real data.
Finally, Section 7 concludes the manuscript with a summary and an eye toward future work
to close the paper.

2. CHARACTERIZATIONS

2.1. Asymptotic properties of the CDF and PDF

Suppose that X is a continuous random variable of ET family as given in (1.1),
it can be easily seen that this family of distribution satisfies the Kolmogorov axioms of
the distribution functions. For instance, it is easily seen that the limit property of G(x, θ, α)
satisfy the property of CDF:

lim
x→∞

G(x, θ, α) = lim
x→∞

F (x, θ)e−α F (x,θ) = 1

and
lim
x→0

G(x, θ, α) = lim
x→0

F (x, θ)e−α F (x,θ) = 0.
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Hence, the total probability is equal to one. Also, it is monotone right increasing function of x,
and 0 ≤ G(x, θ, α) ≤ 1; ∀ x. Therefore, G(x, θ, α) is an absolute continuous distribution
function.

Similarly, it is easily can be noted that g(x, θ, α) is non-negative real valued PDF for
all x. For instance in the exponential case:

lim
x→∞

g(x, θ, α) = 0

and
lim
x→0

g(x, θ, α) = θ e−α.

Since both parameters are positive this indicates that g(x, θ, α) is a unimodal distribution.
Now, the functional form given in (1.2) satisfied the PDF property:∫ ∞

0
g(x, θ, α)dx =

∫ ∞

0
f(x, θ)e−α F (x,θ) (1 + α F (x, θ)) dx.

To illustrate the usefulness of the new stochastic representation given in (1.1) and
the associated PDF given in (1.2), suppose that the baseline distribution is the exponential
distribution with mean 1

θ , then we have ET-Exp distribution.

Corollary 2.1. Suppose that X is a random variable of ET-Exp, then the CDF and

PDF of X are given in equations (2.1) and (2.2), respectively:

(2.1) G(x, θ, α) = e−αe−θx
(
1− e−θx

)
; x > 0; θ > 0, α ≥ 0,

(2.2) g(x, θ, α) = θe−(θx+αe−θx)
(
1 + α(1− e−θx)

)
; x > 0; θ > 0, α ≥ 0.

Figure 1 give a good representation of the new distribution PDF with selected set of
parameters, in different cases by assuming both parameters are larger than 1, less than 1 or
one of them is less than one and the other parameter is more than one.

2.2. The CDF and PDF expansion

The following result proposes Taylor series expansions of the exponential function that
given in ET family. Accordingly, using the exponential series, we get:

e−x =
∞∑

j=0

(−1)j xj

j!
.

Then the CDF can be written as, respectively:

G(x, θ, α) = F (x, θ)
∞∑

j=0

(−1)j αj

j!
F (x, θ)j

,

G(x, θ, α) = F (x, θ)
∞∑

j=0

(−1)j αj

j!
{1− F (x, θ)}j .
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Figure 1: PDF of ET-Exp with selected parameter values.

Now, using the power series (1− z)m =
∑∞

k=1 (−1)k

(
m
k

)
zk, the expansion yields to:

G(x, θ, α) = F (x, θ)
∞∑

j=0

(−1)j αj

j!

∞∑
k=1

(−1)k

(
j
k

)
F (x, θ)k

which can be simplified to

(2.3) G(x, θ, α) =
∞∑

j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)
F (x, θ)k+1.

In similar fashion, the PDF can be expanded as follows:

(2.4) g(x, θ, α) = f(x, θ)(1 + α F (x, θ))

 ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)
F (x, θ)k

.

Based on (2.3) and (2.4), several mathematical properties of the ET family can be derived
for any lifetime distribution.

2.3. Reliability measures of ET family of distributions

Reliability measures are widely used to analyze lifetime models. The most well-known
measures are the survival, hazard or faultier rate and cumulative hazard functions; the fol-
lowing theorem presents these measures of the proposed family of distributions.
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Theorem 2.1. Let X be a random variable that follows the ET family of distribu-

tions, with PDF and CDF as defined in (1.1) and (1.2), then:

1. The survival function is given by

S(x, θ, α) = 1− G(x, θ, α); x > 0

= 1− F (x, θ)e−α SF (x, θ)

where SF (x, θ, α) is the survival function of the baseline distribution. It is obvious

that limx→∞ S(x, θ, α) = 0 and limx→0 S(x, θ, α) = 1.

2. The hazard function is given by

(2.5) h(x, θ, α) =
g(x, θ, α)
S(x, θ, α)

=
f(x, θ)e−αSF (x, θ,α) (1 + α F (x, θ))

1− F (x, θ)e−αSF (x,θ,α)
.

3. The reversed hazard function is given by

(2.6) hr(x, θ, α) =
g(x, θ, α)
G(x, θ, α)

=
f(x, θ)e−αSF (x,θ,α) (1 + αF (x, θ))

F (x, θ)e−αSF (x,θ,α)
.

Assuming the baseline distribution is the exponential distribution, then Corollary 2.2
is hold.

Corollary 2.2. Suppose that X is a random variable of ET-Exp, then

1. The survival function is given by:

S(x, θ, α) = 1− e−αe−θx
(
1− e−θx

)
.

2. The hazard rate function is given by:

h(x, θ, α) =
e−(θx+αe−θx)(1 + α(1− e−θx)

)
1− e−αe−θx(1− e−θx)

θ.

3. The reversed hazard function is given by:

hr(x, θ, α) =
e−θx

(
1 + α(1− e−θx)

)
(1− e−θx)

θ.

Figure 2 shows comparisons between the hazard rate functions of the baseline distribu-
tion and the proposed distribution.
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Figure 2: Hazard rate of ET-Exp with selected parameter values.

3. MATHEMATICAL PROPERTIES

Some basic mathematical properties such as ordinary moments, quantile function and
moment generating function are derived in this section.

3.1. Moments

Some of the most important characteristics (tendency, dispersion, skewness and kurto-
sis) of a statistical distribution can be studied through moments. Suppose that the moments
of ET (x, θ, α) can be obtained by finding the expected value of k(x); where

k(x) =


xr, for moment of order r,

etx, for moment of generating function,

eitx, for characteristic function.

Hence,

E(k(x)) =
∫ ∞

0
k(x) f(x, θ)e−αF (x,θ) (1 + α F (x, θ))dx

=
∫ ∞

0
k(x) f(x, θ)(1 + α F (x, θ))

 ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)
F (x, θ)k

 dx,
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which is equivalent to the expected value based on the baseline distribution

EF

(
k(x) e−αF (x,θ) (1 + αF (x, θ))

)
.

Then the expected value can be obtained using expansion technique or by using integral
estimation.

Corollary 3.1. Suppose that X is a random variable of ET-Exp, then the r-th mo-

ment is given by:

E(xr) =
∫ ∞

0
xr θe−(θx+αe−θx)

(
1 + α

(
1− e−θx

))
dx

=
∫ ∞

0
xr e−θx

(
1 + α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)k

 dx.

Using the first fourth moments one can compute numerically the population mean, variance,

standard deviation, skewness and kurtosis coefficients for some give parameter’s values.

Corollary 3.2. Suppose that X is a random variable of ET-Exp, then the moment

generating function and characteristic function are, respectively, given by:

E
(
etx

)
=

∫ ∞

0
etx θe−(θx+αe−θx)

(
1 + α

(
1− e−θx

))
dx

=
∫ ∞

0
e(t−θ)x

(
1 + α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)k

 dx.

Similarly,

E
(
eitx

)
=

∫ ∞

0
eitx θe−(θx+αe−θx)

(
1 + α

(
1− e−θx

))
dx

=
∫ ∞

0
e(it−θ)x

(
1 + α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)k

 dx.

3.2. Quantile function

The quantile function of X, say F−1(y), is given by the inverse function of F (x). Let
X follow ET (x, θ, α) family, the quantile function of X is given by:

X = Q(u) = QF (u e− α(1−u) ; θ)

where QF is the quantile function of the baseline distribution. Therefore, if U follow the
standard uniform distribution, then X = Q(u) follows the ET (x, θ, α) family.

Now assuming that our baseline function is exponential, then, after some algebra,
it follows that the Quantile function for ET-Exp distribution can be written as:

X = −
log(−W (uα eα)−α

α )
θ

where W (.) is the Lambert W function.
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3.3. Order statistics

Let X(1), X(2), ..., X(n), be the order statistics of a random sample X1, X2, ..., Xn from
the distribution with PDF g(x) and CDF G(x). Then, the PDF of the i-th order statistics
X(i) is given by:

(3.1) gX(i)
(x) =

n!
(i− 1)!(n− i)!

g(x)[ G(x)](i−1) × [1−G(x)](n−i).

By substituting equations (1.1) and (1.2) into equation (3.1), it follows that the PDF of the
i-th order statistics X(i) of the ET-family is given by:

gX(i)
(x) =

n!
(i− 1)!(n− i)!

f(x, θ)e−αSF (x, θ) (1 + αF (x, θ))
[
F (x, θ)e−αSF (x, θ)

](i−1)

×
[
1− F (x, θ)e−αSF (x, θ)

](n−i)
.

(3.2)

Assuming the baseline distribution is the exponential distribution, then the equation (3.2)
will be:

gX(i)
(x) =

n!
(i− 1)!(n− i)!

θe−(θx+αe−θx)
(
1 + α(1− e−θx)

) [
e−αe−θx

(
1− e−θx

)](i−1)

×
[
1− e−αe−θx

(
1− e−θx

)](n−i)
.

(3.3)

3.4. Entropy measure

Entropy of a variable is a measure of variation of the uncertainty and it is widely used
in science, e.g., physics and engineering. Here, we focus our attention on two types of entropy,
namely Rényi and Tsallis.

3.4.1. Rényi entropy

The Rényi entropy of a random variable X with distribution g(x) of order δ, where
δ > 0 and δ 6= 1, can be obtained as follows:

(3.4) R(δ) =
1

1− δ
log

(∫
gδ(x)dx

)
.

By substituting equations (1.2) into equation (3.4) leads to

R(δ) =
1

1− δ
log

(∫ (
f(x, θ)e−α F (x,θ)(1 + α F (x, θ))

)δ
dx

)
.

Moreover, The Rényi entropy for ET-Exp distribution is:

R(δ) =
1

1− δ
log

(∫ ∞

0

(
θe−(θx+αe−θx)

(
1 + α(1− e−θx)

))δ
dx

)

=
1

1−δ
log

∫ ∞

0

e−θx
(
1+ α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

) (
1− e−θx

)kδ

dx

.
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3.4.2. Tsallis entropy

The Tsallis entropy of a random variable X with distribution g(x) of order λ, where
λ > 0 and λ 6= 1, can be obtained as follows:

(3.5) S(λ) =
1

1− λ

(
1−

∫
gλ(x)dx

)
.

By substituting equations (1.2) into equation (3.5) leads to

S(λ) =
1

1− λ

(
1−

∫ (
f(x, θ)e−α F (x,θ)(1 + α F (x, θ))

)λ
dx

)
.

Moreover, the Tsallis entropy for ET-Exp distribution is:

S(λ) =
1

1− λ

(
1−

∫ ∞

0

(
θe−(θx+αe−θx)

(
1 + α(1− e−θx)

))λ
dx

)
,

S(λ) =
1

1−λ

1−
∫ ∞

0

e−θx
(
1+ α

(
1− e−θx

)) ∞∑
j=0

∞∑
k=0

(−1)j+k αj

j!

(
j
k

)(
1− e−θx

)k

λ

dx

.

4. PARAMETER ESTIMATION

In this section, estimation of the unknown parameters of the ET (x, θ, α) family of
distributions based on complete samples are determined using method of moment (MOM)
and maximum likelihood estimation (MLE) method. Let x1, x2, ..., xn be the observed values
from ET (x, θ, α) family.

4.1. Method of moment

The MOM estimator can be obtained by solving the following equations:

EF

(
x e−αF (x,θ) (1 + α F (x, θ))

)
=

∑n
i=1 xi

n
,

EF

(
x2 e−αF (x,θ) (1 + α F (x, θ))

)
=

∑n
i=1 x2

i

n
.

Using Mathematica, we may replace the first moment of ET-Exp family by:

E(X) =
1
αθ

(
1− e−α + α

(∫ α

0

sinh(t)
t

dt−
∫ α

0

cosh(t)− 1
t

dt

))
=

1
αθ

(
1− e−α + α

(
log(α)− Chi(α) + Shi(α) + γγγ

))
,
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while the second moment can be replaced by the following formula:

E
(
X2

)
=

2
(
α2

3F3(1, 1, 1; 2, 2, 2;−α) + log(α) + Γ(0, α) + γγγ
)

αθ2

where γγγ is Euler’s constant, with numerical value ≈ 0.577216, the incomplete gamma function
satisfies

Γ(0, α) =
∫ ∞

α

e−t

t
dt

and 3F3(1, 1, 1; 2, 2, 2;−α) is the generalized hypergeometric function.

4.2. Maximum likelihood estimation method

Using the MLE, the point estimator of the unknown parameter can be obtained by
solving the following likelihood function:

L =
n∏

i=1

f(xi, θ) e−αF (x,θ) (1 + α F (xi, θ)).

Taking the Log of the likelihood function will simplify the estimation problem:

Log L =

{
n∑

i=1

Log(f(xi, θ))−
n∑

i=1

αF (xi, θ) +
n∑

i=1

Log(1 + α F (xi, θ))

}
.

Now, we have to find the first order condition:

d Log L

dθ
=

n∑
i=1

df(xi, θ)/dθ

f(xi, θ)
+

n∑
i=1

α f(xi, θ) +
n∑

i=1

α f(xi, θ)
1 + α F (xi, θ)

,

d Log L

dα
= −

n∑
i=1

F (xi, θ) +
n∑

i=1

F (xi, θ)
1 + α F (xi, θ)

.

Then setting each of the first order conditions to zero and using a numerical method
we can find the optimal estimator of the unknown parameters.

Similarly, taking the exponential case, the MLE the point estimator of the unknown
parameter can be obtained by solving the following likelihood function:

L =
n∏

i=1

θe−(θxi+αe−θxi)
(
1 + α(1− e−θxi)

)
.

Taking the Log of the likelihood function will simplify the estimation problem:

Log L =

{
n∑

i=1

Log
(
θe−θxi

)
−

n∑
i=1

αe−θxi +
n∑

i=1

Log(1 + α(1− e−θxi))

}
.

Now, we have to find the first order condition:

d Log L

dθ
=

n∑
i=1

(
1
θ
− xi

)
+

n∑
i=1

α θe−θxi +
n∑

i=1

α θe−θxi

1 + α(1− e−θxi)
,

d Log L

dα
= −

n∑
i=1

e−θx +
n∑

i=1

(1− e−θxi)
1 + α(1− e−θxi)

.

The non-linear equations above can not be solved analytically, and thus we have used
an R-code to solve it analytically on R-software (R Core Team, 2021).
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5. SIMULATION

In this section, we study the performance of ML estimators for different sample sizes,
i.e, n= 50, 75, 100, 250, and 400. We have employed the inverse CDF technique for data
simulation for ET-Exp distribution using R software. Bias, Variance and MSE for the
ET-Exp distribution are observed. As it was expected, Table 1 shows that as the sample
size increase, the values of MSE are getting smaller for the parameter estimate.

Table 1: Estimate, Bias and Mean Square Error of MLEs of parameters α and θ.

Sample Size θ = 0.1 α = 3

n Estimate Bias MSE Estimate Bias MSE

50 0.10264 −0.00264 0.00020 3.28413 −0.28412 1.26297
75 0.10165 −0.00165 0.00013 3.17688 −0.17688 0.73347
100 0.10132 −0.00132 0.00009 3.13598 −0.13598 0.53885
250 0.10042 −0.00042 0.00004 3.05039 −0.05039 0.18580
400 0.10031 −0.00031 0.00002 3.03191 −0.03191 0.11652

Sample Size θ = 3.1 α = 0.2

n Estimate Bias MSE Estimate Bias MSE

50 3.35913 −0.25913 0.51010 0.38221 −0.18221 0.20171
75 3.27712 −0.17712 0.32454 0.32181 −0.12181 0.12360
100 3.23269 −0.13269 0.23782 0.29313 −0.09313 0.09281
250 3.15159 −0.05159 0.09936 0.23775 −0.03775 0.03938
400 3.12687 −0.02686 0.06317 0.22022 −0.02022 0.02522

Sample Size θ = 6 α = 3

n Estimate Bias MSE Estimate Bias MSE

50 6.15306 −0.15306 0.73829 3.27790 −0.27789 1.26813
75 6.09756 −0.09756 0.45751 3.17543 −0.17543 0.73278
100 6.09033 −0.09033 0.34335 3.14626 −0.14626 0.53472
250 6.03441 −0.03441 0.13502 3.05740 −0.05740 0.19413
400 6.01596 −0.01596 0.08147 3.03188 −0.03188 0.11481

Sample Size θ = 0.6 α = 0.3

n Estimate Bias MSE Estimate Bias MSE

50 0.63933 −0.03933 0.01777 0.45488 −0.15488 0.22516
75 0.62767 −0.02767 0.01160 0.40929 −0.10929 0.14199
100 0.62057 −0.02057 0.00878 0.38447 −0.08447 0.11042
250 0.60632 −0.00632 0.00367 0.32713 −0.02713 0.04553
400 0.60414 −0.00414 0.00242 0.31588 −0.01588 0.03049
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6. APPLICATION

In this Section, we demonstrate the capability of the ET-Exp distribution by fitting
the model to four datasets, namely over the Gompertz, Exponential, Lindley, Weibull, and
Generalized Exponential (GE) distributions. For theses four datasets, the maximum likeli-
hood procedure is used to estimate the parameters of each distribution. Using the obtained
estimates, we get the values of Akaike information criterion (AIC), Bayesian information
criterion (BIC) and − log L.

Moreover, we find the Kolmogorov-Smirnov (K-S) statistic with its corresponding
P-value (P-Val), and Anderson-Darling (AD) statistics. Basic descriptive statistics are cal-
culated for all datasets, including the five number summary, mean, variance, skewness and
kurtosis. The distribution with the lowest AIC, BIC, and −Log L is considered as the most
flexible distribution for a given dataset.

Growth hormone data: The first set of data consists of 40 observations represents
the estimated time since given growth hormone medication until the children reached the
target age in the Programa Hormonal de Secretaria de Saude de Minas Gerais (Lemos de
Morais, 2009). The dataset was analyzed by Alizadeh et al. (2018). The datasets are: 2.15,
2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36, 4.42,
4.51,4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82,8.00, 8.16, 8.21, 8.72, 10.40, 13.20,
13.70.

Table 2 provides the descriptive statistics for this data set and Table 3 presents the
results of MLEs and goodness of fit tests for this data set using each distribution.

Table 2: The descriptive statistics for the growth hormone medication data set.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set I 35 2.15 3.23 4.51 6.365 5.306 13.7 1.3706 4.4008 8.4754

Table 3: MLEs and goodness of fit statistics for the growth hormone medication data set.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.18 0.50 87.10 0.21 0.10 1.81 0.12 178.20 181.30
Lindley 0.33 87.47 0.25 0.03 2.41 0.055 176.95 178.50

Exponential 0.19 93.41 0.33 0.0008 4.49 0.005 188.81 190.37
ET-Exp 7.18 0.52 79.84 0.11 0.83 0.63 0.62 163.68 166.79
Weibull 1.99 6.03 82.49 0.15 0.45 0.98 0.37 168.98 172.09

GE 6.51 0.48 79.10 0.10 0.86 0.53 0.72 162.20 165.31
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 3: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gompertz, (b) Lindly, (c) Exponential, and (d) ET-Exponential, (e) Weibull,
and (f) Generalized-Exponential for the growth hormone medication dataset.
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Flood data: The second set of data has been presented by Dumonceaux and Antle
(1973) and acts the maximum flood levels (in million of cubic feet/s) of the Susquehanna
River at Harrisburg, Pennsylvania from 1890 to 1969, and its values are: 0.645, 0.613, 0.315,
0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324, 0.269, 0.740, 0.218, 0.412, 0.494, 0.416, 0.338,
0.392, 0.484 and 0.265.

Table 4 provides the descriptive statistics for this data set and Table 5 presents the
results of MLEs and goodness of fit tests for this data set using each distribution.

Table 4: The descriptive statistics for the maximum flood levels
of the Susquehanna River data set.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set II 20 0.218 0.3217 0.397 0.4577 5.4127 0.74 0.9116 3.368 0.0176

Table 5: MLEs and goodness of fit statistics for the maximum flood levels
of the Susquehanna River data set.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 6.08 0.06 −9.71 0.19 0.47 1.06 0.32 −15.42 −13.43
Lindley 3.02 1.72 0.41 0.002 4.42 0.006 5.42 6.42

Exponential 2.42 2.3 0.42 0.0015 4.66 0.004 6.6 7.59
ET-Exp 33.65 10.01 −14.36 0.11 0.97 0.19 0.99 −24.71 −22.72
Weibull 3.31 0.46 −12.43 0.17 0.63 0.58 0.67 −20.86 −18.87

GE 31.81 9.83 −14.38 0.11 0.97 0.19 0.99 −24.75 −22.76
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 4: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gompertz, (b) Lindly, (c) Exponential, (d) ET-Exponential, (e) Weibull, and
(f) Generalized-Exponential for the flood dataset.
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Rock samples data: The third set of data is given by Cordeiro and dos Santos
Brito (2012) consists of the shape perimeter by squared (area) from measurements of 48 rock
samples from a petroleum reservoir. The data are listed as follows: 0.0903296, 0.2036540,
0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940, 0.2627270, 0.1794550,
0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920, 0.4641250,
0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950,
0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 0.2910290, 0.3412730,
0.4387120, 0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530,
0.1641270, 0.1534810, 0.1618650, 0.2760160, 0.2538320, 0.2004470

Table 6 provides the descriptive statistics for this data set and Table 7 presents the
results of MLEs and goodness of fit tests for this data set using each distribution.

Table 6: The descriptive statistics for the rock samples
from a petroleum reservoir.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set III 48 0.0903 0.1623 0.1989 0.2627 0.2181 0.4641 1.1693 4.1098 0.00697

Table 7: MLEs and goodness of fit statistics for the rock samples
from a petroleum reservoir data set.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.14 8.22 −45.25 0.18 0.10 2.57 0.05 −86.50 −82.75
Lindley 5.31 −25.63 0.38 0.00 9.33 0.00 −49.26 −47.39

Exponential 4.58 −25.09 0.39 0.00 9.57 0.00 −48.18 −46.31
ET-Exp 19.41 16.60 −57.94 0.10 0.71 0.31 0.93 −111.89 −108.15
Weibull 2.75 0.25 −52.74 0.15 0.23 1.23 0.26 −101.48 −97.74

GE 17.84 16.06 −58.10 0.10 0.74 0.27 0.96 −112.14 −108.45
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 5: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gpmpertz, (b) Lindly, (c) Exponential, (d) ET-Exponential, (e) Weibull, and
(f) Generalized-Exponential for the rock sample dataset.
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Ball bearings failure time data: The fourth set of data is obtained from Gupta and
Kundu (1999) represents the number of million revolutions before failure of 23 endurance of
deep-groove ball bearings in the life test. These failure times are: 17.88, 28.92, 33.00, 41.52,
42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04 and 173.40.

Table 8 reveals certain descriptive statistics regarding this data set and Table 9 provides
the results of MLEs and goodness of fit tests for this data set using each distribution.

Table 8: The descriptive statistics for the ball bearings failure time data.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set IV 23 17.88 47.00 67.80 95.88 72.22 173.40 0.94 3.49 1405.58

Table 9: MLEs and goodness of fit statistics for the ball bearings failure time data.

Distribution α θ – Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.33 0.02 115.98 0.15 0.65 0.73 0.53 235.96 238.23
Lindley 0.027 115.74 0.19 0.36 0.93 0.34 233.47 234.61

Exponential 0.014 121.43 0.31 0.03 0.31 0.03 244.87 246.00
ET-Exp 5.99 0.035 113.11 0.11 0.93 0.22 0.98 230.22 232.50
Weibull 2.10 81.87 113.69 0.15 0.67 0.32 0.91 231.38 233.65

GE 5.28 0.032 112.98 0.11 0.96 0.19 0.99 229.96 232.23
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 6: The empirical and theoretical PDFs, empirical and theoretical CDFs, Q-Q plots and p-p
plot for (a) Gpmpertz, (b) Lindly, (c) Exponential, (d) ET-Exponential, (e) Weibull, and
(f) Generalized-Exponential for the ball bearings failure time data.
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It can be seen that for the four datasets, GE and ET-Exp distributions have the small-
est values of the Kolmogorov-Smirnov (largest P-values), Anderson-Darling, AIC and BIC
goodness-of-fit tests statistics which indicate that the best fit is provided by the GE and ET-
Exp distributions for these data sets. Based on the values of these statistics, we conclude that
the GE and ET-Exp distributions provide the best fit in all the data sets examined. In the
cases considered, the ET-Exp and GE performed far better than the Gompertz, Lindly and
Exponential distributions while the Weibull distribution performed better than Gompertz
and Lindly but not as good as ET-Exp and GE.

7. CONCLUDING REMARKS

A new family of lifetime distributions referred to as exponential transformation (ET)
with flexible and desirable properties is proposed. Properties of the ET distribution and a
sub-distribution were presented. The PDF, CDF, moments, hazard function, reliability and
quantile function were presented. Entropy measures including rényi entropy, tsallis entropy
for ET distribution were also derived. Estimate of the model parameters via the method of
maximum likelihood obtained and applications to illustrate the usefulness of the proposed
model to real data given. The applications provided show that ET distribution performs
better than other several models in the literature.
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