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1. INTRODUCTION

With increasing diversity of real-life problems and applications that includes complicated phe-
nomena, there is a growing interest by researchers in developing new lifetime distributions to overcome
complicated models. Consequently, significant progress has been made towards constructing numerous
classes of new distributions to generate more flexible distributions instead of the classical ones to provide
more accurate data modeling. [15] was the first who suggested proposing new distribution by taking
baseline distribution, and then [5] introduced a system for generating new distributions by adding a
skewing parameter to a symmetric distribution.

The ideas of generating a new class of distributions graduated and can be classified into five
schemes; the first one is by using differential equations, the second one is by generating a weighted
form of the baseline distribution. The third one concerns adding additional parameter(s) to the baseline
distribution. The fourth scheme is to discretize the continuous density function. The last scheme is a dis-
tribution transformation scheme that modifies a probability distribution function by forming a stochastic
representation of baseline distribution such that the new relationship must satisfy the distribution theory
assumptions.

In this article, we are interested in the last scheme to regenerate a new class of lifetime distribu-
tion. In the literature, there are several generators proposed based on different mathematical functional
relationships. For instance, [19] defined the exponentiated class of distributions by exponentiating a
given baseline distribution with a positive parameter. [17] , applied the transformation scheme to the
survival function by adding an additional shape parameter to the transformation scheme. [10] , used beta
as a generator to develop Beta-G class of distributions. [25] suggested the gamma-G class of distribu-
tions. Transmuted family of distributions was developed by [20]; then later [21] proposed the quadratic
rank transmutation map, while [7] proposed the Kumaraswamy-generated family.

Recently, [3] defined and studied a new T-X family. Logarithmic transformation was proposed
by [18] and an extension of this generator was proposed by [4]. Moreover, many used trigonometry
functions to provide distribution generators, for instance, [13] used Sine function to develop a new class
of distributions while modification of this scheme by using Cosine-Sine (CS) transformation proposed
by [6]. Vast modification has been made by many authors to identify a new generator of family of
distributions ([14]; [11]; [23]; [2]; [24]).

In similar fashion, this article will propose a new distribution generator based on the exponential
function to provide new class of parameter lifetime distribution. Let Y be a non-negative continuous
random variable with baseline cumulative distribution function (CDF) F (y, θ) and probability distri-
bution function (PDF) f(y, θ); where θ ∈ (0,∞) is real valued represents the distribution parameter,
then the stochastic presentation of the proposed CDF for generating a new class of distributions can be
defined as:

(1.1) G (y, θ, α) = F (y, θ) e−α F (y,θ) y > 0; α ≥ 0

where F (y, θ) = 1−F (y, θ). Noting that when α = 0, then the proposed distribution is exactly the same
as the baseline distribution.

This family will be called as exponential transformation (ET) i.e., ET (y, θ, α). Now, the
PDF of ET family can be obtaining by finding the first derivative of Equation 1.1:

(1.2) g (y, θ, α) = f (y, θ) e−α F (y,θ) (1 + α F (y, θ)) ; y > 0;α ≥ 0

This family can be joined to T-X family by ([3]) as follows: For a general baseline CDF of a continuous
probability distribution denoted by F (y, θ), a new CDF having the form

G (y, θ, α) =

∫ F (y,θ)

0
r(t)dt

Where r(t) is a PDF defined over (0, 1), and R(t) is the associated CDF. Accordingly, the PDF g(y, θ, α)
can be obtained as

g (y, θ, α) = f (y, θ) r(F (y, θ))

If we used r(t) in the following functional form:

r (t) = (1 + αt) e−α(1−t)
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Then, the proposed family could be considered as member of the T-X family. As an illustration of the
proposed family, the exponential distribution will be considered as baseline distribution. In this article,
the third scheme will be used to generate new class of lifetime distribution.

The remainder of this article proceeds as follows. Section 2 provides some characterizations of
the ET family, including shapes of CDF, PDF, reliability measures such as survival and hazard rate.
Section 3 is dedicated to the mathematical properties of the ET family such as moments, quantiles,
order statistics and entropies. In Section 4, the estimation of parameters is studied. Section 5 offers
detailed simulation experiments on model performance and assessment. Section 6 is devoted to studying
illustrative examples based on real data. Finally, Section 7 concludes the manuscript with a summary
and an eye toward future work to close the paper.

2. CHARACTERIZATIONS

2.1. Asymptotic properties of the CDF and PDF

Suppose that X is a continuous random variable of ET family as given in Equation 1.1, it can be
easily seen that this family of distribution satisfies the Kolmogorov axioms of the distribution functions.
For instance, it is easily seen that the limit property of G (x, θ, α) satisfy the property of CDF:

lim
x→∞

G (x, θ, α) = lim
x→∞

F (x, θ) e−α F (x,θ) = 1

and
lim
x→0

G (x, θ, α) = lim
x→0

F (x, θ) e−α F (x,θ) = 0

Hence, the total probability is equal to one. Also, it is monotone right increasing function of x, and
0 ≤ G (x, θ, α) ≤ 1; ∀ x. Therefore, G (x, θ, α) is an absolute continuous distribution function.

Similarly, it is easily can be noted that g (x, θ, α) is non-negative real valued PDF for all x. For
instance in the exponential case:

lim
x→∞

g (x, θ, α) = 0

and
lim
x→0

g (x, θ, α) = θ e−α

Since both parameters are positive this indicates that g (x, θ, α) is a unimodal distribution. Now, the
functional form given in 1.2 satisfied the PDF property:∫ ∞

0
g (x, θ, α) dx =

∫ ∞
0

f (x, θ) e−α F (x,θ) (1 + α F (x, θ)) dx

To illustrate the usefulness of the new stochastic representation given in Equation 1.1 and the as-
sociated PDF given in Equation 1.2, suppose that the baseline distribution is the exponential distribution
with mean 1

θ
, then we have ET-Exp distribution.

Corollary 2.1. Suppose that X is a random variable of ET-Exp, then the CDF and PDF
of X are given in Equations 2.1 and 2.2, respectively:

(2.1) G (x, θ, α) = e−αe
−θx (

1− e−θx
)

; x > 0; θ > 0, α ≥ 0

(2.2) g (x, θ, α) = θe
−
(
θx+αe−θx

) (
1 + α(1− e−θx)

)
; x > 0; θ > 0, α ≥ 0

Figure 1 give a good representation of the new distribution PDF with selected set of parameters,
in different cases by assuming both parameters are larger than 1, less than 1 or one of them is less than
one and the other parameter is more than one.
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Figure 1: PDF of ET-Exp with selected parameter values

2.2. The CDF and PDF expansion

The following result proposes Taylor series expansions of the exponential function that given in
ET family. Accordingly, using the exponential series, we get:

e−x =
∞∑
j=0

(−1)j
xj

j!
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Then the CDF can be written as, respectively:

G (x, θ, α) = F (x, θ)
∞∑
j=0

(−1)j
αj

j!
F (x, θ)

j

G (x, θ, α) = F (x, θ)

∞∑
j=0

(−1)j
αj

j!
{1− F (x, θ)}j

Now, using the power series (1− z)m =
∑∞
k=1 (−1)k

(
m
k

)
zk, the expansion yields to:

G (x, θ, α) = F (x, θ)

∞∑
j=0

(−1)j
αj

j!

∞∑
k=1

(−1)k
(
j
k

)
F (x, θ)k

Which can be simplified to

(2.3) G (x, θ, α) =
∞∑
j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

)
F (x, θ)k+1

In similar fashion, the PDF can be expanded as follows:

(2.4) g (x, θ, α) = f (x, θ) (1 + α F (x, θ))

 ∞∑
j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

)
F (x, θ)k


Based on Equations 2.3 and 2.4, several mathematical properties of the ET family can be derived for
any lifetime distribution.

2.3. Reliability measures of ET family of distributions

Reliability measures are widely used to analyze lifetime models. The most well-known measures
are the survival, hazard or faultier rate and cumulative hazard functions; the following theorem presents
these measures of the proposed family of distributions.

Theorem 2.1. Let X be a random variable that follows the ET family of distributions, with
PDF and CDF as defined in Equations 1.1 and 1.2, then:

1. The survival function is given by

S (x, θ, α) = 1− G (x, θ, α) ; x > 0

= 1− F (x, θ) e−α SF (x, θ)

where SF (x, θ, α) is the survival function of the baseline distribution. It is obvious that limx→∞ S (x, θ, α) = 0
and limx→0 S (x, θ, α) = 1.

2. The hazard function is given by

(2.5) h(x, θ, α) =
g(x, θ, α)

S(x, θ, α)
=

f (x, θ) e−αSF (x, θ,α) (1 + α F (x, θ))

1− F (x, θ) e−αSF (x,θ,α)

3. The reversed hazard function is given by

(2.6) hr(x, θ, α) =
g(x, θ, α)

G(x, θ, α)
=

f (x, θ) e−αSF (x,θ,α) (1 + αF (x, θ))

F (x, θ) e−αSF (x,θ,α)
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Assuming the baseline distribution is the exponential distribution, then Corollary 2.2 is hold.

Corollary 2.2. Suppose that X is a random variable of ET-Exp, then

1. The survival function is given by:

S (x, θ, α) = 1− e−αe
−θx (

1− e−θx
)

2. The hazard rate function is given by:

h (x, θ, α) =
e
−
(
θx+αe−θx

) (
1 + α(1− e−θx)

)
1− e−αe

−θx (
1− e−θx

) θ

3. The reversed hazard function is given by:

hr (x, θ, α) =
e−θx

(
1 + α(1− e−θx)

)(
1− e−θx

) θ

Figure 2 shows comparisons between the hazard rate functions of the baseline distribution and the
proposed distribution.

3. MATHEMATICAL PROPERTIES

Some basic mathematical properties such as ordinary moments, quantile function and moment
generating function are derived in this section.

3.1. Moments

Some of the most important characteristics (tendency, dispersion, skewness and kurtosis) of a
statistical distribution can be studied through moments. Suppose that the moments of ET (x, θ, α) can
be obtain by finding the expected value of k(x); where

k(x) =

 xr, for moment of order r
etx, for moment of generating function
eitx, for characteristic function

Hence,

E (k(x)) =

∫ ∞
0

k(x) f (x, θ) e−αF (x,θ) (1 + α F (x, θ)) dx

=

∫ ∞
0

k(x) f (x, θ) (1 + α F (x, θ))

 ∞∑
j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

)
F (x, θ)k

 dx

which is equivalent to the expected value based on the baseline distribution

EF

(
k(x) e−αF (x,θ) (1 + αF (x, θ))

)
Then the expected value can be obtained using expansion technique or by using integral estimation.
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Figure 2: Hazard rate of ET-Exp with selected parameter values

Corollary 3.1. Suppose that X is a random variable of ET-Exp, then the rth moment is
given by:

E (xr) =

∫ ∞
0

xr θe
−
(
θx+αe−θx

) (
1 + α

(
1− e−θx

))
dx

=

∫ ∞
0

xr e−θx
(

1 + α
(

1− e−θx
)) ∞∑

j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

) (
1− e−θx

)k dx

Using the first fourth moments one can compute numerically the population mean, variance, standard
deviation, skewness and kurtosis coefficients for some give parameter’s values.



8 Amjad D. Al-Nasser and Ahmad A. Hanandeh

Corollary 3.2. Suppose that X is a random variable of ET-Exp, then the moment generat-
ing function and characteristic function are, respectively, given by:

E
(
etx
)

=

∫ ∞
0

etx θe
−
(
θx+αe−θx

) (
1 + α

(
1− e−θx

))
dx

=

∫ ∞
0

e(t−θ)x
(

1 + α
(

1− e−θx
)) ∞∑

j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

) (
1− e−θx

)k dx

Similarly,

E
(
eitx

)
=

∫ ∞
0

eitx θe
−
(
θx+αe−θx

) (
1 + α

(
1− e−θx

))
dx

=

∫ ∞
0

e(it−θ)x
(

1 + α
(

1− e−θx
)) ∞∑

j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

) (
1− e−θx

)k dx

3.2. Quantile function

The quantile function of X, say F−1(y), is given by the inverse function of F (x). Let X follow
ET (x, θ, α) family, the quantile function of X is given by:

X = Q (u) = QF (u e− α(1−u) ; θ)

where QF is the quantile function of the baseline distribution. Therefore, if U follow the standard
uniform distribution, then X = Q(u) follows the ET (x, θ, α) family.

Now assuming that our baseline function is exponential, then, after some algebra, it follows that
the Quantile function for ET-Exp distribution can be written as:

X = −
log(−W (uα eα)−α

α
)

θ

where W (.) is the Lambert W function.

3.3. Order statistics

Let X(1), X(2), . . . , X(n), be the order statistics of a random sample X1, X2 , . . . , Xn from

the distribution with PDF g (x) and CDF G (x). Then, the PDF of the ith order statistics X(i) is given
by:

(3.1) gX(i)
(x) =

n!

(i− 1)! (n− i)!
g (x) [ G (x)](i−1) × [1−G (x)](n−i)

By substituting equations 1.1 and 1.2 into equation 3.1, it follows that the PDF of the ith order statistics
X(i) of the ET-family is given by:

gX(i)
(x) =

n!

(i− 1)! (n− i)!
f (x, θ) e−αSF (x, θ) (1 + αF (x, θ))

[
F (x, θ) e−αSF (x, θ)

](i−1)

×
[
1− F (x, θ) e−αSF (x, θ)

](n−i)(3.2)

Assuming the baseline distribution is the exponential distribution, then the equation 3.2 will be:

gX(i)
(x) =

n!

(i− 1)! (n− i)!
θe
−
(
θx+αe−θx

) (
1 + α(1− e−θx)

) [
e−αe

−θx (
1− e−θx

)](i−1)

×
[
1− e−αe

−θx (
1− e−θx

)](n−i)(3.3)
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3.4. Entropy measure

Entropy of a variable is a measure of variation of the uncertainty and it is widely used in science,
e.g., physics and engineering. Here, we focus our attention on two types of entropy, namely Rényi and
Tsallis

3.4.1. Rényi Entropy

The Rényi entropy of a random variable X with distribution g(x) of order δ, where δ > 0 and
δ 6= 1, can be obtained as follows

(3.4) R(δ) =
1

1− δ
log

(∫
gδ(x)dx

)
By substituting equations 1.2 into equation 3.4 leads to

R(δ) =
1

1− δ
log

(∫ (
f (x, θ) e−α F (x,θ) (1 + α F (x, θ))

)δ
dx

)
Moreover, The Rényi entropy for ET-Exp distribution is:

R(δ) =
1

1− δ
log

(∫ ∞
0

(
θe
−
(
θx+αe−θx

) (
1 + α(1− e−θx)

))δ
dx

)

=
1

1− δ
log

∫ ∞
0

e−θx (1 + α
(

1− e−θx
)) ∞∑

j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

) (
1− e−θx

)kδdx


3.4.2. Tsallis entropy

The Tsallis entropy of a random variable X with distribution g(x) of order λ, where λ > 0 and λ 6= 1,
can be obtained as follows

(3.5) S(λ) =
1

1− λ

(
1−

∫
gλ(x)dx

)
By substituting equations 1.2 into equation 3.5 leads to

S(λ) =
1

1− λ

(
1−

∫ (
f (x, θ) e−α F (x,θ) (1 + α F (x, θ))

)λ
dx

)
Moreover, The Tsallis entropy for ET-Exp distribution is:

S(λ) =
1

1− λ

(
1−

∫ ∞
0

(
θe
−
(
θx+αe−θx

) (
1 + α(1− e−θx)

))λ
dx

)

S(λ) =
1

1− λ

1−
∫ ∞
0

e−θx (1 + α
(

1− e−θx
)) ∞∑

j=0

∞∑
k=0

(−1)j+k
αj

j!

(
j
k

) (
1− e−θx

)kλdx


4. PARAMETER ESTIMATION

In this section, estimation of the unknown parameters of the ET (x, θ, α) family of distributions
based on complete samples are determined using method of moment (MOM) and maximum likelihood
estimation (MLE) method. Let x1, x2, . . . , xn be the observed values from ET (x, θ, α) family.
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4.1. Method of moment

The MOM estimator can be obtained by solving the following equations

EF

(
x e−αF (x,θ) (1 + α F (x, θ))

)
=

∑n
i=1 xi

n

EF

(
x2 e−αF (x,θ) (1 + α F (x, θ))

)
=

∑n
i=1 x

2
i

n

Using Mathematica, we may replace the first moment of ET-Exp family by:

E (X) =
1

αθ

(
1− e−α + α

(∫ α

0

sinh (t)

t
dt−

∫ α

0

cosh (t)− 1

t
dt

))

=
1

αθ

(
1− e−α + α (log(α)− Chi(α) + Shi(α) + )

)
While the second moment can be replaced by the following formula:

E
(
X2
)

=
2
(
α2

3F3 (1, 1, 1; 2, 2, 2;−α) + log (α) + Γ (0, α) + 
)

αθ2

Where  is Euler’s constant, with numerical value ≈ 0.577216, the incomplete gamma function
satisfies

Γ (0, α) =

∫ ∞
α

e−t

t
dt

and 3F3(1, 1, 1; 2, 2, 2;−α) is the generalized hypergeometric function.

4.2. Maximum likelihood estimation method

Using the MLE, the point estimator of the unknown parameter can be obtained by solving the
following likelihood function:

L =

n∏
i=1

f (xi, θ) e−αF (x,θ) (1 + α F (xi, θ))

Taking the Log of the likelihood function will simplify the estimation problem:

LogL =

{
n∑
i=1

Log (f (xi, θ))−
n∑
i=1

αF (xi, θ) +
n∑
i=1

Log(1 + α F (xi, θ))

}

Now, we have to find the first order condition:

dLogL

dθ
=

n∑
i=1

df (xi, θ)/dθ

f (xi, θ)
+

n∑
i=1

α f (xi, θ) +
n∑
i=1

α f (xi, θ)

1 + α F (xi, θ)

dLogL

dα
= −

n∑
i=1

F (xi, θ) +

n∑
i=1

F (xi, θ)

1 + α F (xi, θ)



Stochastic Generator of a New Family of Lifetime Distributions 11

Then setting each of the first order conditions to zero and using a numerical method we can find
the optimal estimator of the unknown parameters.

Similarly, taking the exponential case, the MLE the point estimator of the unknown parameter
can be obtained by solving the following likelihood function:

L =
n∏
i=1

θe
−
(
θxi+αe

−θxi
) (

1 + α(1− e−θxi )
)

Taking the Log of the likelihood function will simplify the estimation problem:

LogL =

{
n∑
i=1

Log
(
θe−θxi

)
−

n∑
i=1

αe−θxi +
n∑
i=1

Log(1 + α(1− e−θxi ))
}

Now, we have to find the first order condition:

dLogL

dθ
=

n∑
i=1

(
1

θ
− xi

)
+

n∑
i=1

α θe−θxi +

n∑
i=1

α θe−θxi

1 + α (1− e−θxi )

dLogL

dα
= −

n∑
i=1

e−θx +
n∑
i=1

(1− e−θxi )
1 + α(1− e−θxi )

The non-linear equations above can not be solved analytically, and thus we have used an R-code
to solve it analytically on R-software [22].

5. SIMULATION

In this section, we study the performance of ML estimators for different sample sizes, i.e, n= 50,
75, 100, 250, and 400. We have employed the inverse CDF technique for data simulation for ET-Exp
distribution using R software. Bias, Variance and MSE for the ET-Exp distribution are observed. As it
was expected, Table 1 shows that as the sample size increase, the values of MSE are getting smaller for
the parameter estimate.

6. APPLICATION

In this Section, we demonstrate the capability of the ET-Exp distribution by fitting the model to
four datasets, namely over the Gompertz, Exponential, Lindley, Weibull, and Generalized Exponential
(GE) distributions. For theses four datasets, the maximum likelihood procedure is used to estimate the
parameters of each distribution. Using the obtained estimates, we get the values of Akaike information
criterion (AIC), Bayesian information criterion (BIC) and -log L.

Moreover, we find the Kolmogorov-Smirnov (K-S) statistic with its corresponding P-value (P-
Val), and Anderson-Darling (AD) statistics. Basic descriptive statistics are calculated for all datasets,
including the five number summary, mean, variance, skewness and kurtosis. The distribution with the
lowest AIC, BIC, and -Log L is considered as the most flexible distribution for a given dataset.

Growth hormone data: The first set of data consists of 40 observations represents the es-
timated time since given growth hormone medication until the children reached the target age in the
Programa Hormonal de Secretaria de Saude de Minas Gerais [16]. The dataset was analyzed by [1]. The
datasets are: 2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36,
4.42, 4.51,4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82,8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70.
Table 2 provides the descriptive statistics for this data set and Table 3 presents the results of MLEs and
goodness of fit tests for this data set using each distribution.



12 Amjad D. Al-Nasser and Ahmad A. Hanandeh

Sample Size θ = 0.1 α = 3

n Estimate Bias MSE Estimate Bias MSE

50 0.10264 -0.00264 0.00020 3.28413 -0.28412 1.26297
75 0.10165 -0.00165 0.00013 3.17688 -0.17688 0.73347
100 0.10132 -0.00132 0.00009 3.13598 -0.13598 0.53885
250 0.10042 -0.00042 0.00004 3.05039 -0.05039 0.18580
400 0.10031 -0.00031 0.00002 3.03191 -0.03191 0.11652

Sample Size θ = 3.1 α = 0.2

n Estimate Bias MSE Estimate Bias MSE

50 3.35913 -0.25913 0.51010 0.38221 -0.18221 0.20171
75 3.27712 -0.17712 0.32454 0.32181 -0.12181 0.12360
100 3.23269 -0.13269 0.23782 0.29313 -0.09313 0.09281
250 3.15159 -0.05159 0.09936 0.23775 -0.03775 0.03938
400 3.12687 -0.02686 0.06317 0.22022 -0.02022 0.02522

Sample Size θ = 6 α = 3

n Estimate Bias MSE Estimate Bias MSE

50 6.15306 -0.15306 0.73829 3.27790 -0.27789 1.26813
75 6.09756 -0.09756 0.45751 3.17543 -0.17543 0.73278
100 6.09033 -0.09033 0.34335 3.14626 -0.14626 0.53472
250 6.03441 -0.03441 0.13502 3.05740 -0.05740 0.19413
400 6.01596 -0.01596 0.08147 3.03188 -0.03188 0.11481

Sample Size θ = 0.6 α = 0.3

n Estimate Bias MSE Estimate Bias MSE

50 0.63933 -0.03933 0.01777 0.45488 -0.15488 0.22516
75 0.62767 -0.02767 0.01160 0.40929 -0.10929 0.14199
100 0.62057 -0.02057 0.00878 0.38447 -0.08447 0.11042
250 0.60632 -0.00632 0.00367 0.32713 -0.02713 0.04553
400 0.60414 -0.00414 0.00242 0.31588 -0.01588 0.03049

Table 1: Estimate, Bias and Mean Square Error of MLEs of parameters α and θ

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set I 35 2.15 3.23 4.51 6.365 5.306 13.7 1.3706 4.4008 8.4754

Table 2: The descriptive statistics for the growth hormone medication data set.

Distribution α θ -Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.18 0.50 87.10 0.21 0.10 1.81 0.12 178.20 181.30
Lindley 0.33 87.47 0.25 0.03 2.41 0.055 176.95 178.50

Exponential 0.19 93.41 0.33 0.0008 4.49 0.005 188.81 190.37
ET-Exp 7.18 0.52 79.84 0.11 0.83 0.63 0.62 163.68 166.79
Weibull 1.99 6.03 82.49 0.15 0.45 0.98 0.37 168.98 172.09
GE 6.51 0.48 79.10 0.10 0.86 0.53 0.72 162.20 165.31

Table 3: MLEs and goodness of fit statistics for the growth hormone medication
data set.
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Flood data: The second set of data has been presented by [9] and acts the maximum flood
levels (in million of cubic feet/s) of the Susquehanna River at Harrisburg, Pennsylvania from 1890 to
1969, and its values are: 0.645, 0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379, 0.324, 0.269, 0.740,
0.218, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484 and 0.265. Table 4 provides the descriptive statistics for
this data set and Table 5 presents the results of MLEs and goodness of fit tests for this data set using
each distribution.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set II 20 0.218 0.3217 0.397 0.4577 5.4127 0.74 0.9116 3.368 0.0176

Table 4: The descriptive statistics for the maximum flood levels of the Susque-
hanna River data set.

Distribution α θ -Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 6.08 0.06 -9.71 0.19 0.47 1.06 0.32 -15.42 -13.43
Lindley 3.02 1.72 0.41 0.002 4.42 0.006 5.42 6.42

Exponential 2.42 2.3 0.42 0.0015 4.66 0.004 6.6 7.59
ET-Exp 33.65 10.01 -14.36 0.11 0.97 0.19 0.99 -24.71 -22.72
Weibull 3.31 0.46 -12.43 0.17 0.63 0.58 0.67 -20.86 -18.87
GE 31.81 9.83 -14.38 0.11 0.97 0.19 0.99 -24.75 -22.76

Table 5: MLEs and goodness of fit statistics for the maximum flood levels of the
Susquehanna River data set.

Rock samples data: The third set of data is given by [8] consists of the shape perimeter by
squared (area) from measurements of 48 rock samples from a petroleum reservoir. The data are listed
as follows: 0.0903296, 0.2036540, 0.2043140, 0.2808870, 0.1976530, 0.3286410, 0.1486220, 0.1623940,
0.2627270, 0.1794550, 0.3266350, 0.2300810, 0.1833120, 0.1509440, 0.2000710, 0.1918020, 0.1541920,
0.4641250, 0.1170630, 0.1481410, 0.1448100, 0.1330830, 0.2760160, 0.4204770, 0.1224170, 0.2285950,
0.1138520, 0.2252140, 0.1769690, 0.2007440, 0.1670450, 0.2316230, 0.2910290, 0.3412730, 0.4387120,
0.2626510, 0.1896510, 0.1725670, 0.2400770, 0.3116460, 0.1635860, 0.1824530, 0.1641270, 0.1534810,
0.1618650, 0.2760160, 0.2538320, 0.2004470

Table 6 presented the descriptive statistics for this data set and Table 7 presents the results of
MLEs and goodness of fit tests for this data set using each distribution.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set III 48 0.0903 0.1623 0.1989 0.2627 0.2181 0.4641 1.1693 4.1098 0.00697

Table 6: The descriptive statistics for the rock samples from a petroleum reservoir
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Distribution α θ -Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.14 8.22 -45.25 0.18 0.10 2.57 0.05 -86.50 -82.75
Lindley 5.31 -25.63 0.38 0.00 9.33 0.00 -49.26 -47.39

Exponential 4.58 -25.09 0.39 0.00 9.57 0.00 -48.18 -46.31
ET-Exp 19.41 16.60 -57.94 0.10 0.71 0.31 0.93 -111.89 -108.15
Weibull 2.75 0.25 -52.74 0.15 0.23 1.23 0.26 -101.48 -97.74
GE 17.84 16.06 -58.10 0.10 0.74 0.27 0.96 -112.14 -108.45

Table 7: MLEs and goodness of fit statistics for the rock samples from a petroleum
reservoir data set.

Ball bearings failure time data: The fourth set of data is obtained from [12] represents the
number of million revolutions before failure of 23 endurance of deep-groove ball bearings in the life test.
These failure times are: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04 and 173.40.

Table 8 reveals certain descriptive statistics regarding this data set and 9 provides the results of
MLEs and goodness of fit tests for this data set using each distribution.

Parameters N Min Q1 Median Q3 Mean Max Skewness Kurtosis Variance

Data set IV 23 17.88 47.00 67.80 95.88 72.22 173.40 0.94 3.49 1405.58

Table 8: The descriptive statistics for the ball bearings failure time data

Distribution α θ -Log L K-S P-Val A-D P-Val AIC BIC

Gompertz 0.33 0.02 115.98 0.15 0.65 0.73 0.53 235.96 238.23
Lindley 0.027 115.74 0.19 0.36 0.93 0.34 233.47 234.61

Exponential 0.014 121.43 0.31 0.03 0.31 0.03 244.87 246.00
ET-Exp 5.99 0.035 113.11 0.11 0.93 0.22 0.98 230.22 232.50
Weibull 2.10 81.87 113.69 0.15 0.67 0.32 0.91 231.38 233.65
GE 5.28 0.032 112.98 0.11 0.96 0.19 0.99 229.96 232.23

Table 9: MLEs and goodness of fit statistics for the ball bearings failure time
data.

It can be seen that for the four datasets, GE and ET-Exp distributions have the smallest values
of the Kolmogorov-Smirnov (largest P-values), Anderson-Darling, AIC and BIC goodness-of-fit tests
statistics which indicate that the best fit is provided by the GE and ET-Exp distributions for these data
sets. Based on the values of these statistics, we conclude that the GE and ET-Exp distributions provide
the best fit in all the data sets examined. In the cases considered, the ET-Exp and GE performed far
better than the Gompertz, Lindly and Exponential distributions while the Weibull distribution performed
better than Gompertz and Lindly but not as good as ET-Exp and GE.
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7. CONCLUDING REMARKS

A new family of lifetime distributions referred to as exponential transformation (ET) with flexible
and desirable properties is proposed. Properties of the ET distribution and a sub-distribution were
presented. The PDF, CDF, moments, hazard function, reliability and quantile function were presented.
Entropy measures including rényi entropy, tsallis entropy for ET distribution were also derived. Estimate
of the model parameters via the method of maximum likelihood obtained and applications to illustrate
the usefulness of the proposed model to real data given. The applications provided show that ET
distribution performs better than other several models in the literature.
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 3: The empirical and theoretical PDFs, empirical and theoretical CDFs,
Q-Q plots and p-p plot for (a) Gompertz, (b) Lindly, (c) Exponential, and (d)
ET-Exponential, (e) Weibull, and (f) Generalized-Exponential for the growth
hormone medication dataset
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 4: The empirical and theoretical PDFs, empirical and theoretical CDFs,
Q-Q plots and p-p plot for (a) Gompertz, (b) Lindly, (c) Exponential, (d) ET-
Exponential, (e) Weibull, and (f) Generalized-Exponential for the flood dataset
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 5: The empirical and theoretical PDFs, empirical and theoretical CDFs,
Q-Q plots and p-p plot for (a) Gpmpertz, (b) Lindly, (c) Exponential, (d) ET-
Exponential, (e) Weibull, and (f) Generalized-Exponential for the rock sample
dataset
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(a) Gompertz (b) Lindly

(c) Exponential (d) ET-Exponential

(e) Weibull (f) Generalized Exponential

Figure 6: The empirical and theoretical PDFs, empirical and theoretical CDFs,
Q-Q plots and p-p plot for (a) Gpmpertz, (b) Lindly, (c) Exponential, (d) ET-
Exponential, (e) Weibull, and (f) Generalized-Exponential for the ball bearings
failure time data
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