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1. INTRODUCTION

The grey system is a discipline that studies the problem of uncertainty, which was first
proposed by Deng in 1982, plays an important role in the grey system theory [4]. It has been
a useful tool in processing uncertain or excursive systems with small samples and limited data
set as distinct from the machine learning models, hybrid models, the empirical models, ...,
etc. The grey prediction models have been widely and successfully applied to various fields,
such as science and technology, energy, environmental problems, economy, health and other
fields [24, 35, 36, 7, 1, 33, 5, 18].

Recent studies on grey modelling focus on two main purpose: practicality and prediction
accuracy. For these purposes, important studies have been carried out in recent times. Ma
and Lui [15] proposed a time-delayed polynomial grey prediction model called TDPGM(1, 1)
model, the grey polynomial model with a tuned background coefficient was proposed by
Wei et al. [20], Cui et al. [3] developed a parameter optimization method to improve the
ONGM(1, 1, k) model, Bilgil [1] proposed an exponential grey model named EXGM(1, 1).
Furthermore, Ma et al. [14] developed a novel nonlinear multivariate forecasting grey model
based on the Bernoulli equation named NGBMC(1, n), Wang et al. [19] introduced a seasonal
grey model called SGM(1, 1), Wu et al. [25] proposed a new grey model called BNGM(1, 1, t2)
model, Liu and Wu [12] proposed the ANDGM model, Ma [13] proposed kernel-based
KARGM(1, 1) model, Li et al. [10] developed structure-adaptive intelligent grey forecast-
ing model, Wu et al. [26] developed a novel grey Riccati model (GRM), the modified grey
prediction model with damping trend factor was proposed by Liu et al. [11], the nonlinear grey
Bernoulli model with improved parameters, INGBM(1, 1), was proposed by Jiang et al. [8].

It is clear that most of the existing grey models are defined with a first-order whitening
differential equation. If the original data is a disordered sequence, the characteristic features
of the sequence may not be exactly found out by first-order accumulative generation operation
(1-AGO) [32]. Moreover, first-order derivative models are ideal memory models, which are
not suitable for describing irregular phenomena. As a result of this, the parameters of the
model may not be compatible according to the data characteristics of the actual problem
for a sequence with large data fluctuation. Therefore, fractional accumulation generating
operation and fractional derivative should be introduced into the grey model to overcome
this problem [32].

Wu et al. developed traditional GM(1, 1) with fractional order accumulated operator
named FAGM(1, 1) [23]. Some researchers optimized the FAGM(1, 1) model and reached
better prediction accuracy in recent years. Wu et al. suggested a fractional FAGMO(1, 1, k)
model with linear grey input of time in lieu of constant grey input in the initial FAGM(1, 1)
model and optimized it with optimal order and optimal parameters [27]. Besides, Mao et

al. introduced the fractional grey model FGM(q, 1) [17], a power-driven fractional accumu-
lated grey model named PFAGM is introduced by Zhang et al. [34], Yuxiao et al. proposed
the multivariable Caputo fractional derivative grey model with convolution integral named
CFGMC(q, N), Xie et al. developed a conformable fractional grey model in opposite direction
CFGOM(1, 1) [30].

However, the definition is given by Wu [23] only show us a single situation of fractional
order calculus and differencing. From the perspective of computational complexity, frequently
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operated descriptions of fractional accumulation and its suitable fractional differencing in the
present grey models are not easy to apply, and it causes serious rigours to the more deeply
theoretical analysis. Yang and Xue [31] submitted the fractional order calculus, but the
exact solution of this kind of model include infinite series, and it is clearly difficult to use and
analyse. Furthermore, this kind of complications would also impede the improvement of the
fractional order grey models thanks to some new operators [22, 21].

Lately, Khalil et al. defined a limit-based fractional derivative in 2014 [9], which is
named the conformable fractional derivative. The structure of this new definitions of frac-
tional derivative is simpler than that of other popular fractional derivatives, such as the
Caputo derivative and Riemann–Liouville derivative. Then, Ma et al. [16] introduced the
new useful definitions of the fractional order difference and accumulation based on the con-
formable fractional derivative in which the computational complexity of accumulation is lower
than that of the traditional fractional accumulated operator and they firstly proposed an im-
proved fractional order grey model named CFGM(1, 1). Recently, a continuous grey model
named CCFGM based on the conformable fractional derivative was described by Xie et al. [29].

In this paper, we introduced the novel exponential conformable fractional grey model
(denoted as ECFGM(1, 1) for short) by using the new definitions of conformable fractional
difference and conformable fractional accumulation by Ma et al. [16]. The structural order
of ECFGM(1, 1) is sought out by using the Brute Force algorithm. The effectiveness of
ECFGM(1, 1) is validated by real data sets in comparison with other used new grey models
and it is seen that the performance of the ECFGM(1, 1) model is very successful.

The rest of this paper is organized as follows: Section 1 includes relevant literature.
Some useful properties and definitions of the conformable fractional calculus are given in
Section 2. The presentations and modelling mechanism of the ECFGM(1, 1) are introduced
in Section 3. In Sections 4 and 5, we present a series of samples to validate ECFGM(1, 1).
Finally, the conclusions of this study are given in Sections 6.

2. SOME DEFINITIONS AND PROPERTIES ON CONFORMABLE FRAC-
TIONAL CALCULUS

In this section, some useful definions and properties of the conformable fractional deriva-
tive are summerized.

2.1. The conformable fractional derivative

Definition 2.1 (See [16]). If f : [0,∞)→R is a differentiable function, the conformable
fractional derivative of f with α ∈ (n, n + 1] order is defined as

(2.1) Tα(f)(t) = lim
ε→0

f(t + εtdαe−α)− f(t)
ε

= tdαe−α df(t)
dt

,
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where d·e is the ceil function, i.e. the dαe is the smallest integer no larger than α. It is clear
that dαe = 1 for α ∈ (0, 1]. Hence, equation (2.1) can be written as

Tα(f)(t) = lim
ε→0

f(t + εt1−α)− f(t)
ε

= t1−α df(t)
dt

for all t > 0.

The following theorem gives the properties of the definition (Khalil et al. [9]).

Theorem 2.1 (See [9]). If the functions f and g are differentiable, α∈ (0,1], then we

have:

1. Tα(f)(t) = t1−α df(t)
dt ;

2. Tα(mf + ng) = mTα(f) + nTα(g) for all m,n ∈ R;

3. Tα(f.g) = fTα(g) + gTα(f);

4. Tα

(
f
g

)
= gTα(f)−fTα(g)

g2 ;

5. Tα(c) = 0 for all constant c;

6. Tα(tp) = ptp−α for all p ∈ R;

7. Tα(ecx) = cx1−αecx for all c ∈ R.

Proof: The proof is omitted.

2.2. The conformable fractional accumulation and difference

New definitions to calculate the conformable fractional accumulation (CFA) and the
conformable fractional difference (CFD) are given by Ma et al. [16] as follows.

Definition 2.2 (see [16, 28]). The conformable fractional difference (CFD) of f with
α order is defined as

(2.2) ∆αf(k) = k1−α∆f(k) = k1−α[f(k)− f(k − 1)]

for all k ∈ N+, α ∈ (0, 1], and

(2.3) ∆αf(k) = kdαe−α∆n+1f(k) = kdαe−α
k∑

j=k−dαe

(−1)k−j

(
dαe

k − j

)
f(j)

for all k ∈ N+, α ∈ (n, n + 1].

Definition 2.3 (see [16]). The conformable fractional accumulation (CFA) of f with
α order is defined as

(2.4) ∇αf(k) = ∇
(

f(k)
k1−α

)
=

k∑
j=1

f(j)
j1−α

for all k ∈ N+, α ∈ (0, 1], and

(2.5) ∇αf(k) = ∇n+1

(
f(k)

kdαe−α

)
for all k ∈ N+, α ∈ (n, n + 1].
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3. PRESENTATION OF EXPONENTIAL CONFORMABLE FRACTIONAL
GREY MODEL

In this section, a novel exponential conformable fractional grey model, named
ECFGM(1, 1), is introduced, which optimizes the classical CFGM(1, 1) model with an ex-
ponential grey action quantity.

3.1. Formulation of proposed fractional grey model

The original series X(0) =
(
x(0)(1), x(0)(2), ..., x(0)(n)

)
is given. CFA with α order is

calculated as follows:

(3.1) X(α) =
(
x(α)(1), x(α)(2), ..., x(α)(n)

)
,

where

(3.2) x(α)(k) = ∇αx(0)(k) =
k∑

i=1

[
dαe
k − i

]
x(0)(i)
idαe−α

, α ∈ R+,

where
[
dαe
k−i

]
= Γ(k−i+dαe)

Γ(k−i+1)Γ(dαe) = (k−i+dαe−1)!
(k−i)!(dαe−1)! (see [28]).

Definition 3.1. The first-order whitening differential equation of the ECFGM(1, 1) is
defined as

(3.3)
dx(α)(t)

dt
+ ax(α)(t) = b + ce−t,

where a is a development coefficient, b is called driving coefficient and ce−t is an exponential
grey action quantity. So that, the monotone decreasing term ce−t will suppress the growth
of the prediction error.

When α = 1, the ECFGM(1, 1) model yields the EXGM(1, 1) [9]. In addition, the
proposed model can be translated to the conventional CFGM(1, 1) model for c = 0 [23].

3.2. Parameters estimation

Theorem 3.1. For the computed CFA and the value of fractional order, the system

parameters a, b and c of the ECFGM(1, 1) satisfy the following equation:

(3.4) [a, b, c]> = (B>B)−1B>Y,

where the matrix B and Y are

(3.5) B =


−0.5(x(α)(2) + x(α)(1)) 1 (e− 1)e−2

−0.5(x(α)(3) + x(α)(2)) 1 (e− 1)e−3

...
...

...

−0.5(x(α)(n) + x(α)(n− 1)) 1 (e− 1)e−n

, Y =


x(α)(2)− x(α)(1)
x(α)(3)− x(α)(2)

...

x(α)(n)− x(α)(n− 1)

.
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Proof: Integrating both sides of the whitening equation (3.3) within the interval
[k − 1, k] the discrete form of ECFGM(1, 1) model is obtained as follows:

(3.6)

k∫
k−1

dx(α)(t)
dt

dt + a

k∫
k−1

x(α)(t)dt =

k∫
k−1

(b + ce−t)dt.

According to the Newton–Leibniz formula, the first integral of (3.6) can be expressed
as

(3.7)

k∫
k−1

dx(α)(t)
dt

dt = x(α)(k)− x(α)(k − 1).

It is clear that the integration term
k∫

k−1

x(α)(t)dt denotes the area between t-axis and the curve

x(α)(t) in the interval [k − 1, k]. Then, using the generalized trapezoid formula as in many
recent studies [23, 25, 16, 29, 26, 17, 10, 21], the second integral of (3.6) can be obtained as

(3.8) a

k∫
k−1

x(α)(t)dt =
a

2

(
x(α)(k) + x(α)(k − 1)

)
and the right side of (3.6) is equal to

(3.9)

k∫
k−1

(b + ce−t)dt = b + c(e1−k − e−k).

Substituting equations (3.7)–(3.9) into equation (3.6), it can be written as

(3.10)
(
x(α)(k)− x(α)(k − 1)

)
+

a

2

(
x(α)(k) + x(α)(k − 1)

)
= b + c(e1−k − e−k),

where k = 2, 3, ..., n.

The linear equations system (3.10) can be written as follows:

(3.11)

x(α)(2)− x(α)(1) = −0.5a(x(α)(2) + x(α)(1)) + b + c(e−1 − e−2)

x(α)(3)− x(α)(2) = −0.5a(x(α)(3) + x(α)(2)) + b + c(e−2 − e−3)
...

...
...

x(α)(n)− x(α)(n− 1) = −0.5a(x(α)(n) + x(α)(n− 1)) + b + c(e1−n − e−n)

and system (3.11) can be written as

(3.12) Y = Bρ,

where

(3.13) B =


−0.5(x(α)(2) + x(α)(1)) 1 (e− 1)e−2

−0.5(x(α)(3) + x(α)(2)) 1 (e− 1)e−3

...
...

...
−0.5(x(α)(n) + x(α)(n− 1)) 1 (e− 1)e−n

, Y =


x(α)(2)− x(α)(1)
x(α)(3)− x(α)(2)

...
x(α)(n)− x(α)(n− 1)


and ρ = [a, b, c]> in which n is the number of samples used to construct the model.
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The parameter estimation of the ECFGM(1, 1) model using the least squares method
can be obtained. For the estimated value of the parameter sequence ρ, the x(α)(k)−x(α)(k−1)
on the left side of the equation (3.11) is replaced with −0.5a(x(α)(k) + x(α)(k − 1)) + b +
c(e1−k − e−k), the error sequence ε = Y −Bρ is obtained. Here,

(3.14) ε = [ε2, ε3, ..., εn]>

and εk represents the error for each equation in the system (3.11) for k = 2, 3, ..., n.

Notice, S(ρ) is defined as the sum of squares of errors, which yields

(3.15)

S(ρ) =
n∑

k=2

ε2k

= ε>ε

= (Y −Bρ)>(Y −Bρ)

= (Y> − ρ>B>)(Y −Bρ)

= Y>Y − Y>Bρ− ρ>B>Y + ρ>B>Bρ

= Y>Y − 2ρ>B>Y + ρ>B>Bρ.

The parameter vector ρ = [a, b, c]> that minimize S(ρ) satisfies

(3.16)
∂S

∂ρ
= −2B>Y + 2B>Bρ = 0,

so

(3.17) B>Y = B>Bρ.

Thus

(3.18) ρ = (B>B)−1B>Y,

or

(3.19) [a, b, c]> =
(
B>B

)−1
B>Y.

Thence the proof is completed by using the least square estimation method.

3.3. Response function and restored values

Theorem 3.2. The discrete form of the response function of ECFGM(1, 1) model is

given as

(3.20) x̂(α)(k) =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea(1−k) +

b

a
+

c

a− 1
e−k,

where k = 2, 3, ..., n.



176 U. Erdinc, H. Bilgil and Z. Ozturk

Proof: It is clear that the solution of the first order linear whitening differential equa-
tion (3.3) can be obtained as

(3.21) x(α)(t) =
b

a
+

c

a− 1
e−t + de−at,

where d is integral constant. By using the initial condition x(α)(1) = x(0)(1), the constant d

can be found as

d =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea.

Therefore the grey prediction model equation (3.21) can be obtained as

x̂(α)(t) =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea(1−t) +

b

a
+

c

a− 1
e−t

and the discrete form of the response function can be written as

x̂(α)(k) =
(

x(0)(1)− b

a
− c

a− 1
e−1

)
ea(1−k) +

b

a
+

c

a− 1
e−k.

The proof is completed.

Theorem 3.3. Then, restored values can be given as

(3.22) x̂(0)(k) = ∆αx̂(α)(k) = kdαe−α∆n+1x̂(α)(k), α ∈ (n, n + 1],

where k = 2, 3, ..., n.

Proof: From (3.2) it can be seen that x̂(α)(k) = ∇αx̂(0)(k). If we apply the inverse
operator ∆α, it is obtained as

x̂(0)(k) = ∆αx̂(α)(k)

and from Definition 2.2 it can be written as

x̂(0)(k) = ∆αx̂(α)(k) = kdαe−α∆n+1x̂(α)(k), α ∈ (n, n + 1].

This completes the proof.

It is clear that, the restored values for α ∈ (0, 1] can be written as

(3.23) x̂(0)(k) = k1−α(x̂(α)(k)− x̂(α)(k − 1)).

3.4. Evaluative accuracy of the forecasting model

The relative percentage error (RPE) and the mean absolute percentage error (MAPE)
are used to evaluate the fitting and predicting performance of ECFGM(1, 1). The lowest
MAPE value indicates the best prediction model. They are defined as follows:

RPE(k) =

∣∣∣∣∣ x̂(0)(k)− x(0)(k)
x(0)(k)

∣∣∣∣∣× 100%,(3.24)

MAPE =
1
n

n∑
k=1

RPE(k),(3.25)

where x(0)(k) is the original series, and x̂(0)(k) is the predicted series.
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For a raw sequence with n samples, the metric MAPEfit is defined as the fitting perfor-
mance metric while MAPEpre is defined as a prediction performance metric. Mathematically,
they can be formulated as:

MAPEfit =
1
p

p∑
k=1

RPE(k),(3.26)

MAPEpre =
1

n− p

n∑
k=p+1

RPE(k),(3.27)

where p represents the number of samples used for fitting a model while the rest of the raw
sequence is used to examine the prediction accuracy of the model. The total MAPE is given
in (3.25) and it is used to evaluate the whole performance of a model.

3.5. Computation steps

The computation steps of ECFGM(1, 1) model with given sample and α can be sum-
marized as follows:

Step 1: Create a raw data set
(
x(0)(1), x(0)(2), ..., x(0)(n)

)
;

Step 2: Take as α = 0.01 to the initial value and designate an initial value of MAPEmin;

Step 3: Compute the CFA series with α order of the given raw data set by using (3.2);

Step 4: Build the matrix B and Y using (3.5);

Step 5: Calculate the parameters a, b and c using (3.4);

Step 6: Calculate the predictedvalues and the response functionusing (3.20) and (3.22);

Step 7: Calculate the mean absolute percentage error (MAPE) using (3.25);

Step 8: If MAPE is greater than MAPEmin, set α as α = α + h (where h is the step
size), otherwise take as MAPEmin = MAPE and go to Step 3; where step 8
is continued until α reaches the predetermined value.

Brute Force is a straightforward approach, which is also known as the Naive algorithm,
for solving optimization problems that rely on sheer computing power and trying every possi-
bility rather than advanced techniques to improve efficiency. Unlike some of the other popular
swarm intelligence algorithms, Brute Force is applicable to a very wide variety of problems
and it is an effective and easy method to find the optimum value in the solution interval.

Despite the convergence speed advantages of other algorithms, it is a disadvantage that
they may focus on the local extremum point rather than the global extremum. However,
the Brute Force algorithm scans the whole domain, evaluates each point, then calculates the
MAPE’s on these points and reaches optimum parameters without any delusion.

In this paper, our purpose is to find the optimum parameter α that minimizes the
model’s mean absolute percentage error (MAPE). Therefore we enumerate all the values in
an interval with step 0.01. For suitability, in the next section, α will be generated in (0, 1]. In
this way, all the α points in the whole interval and the MAPE’s at these points are calculated.
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Hence α, which give the minimum of the calculated MAPE’s, is determined as the optimum
parameters. The computational steps mentioned above are employed for all the α points.

From equation (2.5), as the α value approaches 1, the CFA series approaches the 1-AGO
series, and as the α value approaches 2, the CFA series approaches the 2-AGO series. Obviously,
it can be seen that for each point the CFA value x(α)(k) becomes larger with larger α, and
the growing speed also increases with larger α [16].

According to the Theorem 3.3, if α ∈ (0, 1] the following first-order fractional difference
must be calculated to evaluate the x̂(0)(k) values:

(3.28) x̂(0)(k) = k1−α(x̂(α)(k)− x̂(α)(k − 1)),

where k = 2, 3, ..., n. This shows that the error in x̂(0)(k) values is due to two points of the
CFA series. If α ∈ (1, 2], the following second-order fractional difference must be calculated
to evaluate the x̂(0)(k) values:

(3.29) x̂(0)(k) = k2−α∆2x̂(α)(k) = k2−α(x̂(α)(k)− 2x̂(α)(k − 1) + x̂(α)(k − 2)),

where k = 3, ..., n. If k = 2, x̂(α)(0), x̂(α)(1), and x̂(α)(2) values are needed to determine the
value of x̂(0)(2). However, according to equation (3.20), since there is no x̂(α)(0) value in
the CFA series, the second-order difference can only be calculated for k = 3, 4, ..., n. In this
case, although x̂(α)(1) is known as x(0)(1) according to the initial value, the value of x̂(α)(2)
can only be calculated with the help of a first-order fractional difference. This will increase
the total error rate. According to equation (3.29), the error of restored value is effected by
the errors of the CFA series with three points, which will be another factor that increases
the error rate. Moreover, 99% optimal α values in the CFGM model are in the range of
[0, 1). In the FGM model, 72% optimal α values are in the range of (0, 1) (for more detailed
information, see [16]). In the ECFGM model, 89% optimal α values are in the range of (0, 1)
and 10% optimal α are obtained at 1.

All these processes are completed in about five seconds by writing a simple FORTRAN
code.

4. VALIDATION OF THE ECFGM(1,1)

In this section, two instructive examples are given to demonstrate the efficacy of the
proposed model.

4.1. Example A

In this subsection, a numerical example is presented to show the computational steps of
the ECFGM(1, 1) model with the raw data X(0)(k) = (13.21, 18.82, 26.45, 36.04, 42.34, 51.00,

59.12). In this example, we select the raw data as a monotone increasing series.
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4.1.1. Selecting the optimal α

By using the Brute Force strategy, calculated MAPEs with α in the interval (0, 1] with
step 0.01 are given in Figure 1. It can be seen that the values of MAPE increase when
the α moves away from its optimum value. For this example, the optimal α is obtained at
α = 0.14, and the MAPE is calculated for the optimal α as MAPE = 0.9843. It is seen that
the optimal α is easily obtained by using the Brute Force strategy. Furthermore, it is clear
that the performance of the proposed ECFGM(1, 1) model is respectable.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

α

MA
PE

A L P H A

Figure 1: MAPEs of ECFGM model with α in (0, 1] for example A.

4.1.2. Computing the CFA of the original series and modelling the ECFGM(1,1)

Computation of the CFA of the original series is the first step to build the ECFGM(1, 1)
model. For the optimum α = 0.14, the conformable fractional accumulation series can be
obtained using (3.2) as X(0.14)(k) = (13.2100, 23.5789, 33.8615, 44.8014, 55.4095, 66.3329,

77.4234).

The matrices B and Y can be constructed as

B =



−18.3945 1 0.2325
−28.7202 1 0.0855
−39.3314 1 0.0315
−50.1054 1 0.0116
−60.8712 1 0.0043
−71.8781 1 0.0016

, Y =



10.3689
10.2826
10.9399
10.6081
10.9235
11.0905

.
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Then we obtain the parameters â, b̂ and ĉ using the least squares solution as

[a, b, c]> =
(
B>B

)−1
B>Y

and
a = −0.0136199261,
b = 10.0950218700,
c = −0.0670244100.

By substituting the parameters into the response function equation (3.20) we have

(4.1) x̂(α)(k) = 754.3807 e−0.0136(1−k) − 741.1951 + 0.06612 e−k.

Then the restored can be obtained using (4.1) by k from 1 to 7 as

X̂(0.14)(k) = (13.2100, 23.5396, 34.0206, 44.6491, 55.4247, 66.3485, 77.4223).

Then the restored values can be obtained using the CFD in (3.23) as

X̂(0)(k) = (13.2100, 18.7485, 26.9607, 35.0141, 43.0085, 51.0018, 59.0312).

The original raw series X(0)(k) and predicted values X̂(0)(k) are plotted in Figure 2.

1 2 3 4 5 6 7

1 0

2 0

3 0

4 0

5 0

6 0 −•− E C F G M  

k

−•− R a w  d a t a  

Figure 2: Actual values and forecasting values of example A.

4.2. Example B

Different from example A, the raw data are not a monotone increasing series here. The
computational mechanism is similar to example A. In this example, the raw data select as
X(0)(k) = (120.21, 131.83, 143.45, 150.02, 134.34, 121.04, 110.15).
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4.2.1. Selecting the optimal α

The calculated MAPEs with α in the interval (0, 1] with step 0.01 is given in Figure 3.
For this example, the minimum MAPE is calculated at optimal α as α = 0.89. The MAPE is
calculated for the optimal α as MAPE = 1.1836. It is seen that the prediction performance
of the proposed ECFGM(1, 1) model is successful again.
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Figure 3: MAPEs of ECFGM model with α in (0, 1] for example B.

4.2.2. Computing the CFA of the original series and modelling the ECFGM

Computation of the conformable fractional accumulation series of the original series is
the first step to build the ECFGM model. For α = 0.89, the CFA series can be obtained using
(3.2) as X(0.89)(k) = (120.2100, 242.3621, 369.4831, 498.2851, 610.8281, 710.2157, 799.1407).

The matrices B and Y can be constructed as

B =



−181.2861 1 0.2325
−305.9223 1 0.0855
−433.8841 1 0.0315
−554.5566 1 0.0116
−660.5219 1 0.0043
−754.6782 1 0.0016

, Y =



122.1521
127.1210
127.1210
112.5430
99.3876
88.9250

.

Then we obtain the parameters â, b̂ and ĉ using the least squares solution as

[a, b, c]> =
(
B>B

)−1
B>Y

and
a = 0.1266697621,
b = 184.88810740,
c = −174.9875634.
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By substituting the parameters into the response function equation (3.20) we have

(4.2) x̂(α)(k) = −1413.1086 e0.12667(1−k) + 1459.6073 + 200.3681 e−k.

Then the restored can be obtained using (4.2) by k from 1 to 7 as

X̂(0.89)(k) = (120.2100, 241.7407, 372.7221, 496.9157, 609.5692, 710.0100, 798.9388).

Then the restored values can be obtained using the CFD in (3.23) as

X̂(0)(k) = (120.2100, 131.1594, 147.8062, 144.6525, 134.4718, 122.3227, 110.1547).

The original raw series X(0)(k) and predicted values X̂(0)(k) are plotted in Figure 4.
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Figure 4: Actual values and forecasting values of example B.

5. VALIDATION OF ECFGM(1,1) WITH A REAL CASE

One of the renewable clean energy sources is wind. Generally, comparing with the many
other energy sources, producing energy using wind has fewer effects on the environment.
There is no released emission that can pollute the air or water and they do not require
water for cooling. Wind turbines may also have the benefit that reduce the amount of power
generation from fossil fuels, which outcomes in lower total air pollution and carbon dioxide
emissions that could help solve the shortage problem of energy. From prehistoric to today,
human beings have used wind energy for sailing, windmills, and wind turbines. Electric
generators convert wind energy to electrical energy [16].

One of the biggest countries with large land mass and coastline is China has rich wind
resources. With regard to the evaluations by China Meteorological Administration, based on
the relatively low height of 10 m above ground, the total theoretical wind power reserves in
China 4350 GW, while the technically exploitable wind resources estimated at 297 GW [9].
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In this section, we use the novel ECFGM(1, 1) model to predict wind energy consump-
tion in China. The data set from [34, 2, 6] is used to test for the efficacy and applicability of
the proposed grey model. Furthermore, the ECFGM model compared with the six effective
models, including the GM(1, 1), EXGM(1, 1), FAGM(1, 1), FAGMO(1, 1, k), PFAGM(1, 1)
and CFGM(1, 1). The response function of the grey models can be given as follows.

The response function of standard GM(1, 1) model is obtained as

(5.1) x(1)(k) = 56.12166e0.22483(k−1) − 49.87166.

The response function of EXGM(1, 1) is

(5.2) x(1)(k) = 67.78567e−0.20588(1−k) − 70.97226.

For FAGM(1, 1) model, the response function is

(5.3) x(0.36872)(k) = 37.55924e0.17072(k−1) − 31.35924.

The response function of FAGMO(1, 1, k) is

(5.4) x(1.13366)(k) = 283.1282e0.13851(k−1) − 30.4471k − 246.4811.

The response function of PFAGM(1, 1) is,

(5.5) x(0.17874)(k) = 19.69290e0.17874k − 14.47094e−0.08124(k−1) − 2.87604.

The response function of CFGM(1, 1) model is obtained as

(5.6) x(0.07)(k) = 81.63469e0.06355(k−1) − 75.38469.

Here, the optimal value of α is obtained as 0.07 by using the Brute Force strategy for the
CFGM(1, 1).

The response function of ECFGM(1, 1) model is obtained as

(5.7) x(0.3319)(k) = 66.64788e0.10331(k−1) + 3.98468e−k − 61.86377.

In addition, the mean absolute percentage error (MAPE) is used to assess the prediction
accuracy of these grey models. Firstly, we split the raw sequence into two groups to build a
model and test the model. The first group, including the consumption from 2009 to 2017, is
used to build models for the seven grey models separately. The second group, including wind
energy consumption from 2018 to 2020, is used to verify the prediction accuracy of these grey
models. In this section we enumerate all the values in the interval [0, 2] with step 0.0001,
then use the computational steps presented in Section 3.4 and select the α corresponding to
the minimum MAPEfit as the optimal value. Optimum α is found as α = 0.3319 by using
the Brute Force strategy and values of α and calculated MAPEs are shown in Figure 5.
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Figure 5: MAPEs of ECFGM model for the real data set. (a) α ∈ (0, 1]; (b) α ∈ (1, 2].

From Figure 5 it is clear that the values of MAPE increase when the α moves away from
its optimum value. The optimal parameters are calculated as α = 0.3319, a = −0.10331,
b = 6.39111 and c = −4.39633. The prediction results and the mean absolute percentage
errors of the recent models are shown in Table 1.

Table 1: The results generated by the proposed model and other comparative grey models for
forecasting values of China’s wind energy consumption (million tonnes oil equivalent).

Year
Actual

GM(1, 1) EXGM(1, 1) FAGM(1, 1) FAGMO(1, 1, k) PFAGM CFGM ECFGM
Value

2009 6.25 6.2500 6.2500 6.2500 6.2500 6.2500 6.2500 6.2500
2010 10.10 14.1489 9.5314 10.9059 10.7861 10.8294 10.2050 10.0534
2011 15.91 17.7160 16.8448 15.9000 15.9521 15.9001 15.8554 16.0464
2012 21.72 22.1824 22.5845 21.4733 21.7572 21.5803 22.0785 22.2010
2013 31.95 27.7749 28.4425 27.8495 28.3244 28.0628 28.9531 28.8472
2014 35.32 34.7772 35.2004 35.2395 35.7864 35.5571 36.5538 36.2435
2015 42.03 43.5450 43.3416 43.8718 44.2900 44.3005 44.9565 44.5937
2016 53.64 54.5231 53.2845 54.0032 53.9997 54.5677 54.2405 54.0796
2017 66.75 68.2690 65.4787 65.9310 65.1024 66.6817 64.4903 64.8821

MAPEfit 8.4111 3.6099 3.1595 3.1901 3.1104 3.0416 2.8418

2018 82.82 85.4804 80.4526 80.0030 77.8110 81.0239 75.7962 77.1931
2019 93.31 107.0310 98.8466 96.6289 92.3686 98.0478 88.2555 91.2232
2020 107.30 134.0148 121.4447 116.2921 109.0538 118.2925 101.9728 107.2063

MAPEpre 14.2714 7.3248 5.1128 2.8971 5.8303 6.2875 3.0392

MAPE 9.8762 4.5386 3.6478 3.1169 3.7904 3.8531 2.8912
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According to the Table 1, the essential conclusions can be drawn as follows:

i. Table 1 reveals that, the seven grey models’ MAPEfit values are 8.4111%, 3.6099%,
3.1595%, 3.1901%, 3.1104%, 3.0416% and 2.8418%, respectively. So that, in the
fitting period, the fitting performance of the ECFGM(1, 1) model is best.

ii. The MAPEpre values of seven models are calculated as 14.2714%, 7.3248%,
5.1128%, 2.8971%, 5.8303%, 6.2875% and 3.0392%, respectively. At this point,
the FAGMO(1,1, k) model has the smallest MAPEpre value while the ECFGM(1,1)
model has the second smallest MAPEpre.

iii. It is observed from Table 1 that for the whole period, the total MAPEs of seven
models are 9.8762%, 4.5386%, 3.6478%, 3.1169%, 3.7904%, 3.8531% and 2.8912%,
respectively. Thence, in the whole period, the performance of the ECFGM(1, 1)
model is the best (see Figure 6).
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Figure 6: Total MAPE values of the models.

iv. The wind energy consumption of China can be estimated properly with the pro-
posed ECFGM(1, 1) model. Hence, the forecasting values of wind energy con-
sumption of China are given in Table 2.

Table 2: Forecasted wind energy consumption of China.

Years
Forecasting values

of wind energy consumption

2021 125.4042
2022 146.1105
2023 169.6550
2024 196.4082
2025 226.7862
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It is seen from Figure 7 that the actual (red line) and forecasted (black line) values of
wind energy consumption of China are matched to each other.
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Figure 7: Actual, fitting and forecasting values of wind energy consumption of China.

6. CONCLUSION

Since the fractional calculations are most important to the grey prediction model, there
are many scholars proposing new methods on the fractional grey models. Hence, a novel op-
timization for the CFGM(1, 1) and EXGM(1, 1) models have been developed in this study.
The results of the numerical examples indicated that the proposed grey prediction model aims
to achieve very effective performance. The structural parameters (a, b and c) of the model
can be dynamically adjusted according to the real world systems. The optimal value of frac-
tional order, α, is calculated by using the brute-force approach. The proposed ECFGM(1, 1)
model is suitable for predicting the data sequence with the characteristics of non-homogeneous
exponential law. Comparison results indicate, ECFGM(1,1) performs better than those achieved
by the other grey models such as GM(1, 1), EXGM(1, 1), FAGM(1, 1), FAGMO(1, 1, k),
PFAGM(1, 1) and CFGM(1, 1). However, they can all be employed for estimations.

Wind energy with cleanliness and pollution-free will have a positive attitude on global
energy transformation. Because of this, research on more accurate prediction of wind energy
consumption is quite important for wind power generation. Therefore, the wind energy
consumption of China is predicted successfully by using a novel proposed fractional grey model
based on the conformable fractional difference and conformable fractional accumulation in
the paper. The forecasting results show that wind energy consumption of China will develop
rapidly in recent years, and will reach approximately 200 million tones oil equivalent by 2023.

Using two examples and a case study in Sections 4 and 5, we show that the MAPE of
the ECFGM(1, 1) model is very low.

The proposed ECFGM(1, 1) model may play an important role in enriching the theoret-
ical system of grey forecasting theory and it can be used for other real cases of small sample
forecasting in the future. Besides, the combination of other fractional forecasting models, es-
pecially for the time series with highly effective, is also an interesting direction for next studies.
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