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1. INTRODUCTION

In survival studies, the event of interest can occur multiple times on the same
subject. Such outcomes are termed as recurrent events. Recurrent event data are com-
mon in fields such as public health, medicine, reliability, social sciences, and insurance.
Examples in biomedicine include the recurrence of tumors in cancer patients, repeated
hospitalizations of patients with a specific disease, and recurrence of caries in oral health
studies. In engineering and reliability, the recurrence of a crack in concrete structures,
failure of an electronic system, and software bugs are examples. Various methods for
analyzing recurrent event data are available in many literature, examples include [6],
[8], and [9]. A comprehensive review of recurrent event data analysis is given in [2].

There are situations in which a study unit may experience an event due to multi-
ple causes. For example, an electronic system may experience a breakdown due to the
failure of any of the components in that system. To model and characterize the marginal
event processes that generate the particular type of events, the cause specific sub distribu-
tion functions and the cause specific hazard rate functions are generally used. The cause
specific hazard rate function gives the instantaneous probability of failure due to a spe-
cific cause, while the cause specific sub-distribution function measures the probability
of failure due to a specific cause before a given time. [11] and [12] have studied semi-
parametric inferences of recurrent event data with multiple causes. A non-parametric
method for estimating the system lifetime distribution with recurrent competing risks
data was studied by [15]. [3] discussed the non-parametric tests in the context of the
recurrent event competing risks based on the mean number of events, and [13] proposed
a non-parametric test for comparing cause specific cumulative incidence functions.

In many lifetime studies, the recurrence of events may not be recorded throughout
the study period. Even though the event process is continuous in time, the recurrence sta-
tus of some systems is available in separate observation windows with gaps in between.
For example, in a clinical trial study, patients may enter and leave the study multiple
times, resulting in gaps in their follow-up tenure. No events are recorded during these
gaps in the follow-up window, and the exact recurrence times are recorded when the
patient is under monitoring. Such data is referred to as window-observation recurrence
data. [17] provides an example of window observation data utilizing the U.S. Army’s
Field Exercise Data Collection (FEDC) program, which is overseen by the Army Ma-
teriel Systems Analysis Activity (AMSAA). The FEDC program tracks the replacement
rates of parts for military vehicles during field training exercises, where distinct vehicles
within the fleet engage in various exercises with intervals in between. Some vehicles
may not participate in every FEDC exercise, and during the intervals between exercises,
they accumulate mileage from non-exercise activities and other unobserved field exer-
cises. Consequently, recurrences may occur in these intervals but remain unrecorded.
The observation windows and the gaps can vary for different observational units, and
also, the length of each observation window and the gaps between the windows need not
be the same.

In typical recurrence data with left and/or right censoring, each system is asso-
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ciated with a single observation window. However, for window-observation recurrence
data, multiple disjoint observation windows can exist for each system. These windows
can have random lengths, and the length of the gaps between them may also vary ran-
domly. Additionally, the beginning or ending time points across windows for different
observational units can differ. Window-observation data differ from interval-grouped re-
current event data, where the number of events in time intervals is recorded but the exact
times of recurrences are not specified, and there are no gaps between intervals. [17] an-
alyzed such data in terms of mean cumulative function. They proposed non-parametric
estimation methods for handling window-observation recurrence data. The asymptotic
properties of the non-parametric estimator for the mean function are studied in [18]. [5]
considered the case when information on the observation gap is incomplete, that is, the
starting time of intermittent dropout is known, but the terminating time is not available,
and they modeled it in terms of an interval-censored mechanism. Regression analysis
of recurrent event data with repeated observation gaps with unknown termination times
of observation gaps was studied by [4]. [16] focused on window-censored data, where
only events within a specific interval are documented. They developed the likelihood
function for a model where the distributions of inter-recurrence intervals within a single
path are not required to be identical and may be linked to covariate information.

In this study, we focus on the situation in which a unit under observation can
experience more than one type of failure, and also, there are intermittent dropouts that
result in observation gaps during which no recurrent events are observed. The mean
cumulative function corresponding to different causes is used to model this problem, and
a test is proposed to compare the effect of various causes of failures on the recurrence
process.

The article is organized as follows. In Section 2, we introduce cause specific mean
function for the window-observation recurrence data. We propose a non-parametric esti-
mator for the cause specific mean function, and the asymptotic properties of the estimator
are discussed. The test procedure for the mean functions due to different causes is dis-
cussed in Section 3. Section 4 discusses the simulation studies performed for assessing
the finite sample behaviors of the proposed estimator. We put the empirical power to
check the efficiency of the test. The methods are then illustrated using a real life data set
in Section 5. Finally, Section 6 presents the major conclusion of the study.

2. NON-PARAMETRIC INFERENCE PROCEDURES

Consider a study on n individuals exposed to the recurrent events due to {1,2, . . . ,K}
different causes. Let Nk(t) denote the cumulative number of events due to cause k up to
time t, k = 1,2, . . . ,K. Then the cause specific mean function is defined as

(2.1) µk(t) = E[Nk(t)]; k = 1,2, . . . ,K.

Then µk(t) in (2.1) is interpreted as the expected number of cumulative events due to
cause k up to time t, k = 1,2, . . . ,K. Assumptions required for the non-parametric esti-



4 P. G. Sankaran and S. Hari

mation of mean cumulative function were described in [9] and the same for the window-
observation scenario were covered in [17]. These assumptions are briefed below.

i) Target population should be clearly specified and the sample units are a simple
random sample from this population.

ii) The population cause specific mean function exists up to the greatest censoring
and is zero at time zero.

iii) The stochastic process that generates the recurrences and the observation windows
are independent.

iv) The size of the risk set must be positive up to the maximum study time.

Let mk denote the number of unique event times due to cause k. Thus t1, t2, . . . ,
and tmk are the unique event times for cause k, k = 1,2, . . . ,K. Then a non-parametric
estimator of the cause specific mean function is given by

(2.2) µ̂k(t j) =
j

∑
l=1

[
∑

n
i=1 δi(tl)dki(tl)
∑

n
i=1 δi(tl)

]
; j = 1,2, . . . ,mk, k = 1,2, . . . ,K,

where

δi(tl) =

{
1, if individual i is under observation in a time window at tl
0, otherwise

,

and dki(tl) is the number of events due to cause k at time tl for the individual i. De-
note dk·(tl) = ∑

n
i=1 δi(tl)dki(tl), total number of events at tl due to cause k and δ·(tl) =

∑
n
i=1 δi(tl), total number of units at risk at time tl . Then (2.2) can be written as

(2.3)

µ̂k(t j) =
j

∑
l=1

dk·(tl)
δ·(tl)

=
j

∑
l=1

d̄k(tl); j = 1,2, . . . ,mk, k = 1,2, . . . ,K.

The size of the risk set at time tl is calculated by taking into account the gaps between
observation windows and the censoring.

2.1. Asymptotic properties

Assume that the cause specific mean function µk(t) is differentiable. Then the
recurrence rate at time t due to cause k is given by νk(t)=

dµk(t)
dt , k = 1,2, . . . ,K. Let there

be wi observation windows for the individual i, i = 1,2, . . . ,n. If tmax denotes the largest
observation time among all n units, then the number of units at risk, δ·(t) = ∑

n
i=1 δi(t),

is a piece-wise constant over (0, tmax]. To ensure a non zero risk set throughout the
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study period, we assume that the overlap of the set of observation windows of all the n
units leaves no complete gaps in the study timeline. If (t∗1L, t

∗
1U ],(t

∗
2L, t

∗
2U ], . . . ,(t

∗
bL, t

∗
bU ]

be the b intervals in which δ·(t) is constant, then t∗1L = 0, t∗bU = tmax and t∗jL = t∗( j−1)U for
j = 2,3, . . . ,b. Let τ < ∞ be the ending time for all the windows with tmax ≤ τ for all n
and tmax → τ as n → ∞. Then for this window-observation recurrence data, [18] showed
that δ·(t) follows a Binomial(n, p(t)) distribution, where p(t) is the probability that a
unit is observed at time t, with p(t)> 0 for all t ∈ (0, tmax].

To establish the uniform consistency and the asymptotic normality of the estima-
tor, Theorem IV.1.1 and Theorem IV.1.2 of [1] are employed.

Theorem 2.1. Let t ∈ (0,τ] and assume that, as n → ∞,

(2.4)
∫ t

0

I[δ·(u)> 0]
δ·(u)

νk(u)du P→ 0

and

(2.5)
∫ t

0
{1− I[δ·(u)> 0]}νk(u)du P→ 0.

Then, as n → ∞,

(2.6) sup
t∈[0,τ]

|µ̂k(t)−µk(t)|
P→ 0,

where µ̂k(t) is the non-parametric estimator of µk(t), k = 1,2, . . . ,K.

Theorem 2.1 can be used to show that the estimator of cause specific mean func-
tion given in (2.2) is uniformly consistent on compact intervals. It can be verified that
the conditions (2.4) and (2.5) are satisfied by the estimator and hence the uniform con-
sistency can be established. The proof for the same is similar to the one given in [18]
and can be referred.

Theorem 2.2. Let t ∈ (0,τ] and assume that there exist a sequence of positive
constants {an}, increasing to infinity as n → ∞, and non-negative function g(·) such that
νk(u)/g(u) is integrable over [0, t] for k = 1,2, . . . ,K. Assume the following.

(A) For each s ∈ [0, t] and k = 1,2, . . . ,K,

(2.7) a2
n

∫ s

0

I[δ·(u)> 0]
δ·(u)

νk(u)du P→ σ
2
k (s) as n → ∞,

where

σ
2
k (s) =

∫ s

0

νk(u)
g(u)

du.
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(B) For all ε > 0 and k = 1,2, . . . ,K,

(2.8) a2
n

∫ t

0

I[δ·(u)> 0]
δ·(u)

νk(u)I
{

an
I[δ·(u)> 0]

δ·(u)
> ε

}
du P→ 0 as n → ∞.

(C) For k = 1,2, . . . ,K,

(2.9) an

∫ t

0
{1− I[δ·(u)> 0]}νk(u)du P→ 0 as n → ∞.

Then
an(µ̂k(t)−µk(t))

D→Uk as n → ∞

on D[0,τ], where U1,U2, . . . ,UK are independent Gaussian martingales with Uk(0) = 0
and cov(Uk(s1),Uk(s2)) = σ2

k (s1 ∧ s2). Here D[0,τ] is the Skorohod space on [0,τ], that
is, the space of right-continuous functions with left-hand limits on [0, t]; s1 ∧ s2 is the
smaller of s1 and s2.

The conditions (A),(B) and (C) of Theorem 2.2 can be verified using the meth-
ods given in [18] and hence the asymptotic normality of the estimator in (2.2) can be
established.

2.2. Non-parametric estimation in the presence of size-zero risk set intervals

Sometimes there can be time intervals in which the number of subjects at risk is
zero. Such intervals can be referred to as size-zero risk set intervals. This may lead
to a downward bias in the non-parametric estimation method proposed. To overcome
this, [17] proposed a hybrid estimator for mean cumulative function, which makes use
of the information from the non-zero risk set interval to estimate the increase in the mean
function over the size-zero risk set interval. A similar approach can be employed for the
estimation of cause specific mean function and is briefed below.

Let (t1L, t1U ],(t2L, t2U ], . . . ,(trL, trU ] be the r size-zero risk set intervals with t1L ≥ 0,
trU < tmax and t( j−1)U < t jL for j = 2,3, . . . ,r. Then (t1U , t2L],(t2U , t3L], . . . ,(trU , tmax] are
the non-zero risk set interval. The estimated cause specific mean function of cause k
increases only at time points that have events due to cause k and the increase at an event
time tl is given by d̄k(tl) =

∑
n
i=1 δi(tl)dki(tl)

∑
n
i=1 δi(tl)

as defined in (2.3). Then the estimated increase
in the cause-specific mean function over the non-zero risk set interval (t jU , t( j+1)L] is,

(2.10) d̄k·(t jU , t( j+1)L) = ∑
l:t jU<tl≤t( j+1)L

d̄k(tl).

An estimate of the cause specific recurrence rate in this interval is
d̄k·(t jU ,t( j+1)L)

(t( j+1)L−t jU ) .

To calculate the cause specific rate of a size-zero risk set interval, a weighted mean
of the recurrence rates of the two neighboring non-zero risk set intervals, weighted by
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the length of those intervals, is taken. The recurrence rate due to cause k for the jth

size-zero risk set interval (t jL, t jU ] is given by,

(2.11) ωk j =
d̄k·(t( j−1)U , t jL)+ d̄k·(t jU , t( j+1)L)

(t jL − t( j−1)U)+(t( j+1)L − t jU)
.

If the data begin with a size-zero risk set interval, the recurrence rate is estimated as that
of the first non-zero risk set interval.

Then for the jth size-zero risk set interval, the estimated increase in the cause
specific mean function is,

(2.12) d∗
k j = ωk j × (t jU − t jL).

Therefore, a non-parametric hybrid estimator for the cause specific mean function is
given by,
(2.13)

µ̂
∗
k (t) =


∑l:tl≤t d̄k(tl)+∑ j:t jU≤t d∗

k j

if t is in a non-zero risk set interval

∑l:tl≤t d̄k(tl)+∑ j:t jU≤t d∗
k j +(ωk j × (t − tiL)

if t is in a size-zero risk set interval (tiL, tiU ]

,k = 1,2, . . . ,K.

3. TEST STATISTIC

In the study of multiple modes of failure, it is always of greater interest to compare
the effect of various causes on recurrence times. We can compare the cause specific mean
functions to test whether or not the effect of all causes is identical on the recurrence
process. Now consider the testing problem,

H0 : µk(t) = µl(t) for all t > 0 and k ̸= l = 1,2, . . . ,K

against

(3.1) H1 : µk(t) ̸= µl(t) at least for some t > 0 and for any k ̸= l = 1,2, . . . ,K.

If we denote the overall mean function as µ(t), the above hypothesis can be rewrit-
ten as

H0 : µk(t) =
µ(t)

K
for all t > 0 and k = 1,2, . . . ,K

against

(3.2) H1 : µk(t) ̸=
µ(t)

K
at least for some t > 0 and for any k = 1,2, . . . ,K.

To test H0 against H1, the cause specific mean function µ̂k(t) defined in (2.2) is
taken as the estimator of µk(t). The estimator for the overall mean function µ(t) can be
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constructed by ignoring the cause of failure information as discussed in [17]. To develop
the test statistic, consider the function

(3.3) ηk(t) =
∫ t

0
w(u)

[
µ̂k(u)−

µ̂(u)
K

]
du for all k = 1,2, . . . ,K,

where w(·) is a data dependent weight function. The function ηk(·) is similar to the
one proposed by [10] and [7] in the context of comparing two independent cumulative
incidence functions. The weight function is used to compensate for the effect of cen-
soring and is also employed to enhance the efficiency of the test statistic and ensure its
asymptotic distribution-free nature, as suggested by [10]. The weight function should be
chosen such that it maximizes the power of the test.

Now we propose a test statistic Z(τ) given by

(3.4) Z(τ) = η
′(τ)Σ̂(τ)−1

η(τ),

where τ is the largest monitoring time in the study, η(τ) = (η1(τ), . . . ,ηK(τ))
′ and

Σ̂(τ)−1 is the generalized inverse of Σ̂(τ), with Σ̂(τ) as a consistent estimator of the
variance-covariance matrix Σ(τ) of η(τ). The expression for the estimator Σ̂(τ) is com-
plex and thus generally requires smoothing. In practice, Σ̂(τ) can be calculated using
bootstrap resampling technique.

To find the asymptotic distribution of Z(τ), consider

(3.5)

ηk(t) =
∫ t

0
w(u)

[
µ̂k(u)−

µ̂(u)
K

]
du

=
∫ t

0
w(u)

[
µ̂k(u)−µk(u)

]
du+

∫ t

0
w(u)

[
µk(u)−

µ(u)
K

]
du

+
∫ t

0

w(u)
K

[
µ(u)− µ̂(u)

]
du.

Under H0, µk(u) =
µ(u)

K for all t. Then

(3.6) ηk(t) =
∫ t

0
w(u)

[
µ̂k(u)−µk(u)

]
du+

∫ t

0

w(u)
K

[
µ(u)− µ̂(u)

]
du.

Since for fixed t, µ̂k(t) and µ̂(t) are asymptotically normal, ηk is asymptotically normal
with mean zero and η(τ) = (η1(τ), . . . ,ηK(τ))

′ is asymptotically a k-variate normal
with mean zero vector and variance-covariance matrix Σ(τ). Therefore, under H0, the
quadratic form Z(τ) given in (3.4) follows a chi-square distribution with K −1 degrees
of freedom. The null hypothesis given in (3.2) is rejected when Z(τ) ≥ χ2

α,K−1 where
χ2

α,K−1 is the ordinate value of chi-square distribution with K −1 degrees of freedom at
α level.
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4. SIMULATION STUDY

An extensive simulation study is conducted to evaluate the finite sample perfor-
mance of the proposed estimator and the test statistic. The study is limited to two failure
mode scenario, and recurrence times are generated using Weibull and Gompertz cause-
specific hazard functions. The following algorithm outlines the data simulation process:

1. Two cases are considered for the generation of recurrence times:

(a) Using the Weibull cause-specific hazard functions

λk(t) = θkαktαk−1,k = 1,2 with θk,αk > 0.

(b) Using the Gompertz cause-specific hazard functions

λk(t) = ρkeβkt ,k = 1,2 with ρk,βk > 0.

For simplicity, α1 = α2 = α and β1 = β2 = β are assumed in the simulation study.

2. Recurrence times are simulated from the distribution with the overall hazard func-
tion λ1(t)+λ2(t).

3. To assign failure modes associated with a simulated event time T , a binomial
experiment is run. The experiment decides with probability λ1(T )

λ1(T )+λ2(T )
for failure

mode 1 and λ2(T )
λ1(T )+λ2(T )

for failure mode 2.

4. The maximum follow-up time for each unit is fixed at time 2.

5. It is assumed that the follow-up of each unit begins with an observation window,
and this initiation is randomly generated from a Uni f orm(0.08,0.4) distribution.
The lengths of the subsequent observation windows are also randomly generated
from a Uni f orm(0.08,0.4) distribution, while the lengths of the gaps between the
windows follow a Uni f orm(0.08,0.24) distribution.

6. Recurrences falling in gaps for each unit are not considered, and only recurrences
in an observational window for each unit are included in the analysis.

We simulate 500 data with sample sizes n=50 and 100 each for different combi-
nations of (θ1,θ2,α) and (ρ1,ρ2,β ). The average of the cause specific mean functions
estimated across different iterations are presented in Figure 1 and Figure 2 for different
sample sizes along with the actual mean functions.The absolute bias and mean squared
error (MSE) of the cause specific mean functions are shown in Table 1 and Table 2,
which are small and decrease as the sample size increases.

The empirical type I error and power of the proposed test are calculated at both
1% and 5% levels of significance. The parameter combination with θ1 = θ2 and ρ1 = ρ2
gives the type I error of the proposed test and all other choices of parameter combinations
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(θ

1,
θ

2,
α

)

Time

n=50 n=100

µ̂1(t) µ̂2(t) µ̂1(t) µ̂2(t)

Absolute

bias
MSE

Absolute

bias
MSE

Absolute

bias
MSE

Absolute

bias
MSE

(0
.2

,0
.2

,2
.2

)

0.1 0.00232 0.00002 0.00303 0.00004 0.00277 0.00003 0.00285 0.00002

0.4 0.02594 0.00096 0.02320 0.00079 0.01802 0.00050 0.01457 0.00034

0.7 0.04400 0.00326 0.04249 0.00294 0.02755 0.00112 0.02993 0.00131

1.0 0.05778 0.00462 0.07198 0.00720 0.03699 0.00230 0.04974 0.00410

1.3 0.08815 0.01329 0.08670 0.01233 0.05409 0.00494 0.05948 0.00555

1.6 0.12241 0.02142 0.12409 0.02347 0.06313 0.00592 0.06600 0.00817

1.9 0.14646 0.03271 0.14965 0.03204 0.07500 0.00895 0.07438 0.00842

(0
.2

,0
.4

,2
)

0.1 0.00337 0.00005 0.00488 0.00005 0.00292 0.00002 0.00493 0.00003

0.4 0.02341 0.00077 0.04511 0.00292 0.01658 0.00045 0.02794 0.00121

0.7 0.04669 0.00303 0.06383 0.00624 0.02952 0.00141 0.05062 0.00373

1.0 0.07269 0.00782 0.10479 0.01570 0.04803 0.00375 0.06855 0.00737

1.3 0.09093 0.01299 0.11231 0.01954 0.04789 0.00397 0.09759 0.01396

1.6 0.10599 0.01801 0.14735 0.02900 0.06520 0.00718 0.09465 0.01402

1.9 0.11490 0.01835 0.18701 0.05052 0.08615 0.01171 0.12482 0.02209

(0
.2

,0
.5

,2
)

0.1 0.00264 0.00002 0.00722 0.00009 0.00294 0.00002 0.00561 0.00004

0.4 0.02547 0.00104 0.04314 0.00289 0.01836 0.00054 0.02861 0.00135

0.7 0.03862 0.00243 0.05972 0.00579 0.03343 0.00162 0.05475 0.00463

1.0 0.06698 0.00658 0.08847 0.01269 0.04784 0.00342 0.07128 0.00770

1.3 0.08988 0.01273 0.12212 0.02266 0.06528 0.00602 0.09917 0.01473

1.6 0.10743 0.02123 0.16251 0.04193 0.07965 0.00878 0.11085 0.01989

1.9 0.11565 0.01929 0.15434 0.04036 0.08725 0.01063 0.12895 0.02524

(0
.4

,0
.7

,2
)

0.1 0.00618 0.00006 0.00961 0.00012 0.00553 0.00005 0.00706 0.00006

0.4 0.03772 0.00216 0.05864 0.00491 0.03006 0.00133 0.04186 0.00271

0.7 0.07467 0.00944 0.08599 0.01092 0.04562 0.00290 0.07009 0.00757

1.0 0.10002 0.01520 0.11883 0.02211 0.07594 0.00737 0.09478 0.01445

1.3 0.11585 0.02046 0.15592 0.03342 0.09810 0.01346 0.12758 0.02827

1.6 0.15117 0.03388 0.19412 0.05414 0.12189 0.02208 0.15579 0.03901

1.9 0.17583 0.04800 0.22552 0.07684 0.13617 0.02605 0.17251 0.04172

Table 1: Absolute bias and MSE of µ̂k;k = 1,2 for the Weibull model.

give the power of the test. Three different weight functions are employed, which are
(i).w(·) = 1, (ii).w(·) =

√
n and (iii).w(·) = µ̂k(·). Results are presented in Table 3 and

Table 4, and it is clear that the empirical type I error approaches the significance level
when θ1 = θ2 and ρ1 = ρ2. The rejection probabilities of the test at the 5% level under
the Weibull model, with θ1 = 0.2 and θ2 increasing from 0.2 to 0.5, are plotted in Figure
3. Similarly, under the Gompertz model, with ρ1 = 0.3 and ρ2 increasing from 0.3 to
0.6, the rejection probabilities are shown in Figure 4. Also, the test has very good power
that increases as the difference between the parameters increases. The weight function
w(·) = µ̂k(·) gives better power compared to others.
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(ρ
1,

ρ
2,

β
)

Time

n=50 n=100

µ̂1(t) µ̂2(t) µ̂1(t) µ̂2(t)

Absolute

bias
MSE

Absolute

bias
MSE

Absolute

bias
MSE

Absolute

bias
MSE

(0
.1

,0
.1

,1
.5

)

0.1 0.01201 0.00018 0.01207 0.00019 0.00886 0.00014 0.00721 0.00010

0.4 0.03242 0.00163 0.03645 0.00201 0.02378 0.00094 0.02481 0.00089

0.7 0.04957 0.00367 0.05051 0.00398 0.03410 0.00183 0.03873 0.00227

1.0 0.07282 0.00804 0.06945 0.00747 0.05784 0.00472 0.04500 0.00330

1.3 0.09463 0.01419 0.09130 0.01289 0.07351 0.00823 0.06289 0.00599

1.6 0.11684 0.02130 0.11783 0.02205 0.08795 0.01231 0.08179 0.00992

1.9 0.14055 0.03176 0.14181 0.03201 0.11550 0.01996 0.10227 0.01592

(0
.3

,0
.5

,1
.1

)

0.1 0.02066 0.00063 0.02681 0.00094 0.01293 0.00031 0.01927 0.00058

0.4 0.05937 0.00474 0.07070 0.00825 0.03730 0.00206 0.04705 0.00385

0.7 0.08685 0.01103 0.10038 0.01744 0.05888 0.00485 0.07130 0.00826

1.0 0.10684 0.01600 0.15112 0.03776 0.08144 0.01007 0.10955 0.01745

1.3 0.14177 0.03057 0.14024 0.03676 0.09694 0.01618 0.13714 0.02670

1.6 0.15256 0.03867 0.17802 0.05433 0.11517 0.02219 0.15139 0.03627

1.9 0.16660 0.04904 0.26433 0.09548 0.13815 0.02723 0.17773 0.04989

(0
.3

,0
.6

,1
.1

)

0.1 0.02073 0.00059 0.02829 0.00148 0.01433 0.00036 0.02333 0.00090

0.4 0.05059 0.00426 0.07906 0.00921 0.03823 0.00244 0.05138 0.00429

0.7 0.08411 0.01049 0.11910 0.02050 0.05953 0.00594 0.06841 0.00735

1.0 0.09824 0.01711 0.14610 0.03745 0.07124 0.00850 0.10017 0.01430

1.3 0.15494 0.03880 0.21100 0.06770 0.09728 0.01380 0.12914 0.02981

1.6 0.17544 0.04808 0.25562 0.09666 0.11209 0.01869 0.17581 0.04214

1.9 0.23005 0.07679 0.31608 0.14118 0.13288 0.02529 0.20030 0.06149

(0
.4

,0
.6

,1
.1

)

0.1 0.02242 0.00080 0.03360 0.00179 0.01661 0.00050 0.02032 0.00072

0.4 0.06641 0.00712 0.06943 0.00705 0.04521 0.00326 0.05072 0.00427

0.7 0.07941 0.00896 0.08502 0.01136 0.06455 0.00714 0.07980 0.00888

1.0 0.10688 0.02057 0.10526 0.01834 0.07837 0.00997 0.09747 0.01348

1.3 0.12311 0.02451 0.15443 0.03817 0.09829 0.01608 0.12627 0.02763

1.6 0.17441 0.04299 0.25481 0.09228 0.11675 0.02344 0.13286 0.02868

1.9 0.21571 0.07401 0.25492 0.10076 0.13504 0.03037 0.15555 0.04198

Table 2: Absolute bias and MSE of µ̂k;k = 1,2 for the Gompertz model.

5. DATA ANALYSIS

The proposed inference procedures are illustrated using an automobile warranty
data-base given in [14]. The data set consists of recurrent failure histories of 172 auto-
mobiles in which the outcome of interest is the repeated mileages at which the failures
occur. The mileages are type I censored at 3000 miles. The failure modes are classified
into three categories, FM1, FM2, and FM3, resulting in multiple modes of failure frame-
work. We can observe from the data a total of 274 failures in which 76 failures are due
to FM1, 87 are due to FM2, and 111 are due to FM3.
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Figure 1: Estimates of cause specific mean functions of Weibull model for dif-
ferent values of (θ1,θ2,α). The blue color represents cause 1, and the
red color represents cause 2. Solid lines are for the estimated values,
and dotted lines are the true values.

Since there are no intermittent observation gaps in the original data set, we gen-
erate gaps in the data records to create an automobile warranty database with simulated
windows. We modify the original data set by allowing each vehicle to have a minimum
of four windows of observation gaps in their study tenure. The length of the observation
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Figure 2: Estimates of cause specific mean functions of Gompertz model for
different values of (ρ1,ρ2,β ). The blue color represents cause 1, and
the red color represents cause 2. Solid lines are for the estimated
values, and dotted lines are the true values.

windows is randomly generated from a Uni f orm(400,600) distribution while the length
of the gaps follows a Uni f orm(50,150) distribution. All the vehicles are assumed to
begin with an observation window. In the transformed data, we observe a total of 245
failure recurrences, where 29 failures are missing due to gaps in the observation time-
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(θ1,θ2,α) w(.)
1% 5%

n=50 n=100 n=50 n=100

(0.2,0.2,2.2)

1 1.8 1.2 5.6 5.2
√

n 1.8 1.4 5.8 5.4

µ̂k(·) 1.6 1.2 5.6 4.8

(0.2,0.4,2)

1 73 90.8 88.6 96
√

n 67.6 92 88.4 95.2

µ̂k(·) 74.4 94 91.4 100

(0.2,0.5,2)

1 92.4 100 98.2 100
√

n 91.2 100 98.8 100

µ̂k(·) 93.6 100 100 100

(0.4,0.7,2)

1 82.4 98 95 100
√

n 80.8 96.4 94.4 98

µ̂k(·) 82.8 98.4 97.2 100

Table 3: Empirical type I error and power of the test in percentage at an asymp-
totic level of 1% and 5% for the Weibull model.

Figure 3: Rejection probabilities of the test at the 5% level under the Weibull
model with θ1 = 0.2.

line. The new recurrences comprise 71 failures due to FM1, 78 due to FM2, and 96 due
to FM3. Because of the presence of gaps in the follow-up, the number of vehicles at risk
changes with time, and the size of the new risk set is presented in Figure 5.
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(ρ1,ρ2,β ) w(.)
1% 5%

n=50 n=100 n=50 n=100

(0.1,0.1,1.5)

1 1.8 1.4 5.8 5.2
√

n 2 1.4 6.2 5.6

µ̂k(·) 1.6 1.2 5.4 4.6

(0.3,0.5,1.1)

1 88.2 96.8 94.6 100
√

n 87.2 96.4 94.2 100

µ̂k(·) 87.8 97 95.4 100

(0.3,0.6,1.1)

1 95.6 100 100 100
√

n 94.4 100 100 100

µ̂k(·) 96.2 100 100 100

(0.4,0.6,1.1)

1 71.4 92.8 94.2 98.4
√

n 67.4 91.4 92.8 98.4

µ̂k(·) 78.2 93.4 94.6 100

Table 4: Empirical type I error and power of the test in percentage at an asymp-
totic level of 1% and 5% for the Gompertz model.

Figure 4: Rejection probabilities of the test at the 5% level under the Gompertz
model with ρ1 = 0.3.

Our goal here is to compare the effect of three modes of failures FM1, FM2, and
FM3 on the failure recurrences of automobiles. The mean functions due to three different
modes of failures are computed using the estimator proposed in (2.3) and the results are
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Figure 5: Risk set plot for the automobile data with observation gaps.

presented in Figure 6.

From Figure 6, we observe that the mean functions for three different causes FM1,
FM2, and FM3 are different. The mean cumulative functions of the causes FM1 and
FM2 show an almost similar pattern and compete, but failure mode 3 exhibits a different
pattern. We can see a higher failure rate at the beginning of the observation time, some-
what up to 500 miles, due to causes FM1 and FM2. The rate becomes steady beyond
1500 miles for these two causes. The earlier failures of vehicles, somewhat up to 1500
miles, are more likely to be due to failure modes 1 or 2, and failure mode 3 causes more
events beyond 1500 miles than the other two.

We test statistically whether these three modes of failures namely FM1, FM2,
and FM3 have the same effect on the recurrence process or not by using the method
proposed in Section 3. With the help of bootstrap techniques, the variance-covariance
matrix in (3.4) is estimated. Table 5 presents the test statistic values obtained and the
corresponding p-values for weight functions w(·) = 1, w(·) =

√
n and w(·) = µ̂k(·).

From Table 5, we see that the p-value is small for each of the weight functions,
and we conclude that the three cause specific mean functions are significantly different.
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Figure 6: Estimates of cumulative cause specific mean functions of automobile
data with observation gaps for different failure modes (FM1, FM2
and FM3).

Weight function Test statistic p-value

w(·) = 1 15.857 0.00036
w(·) =

√
n 15.856 0.00036

w(·) = µ̂k(·) 9.577 0.00832

Table 5: Test statistic values and the corresponding p-values for different
weight functions.

6. CONCLUSION

Recurrent event data with gaps in the follow-up windows are often found in sur-
vival and reliability studies. In this paper, we are extending the methods proposed by
[17] for analyzing the window-observation recurrence data to the multiple causes of fail-
ure scenario. A non-parametric estimator for the cause specific mean function in the
window-observation setup is studied and the asymptotic properties were discussed. A
test statistic is proposed to test whether the mean functions due to different causes are
identical or not. The results of the simulation study ensure that the proposed methods
are efficient. A data analysis is also performed to illustrate the methods proposed in this
paper.
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In some applications, there will be additional information on the factors that may
affect the recurrence process, such as medical history, demographic details, and vital
signs of patients in clinical studies or model, make, and operating environment of sys-
tems in reliability studies. Allowing such covariate information to analyze multiple
modes of failure in window-observation recurrent event data is an important research
area, and works in these directions will be reported elsewhere.
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