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1. INTRODUCTION

The probability density function (PDF) of the Lindley distribution [See, Lindley ([8])]
is specified by

(1.1) fX(x, θ) =
θ2

1 + θ
(1 + x) exp (−θx), θ > 0, x > 0,

and the corresponding cumulative density function (CDF) is given by

(1.2) FX(x, θ) = 1− 1 + θ + θx

1 + θ
exp (−θx), θ > 0, x > 0.

A distribution that is close in form to (1.1) is the well-known exponential distribution given
by the PDF

fX(x, θ) = θ exp (−θx), θ > 0, x > 0.

Ghitany et al. ([5]) showed that in many ways the Lindley distribution is a better model than
one based on the exponential distribution. The distribution in (1.1) is a mixture of expo-
nential and gamma distribution with shape parameter 2 and scale parameter θ with mixing
proportions θ

1+θ and 1
1+θ , respectively. So, it is a Bernoulli mixture of gamma distributions

of the form fX(x; θ) =
∑1

k=0

(
1
k

)(
1

θ+1

)k(
θ

θ+1

)1−k
fGA(x; k + 1, θ), where, fGA(x; k + 1, θ) =

θk+1

Γ(k+1)x
k exp(−θx) is the gamma PDF with shape parameter k + 1 and scale parameter θ.

We generalize this distribution to binomial mixing with parameter r and 1
θ+1 of the form

fX(x; θ) =
∑r

k=0

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
fGA(x; k + 1, θ).

It can be written in more generalized form of the PDF as

(1.3) fX(x, θ) =
∑r

k=0 akpkhk(x; θ)∑r
k=0 akpk

, θ > 0, x > 0,

where, pk =
(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
, hk(x; θ)) = θk+1

Γ(k+1)x
(k+1)−1 exp(−θx) and ak’s are non-

negative constants.

It can also be rewritten as

(1.4) fX(x, θ) = h(θ)p(x) exp (−θx), θ > 0, x > 0,

where, h(θ) = 1Pr
k=0 ak(r

k) 1

θk+1

, p(x) =
∑r

k=0
ak
k!

(
r
k

)
xk.

A random variable X is said to have a Binomial Mixture One Parameter Polynomial
Exponential (BMOPPE) with parameter θ, if its probability density function (PDF) is given
by

(1.5) fX(x, θ) =

∑r
k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
θk+1

Γ(k+1)x
(k+1)−1 exp(−θx)∑r

k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
, θ > 0, x > 0.
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The CDF of the random variable X is given by

(1.6) F (x) =

∑r
k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
γ(k + 1, θx)∑r

k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
, θ > 0, x > 0,

where γ(s, t) = 1
Γs

∫ t
0 exp(−x)xs−1dx is the lower incomplete gamma function.

The CDF can also be written as

(1.7) F (x) = 1−

(∑r
k=0 ak

(
r
k

)
1

θk+1 Γ(k + 1, θx)∑r
k=0 ak

(
r
k

)
1

θk+1

)
, x, θ > 0,

where Γ(m,x) = 1
Γ(m)

∫∞
x e−uum−1du, the upper incomplete gamma function.
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(a) For r = 3 and θ = 0.5.
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(b) For r = 4 and θ = 0.5.
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(c) For r = 4 and θ = 1.

Figure 1: Plot of PDF of BMOPPE and OPPE for different combinations.

Bouchahed and Zeghdoudi ([4]) proposed a new and unified approach to generalizing
Lindley’s distribution and investigated its properties. Mukherjee et al. ([11]) later called
it the One Parameter Polynomial Exponential (OPPE) family of distributions and studied
the estimation aspect of the PDF and the CDF of the distribution. The natural discrete
version of the OPPE called the Natural Discrete One Parameter Polynomial Exponential
(NDOPPE) family of distributions is studied by Maiti et al. ([9]), and the estimation aspect
of the PMF and the CDF is discussed by Mukherjee et al. ([10]). The OPPE is a mixture of
gamma distributions with some mixing probabilities. In contrast, the BMOPPE is revisited
with a different look, and it is also a mixture of gamma distributions with binomial mixing
probabilities, which is different from the previous one.

The article is organised as follows. Section 2 discusses different order moments and
stochastic orderings of the random variable. In section 3, The maximum likelihood estimator
(MLE) and uniformly minimum variance unbiased estimator (UMVUE) of the PDF and the
CDF are discussed. The estimators are compared in the mean squared error (MSE) sense.
This section also considers the estimation of both mission time and stress-strength reliability
functions. Asymptotic variances of MLEs and variances of MVUEs are derived. UMVUEs of
variances of UMVUE of reliability functions have been derived. Simulation study results have
been reported to verify the theoretical findings in section 4. Three data sets have been anal-
ysed for illustration purposes in section 5. Section 6 is for making some concluding remarks.
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2. MOMENTS AND STOCHASTIC ORDERINGS

The s-th raw moments for BMOPPE distribution is

µ′s =

∑r
k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
Γ(k+s+1)
θsΓ(k+1)∑r

k=0 ak

(
r
k

)(
1

θ+1

)k(
θ

θ+1

)r−k
.(2.1)

The coefficient of skewness and kurtosis measures have been shown in Figure 2. These
are shown for r = 1, 2, 3 and for different values of θ. The constants of polynomial are
taken as ai = 1, i = 0, 1, 2, 3. It is noticed that the distribution is positively skewed, and
skewness decreases with the increment of the degree of the polynomial. Also, the distribution
is leptokurtic, and it becomes long-tailed with the increment of the degree of the polynomial.
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Figure 2: Plot of Skewness and Kurtosis of BMOPPE for different θ and r.

The ordering relations between two BMOPPE random variables have been shown in
the following Theorem.

Theorem 2.1. Let Xi ∼ BMOPPE(θi), i = 1, 2 be two random variables. If θ2 ≤ θ1,

then X1 ≺lr X2, X1 ≺hr X2, X1 ≺st X2 and X1 ≺cx X2.

Proof: Since, Likelihood ratio order =⇒ Hazard rate order =⇒ Stochastic order
and Convex order ⇐⇒ Stochastic order, it is sufficient to show that Likelihood ratio order
holds.

We have

L(x) = ln
(
fX1(x)
fX2(x)

)
= (k + 1) ln

(
θ1
θ2

)
− (θ1 − θ2)x.

Now,

4L(x) =
d

dx

[
ln
(
fX1(x)
fX2(x)

)]
.

Clearly, it is evident that 4L(x) ≤ 0, ∀θ2 ≤ θ1.
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3. ESTIMATION OF PDF AND CDF AND THEIR APPLICATIONS IN
RELIABILITY ESTIMATION

The PDF and the CDF estimates have immense importance in estimating reliability
functions (both mission time and stress-strength), entropy functions, Kullback–Leibler di-
vergence measure, Fisher information, cumulative residual entropy, quantile function, hazard
rate function, etc. In this section, the MLE and UMVUE of the reliability functions are to
be attempted. The asymptotic variances/variances of the estimators and their estimators are
to be discussed.

First, we will discuss the MLE and UMVUE of the PDF and the CDF of BMOPPE fam-
ily of distributions. Let X1, X2, ..., Xn be random sample of size n drawn from the BMOPPE
distribution in (1.5). The MLE of θ which is denoted as θ̃ is obtained by numerically solving
the equation

∑r
k=0 ak

(
r
k

)
k+1
θk+2∑r

k=0 ak

(
r
k

)
1

θk+1

− X̄ = 0.(3.1)

Using the invariance property of MLE, one can obtain the MLEs of the PDF and that of the
CDF by substituting θ̃ in (1.5) and (1.6) respectively. Theoretical expressions for the MSE
of the MLEs are not available. MSE is to be studied through simulation.

To derive the UMVUE of the PDF and that of the CDF (stated in Theorem 3.2), we
will use the following Theorem 3.1 and Lemma 3.1.

Theorem 3.1. Let X1, X2, ..., Xn independently follow BMOPPE(θ). Then the dis-

tribution of T = X1 +X2 + ···+Xn is

f(t) = hn(θ)
∑
y0

∑
y1

···
∑
yr

c(n, y0, y1, ..., yr) exp(−θt) t
Pr

k=0(k+1)yk−1, t > 0,

with y0 + y1 + ···+ yr = n and c(n, y0, y1, ..., yr) = n!
y0!y1!···yr!

Qr
k=0[ak(r

k)]yk

Γ(
Pr

k=0(k+1)yk)
.

Proof: Since Xi’s are independent and identically distributed, the moment generating
function (mgf) of T is

MT (t) = hn(θ)

[
r∑

k=0

ak

(
r

k

)
1

θk+1

(
1− t

θ

)−(k+1)
]n

= hn(θ)

[
a0

(
r

0

)
1
θ

(
1− t

θ

)−1

+ ···+ ar

(
r

r

)
1

θr+1

(
1− t

θ

)−(r+1)
]n

= hn(θ)
∑
y0

∑
y1

···
∑
yr

n!
y0!y1!···yr!

r∏
k=0

[
ak

(
r

k

)]yk

θ−
Pr

k=0(k+1)yk

(
1− t

θ

)−Pr
k=0(k+1)yk

.
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Hence, the distribution of T is

f(t) = hn(θ)
∑
y0

∑
y1

···
∑
yr

n!
y0!y1!···yr!

r∏
k=0

[
ak

(
r

k

)]yk

θ−
Pr

k=0(k+1)ykfGA(t,
r∑

k=0

(k + 1)yk, θ)

= hn(θ)
∑
y0

∑
y1

···
∑
yr

c(n, y0, y1, ..., yr)t
Pr

k=0(k+1)yk−1 exp(−θt).

Lemma 3.1. The conditional distribution of X1 given T = X1 +X2 + ···+Xn is

fX1|T (x|t) =
p(x)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− x)
Pr

k=0(k+1)qk−1, 0 < x < t,

where

An(t) =
∑
y0

∑
y1

···
∑
yr

c(n, y0, y1, ..., yr)t
Pr

k=0(k+1)yk−1,

and

c(n− 1, q0, q1, ..., qr) =
(n− 1)!
q0!q1!···qr!

r∏
k=0

[
ak

(
r

k

)]qk 1
Γ(
∑r

k=0(k + 1)qk)
,

with q0 + q1 + q2 + ···+ qr = n− 1.

Proof: The proof is obviously conducted from

fX1|T (x|t) =
fX1(x)f(t− x)

f(t)

=
p(x)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− x)
Pr

k=0(k+1)qk−1.

Theorem 3.2. Let T = t be given. Then

f̂(x) =
p(x)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− x)
Pr

k=0(k+1)qk−1, 0 < x < t,(3.2)

is UMVUE for f(x) and

F̂ (x) = 1− 1
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr)(3.3)

×
r∑

k=0

ak

(
r

k

)
1

Γ(k + 1)
t
Pr

k=0(k+1)qk+k

× B

(
(k + 1),

r∑
k=0

(k + 1)yk

)
Ix/t

(
(k + 1),

r∑
k=0

(k + 1)qk

)
, 0 < x < t,

is UMVUE for F (x), where Ix(α, β) = 1
B(α,β)

∫ 1
x u

α−1(1−u)β−1du is an incomplete beta func-

tion and B(α, β) = Γ(α)Γ(β)
Γ(α+β) .
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Proof: The BMOPPE in (1.4) is a member of one parameter exponential family with
T =

∑n
i=1Xi as complete sufficient statistic. Therefore, by the use of Lehmann–Scheffe the-

orem, we get the UMVUE of the PDF from Lemma 3.1.

F̂ (x) = 1−
∫ t

x
f̂(w)dw

= 1−
∫ t

x

p(w)
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr) (t− w)
Pr

k=0(k+1)qk−1dw

= 1− 1
An(t)

∑
q0

∑
q1

···
∑
qr

c(n− 1, q0, q1, ..., qr)

×
r∑

k=0

ak

(
r

k

)
1

Γ(k + 1)
t
Pr

k=0(k+1)qk+k

× B

(
(k + 1),

r∑
k=0

(k + 1)yk

)
Ix/t

(
(k + 1),

r∑
k=0

(k + 1)qk

)
.

3.1. Mission Time Reliability

Suppose the life length of a component X is distributed as BMOPPE(θ). Then the
reliability of that component for a fixed mission time t0 (> 0) is

F̄X(t0) = P (X ≥ t0)

= h(θ)
r∑

k=0

ak

(
r
k

)
θk+1

Γ(k + 1, θt0).

By using the relation between incomplete gamma function and Poisson probability, F̄X(t0)
can be written as

F̄X(t0) = h(θ)
r∑

k=0

ak

(
r
k

)
θk+1

k∑
j=0

e−θt0(θt0)j

j!
.

3.1.1. The MLE

The MLE of F̄X(t0) based on a random sample of size n, is

˜̄FX(t0) = h(θ̃)
r∑

k=0

ak

(
r
k

)
θ̃k+1

k∑
j=0

e−
eθt0(θ̃t0)j

j!
,

where θ̃ is the solution of the equation (3.1). Since MSE( ˜̄FX(t0)) has no closed form expres-
sion, we give the asymptotic distribution of ˜̄FX(t0) by using delta theorem as follows:

√
n
(˜̄FX(t0)− F̄X(t0)

)
d→ N

(
0,

1
I(θ)

[
dF̄X(t0)
dθ

]2
)
,
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where

I(θ) =

[∑r
k=0

ak(r
k)

θk+1

][∑r
k=0

ak(r
k)(k+2)(k+1)

θk+3

]
−
[∑r

k=0

ak(r
k)(k+1)

θk+2

]2

[∑r
k=0

ak(r
k)

θk+1

]2

is the Fisher information about parameter θ for a single observation X.

3.1.2. The UMVUE

Application of incomplete beta function and binomial probability gives the UMVUE of
F̄X(t0) as

̂̄FX(t0) =
1

An(t)

∑
x0

∑
x1

···
∑
xr
Pr

i=0 xi=n−1

c(n− 1, x0, x1, ..., xr)

×
r∑

k=0

ak

(
r
k

)
Γ(k + 1)

t
Pr

k=0(k+1)xk+k
0 B

(
(k + 1),

r∑
k=0

(k + 1)xk

)

×
k∑

j=0

(∑r
l=0(l + 1)xl + k

j

)(
t0
t

)j(
1− t0

t

)Pr
l=0(l+1)xl+k−j

.

For exponential family of distribution, Blight and Rao ([3]) considered Bhattacharya
bounds to calculate the variance of UMVUE of parametric function ψ(θ). So, variance of̂̄FX(t0) can be expressed as

Var( ̂̄FX(t0)) =
∞∑
l=1

[F̄ (l)
X (t0)]2

[J∗l (θ)]2
,

where

[J∗l (θ)]2 = [h(θ)]n
l∑

j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
[h(l−i)(θ)]n[h(l−j)(θ)]n

×
∑
x0

∑
x1

···
∑
xr
Pr

i=0 xi=n−1

c(n− 1, x0, x1, ..., xr)

×
Γ(i+ j +

∑r
l=0(l + 1)xl)

θi+j+
Pr

l=0(l+1)xl

is the Bhattacharya function and h(i)(θ) denotes the i-th derivative of h with respect to θ.

Now, for the derivation of UMVUE of Var( ̂̄FX(t0)), we consider the representation

Var( ̂̄FX(t0)) = E( ̂̄F 2

X(t0))− [E( ̂̄FX(t0))]2

= E( ̂̄F 2

X(t0))− F̄ 2
X(t0).

If Q̂1(t0) is the UMVUE of Q1(t0) = F̄ 2
X(t0), we get the UMVUE of Var( ̂̄FX(t0)) as ̂̄F 2

X(t0)−
Q̂1(t0). We start from the fact that

I[X1 ≥ t0, X2 ≥ t0] = I[X1 ≥ t0]I[X2 ≥ t0],
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which implies that I[X1 ≥ t0, X2 ≥ t0] is unbiased for Q1(t0). Then, we get the UMVUE by
using Rao–Blackwell theorem as

Q̂1(t0) =
1

An(t)

∑
x0

∑
x1

···
∑
xr
Pr

i=0 xi=n−2

c(n− 2, x0, x1, ..., xr)

×
r∑

k=0

r∑
l=0

akal

(
r
k

)(
r
l

)
Γ(k + 1)Γ(l + 1)

Pr
m=0(m+1)xm−1∑

i=0

(−1)i
(Pr

m=0(m+1)xm−1
i

)
l + i+ 1

×

tPr
m=0(m+1)xm+l

Pr
m=0(m+1)xm+l∑

u=0

(−1)u
(Pr

m=0(m+1)xm+l
u

)
tu(k + u+ 1)

(tk+u+1 − tk+u+1
0 )

− tl+i+1
0 t

Pr
m=0(m+1)xm−i−1

Pr
m=0(m+1)xm−i−1∑

v=0

(−1)v
(Pr

m=0(m+1)xm−i−1
v

)
tv(k + v + 1)

× (tk+v+1 − tk+v+1
0 )

.

3.2. Stress Strength Reliability

For estimation of stress strength reliability, we assume the stress random variable X
follows BMOPPE(θ1) and strength random variable Y follows BMOPPE(θ2) and they are
independently distributed. Then the expression of stress strength reliability becomes

R = P (X < Y )

=
∫ ∞

0
F̄Y (x)f(x)dx

= h(θ1)h(θ2)
r2∑

k2=0

bk2

(
r2

k2

)
θk2+1
2

r1∑
k1=0

ak1

(
r1

k1

)
θk1+1
1

k2∑
j=0

(
k1 + j

j

)(
θ2

θ1 + θ2

)j( θ1
θ1 + θ2

)k1+1

.

3.2.1. The MLE of R

Let (x1, x2, ..., xn1) and (y1, y2, ..., yn2) be independent samples drawn from
BMOPPE(θ1) and BMOPPE(θ2), respectively. Let the MLEs of θ1 and θ2 be θ̃1 and θ̃2,
respectively. By putting the values of θ̃1 and θ̃2 in the expression of R, we get R̃ by its
invariance property as

R̃ = h(θ̃1)h(θ̃2)
r2∑

k2=0

bk2

(
r2

k2

)
θ̃2

k2+1

r1∑
k1=0

ak1

(
r1

k1

)
θ̃1

k1+1

k2∑
j=0

(
k1 + j

j

)(
θ̃2

θ̃1 + θ̃2

)j(
θ̃1

θ̃1 + θ̃2

)k1+1

.

Similarly as in mission time reliability, we derive the asymptotic distribution of R̃ in the
following theorem.
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Theorem 3.3. If the ratio n1
n2

converges to a positive number κ when both n1 and n2

tends to infinity, then

√
n(R̃−R) d→ N(0, σ2),

where σ2 = 1
I1(θ1) [

∂R
∂θ1

]2 + κ
I2(θ2) [

∂R
∂θ2

]2 and I1(θ1) is a Fisher information about parameter θ1
in a single observation X, I2(θ2) is a Fisher information about θ2 in a single observation Y .

Proof: Since log-likelihood equations satisfies all regularity conditions of asymptotic
normality for MLE, then we have

√
nj(θ̃j − θj)

d→ N(0, [Ij(θj)]−1),

where

I1(θ1) =

[∑r1
k=0

ak(r1
k )

θk+1
1

][∑r1
k=0

ak(r1
k )(k+2)(k+1)

θk+3
1

]
−
[∑r1

k=0

ak(r1
k )(k+1)

θk+2
1

]2

[∑r1
k=0

ak(r1
k )

θk+1
1

]2

and

I1(θ2) =

[∑r2
k=0

bk(r2
k )

θk+1
2

][∑r2
k=0

bk(r2
k )(k+2)(k+1)

θk+3
2

]
−
[∑r2

k=0

bk(r2
k )(k+1)

θk+2
2

]2

[∑r2
k=0

bk(r2
k )

θk+1
2

]2 .

Again, from the fact of independence of θ̃1 and θ̃2, we get

√
n1(θ̃1 − θ1, θ̃2 − θ2)

d→ N2(0, J(θ1, θ2)),

where

J(θ1, θ2) =
[
[I1(θ1)]−1 0

0 κ[I2(θ2)]−1

]
.

Now application of the transformation R = R(θ1, θ2) together with Delta theorem conclude
the proof.

3.2.2. The UMVUE of R

By using the UMVUE of mission time reliability and the PDF of the BMOPPE distri-
bution, the UMVUE of R can be expressed as

R̂ =
∫ Min(t1,t2)

x=0

̂̄F Y (x)f̂X(x)dx,
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where t1 =
∑n1

i=1 xi and t2 =
∑n2

i=1 yi, respectively. Evaluation of the integral gives the final
form of the UMVUE of R as

R̂ =
1

An1(t1)An2(t2)

∑
q0

∑
q1

···
∑
qr1
Pr1

i=0 qi=n1−1

c(n1 − 1, q0, q1, ..., qr1)

× t
Pr1

l=0(l+1)ql

1

∑
w0

∑
w1

···
∑
wr2

Pr2
i=0 wi=n2−1

c(n2 − 1, w0, w1, ..., wr2)

× t
Pr2

m=0(m+1)wm

2 J1

(
r1∑

l=0

(l + 1)ql,
r2∑

m=0

(m+ 1)wm

)
,

where

J1(α, β) =
r1∑

k1=0

ak1

(
r1

k1

)
tk1
1

Γ(k1 + 1)

r2∑
k2=0

bk2

(
r2

k2

)
tk2
2

Γ(k2 + 1)

×
k2∑

j=0

β+k2−j∑
i=0

(−1)i

(
t1
t2

)i+j(β+k2

j

)(
β+k2−j

i

)
B(k2+1, β)B(i+j+k1+1, α)

×
α+i+j+k1∑

l=i+j+k1+1

(
α+ i+ j + k1

l

)(
Min(t1, t2)

t1

)l (
1− Min(t1, t2)

t1

)(α+i+j+k1−l)

.

Under certain regularity conditions, variance of R̂ takes the form [See, Bartoszewicz
([1])] as follows:

Var(R̂) =
∞∑

k=1

k∑
j=0

[
∂kR

∂θj
1∂θ

k−j
2

1
Ij(θ1)Jk−j(θ2)

]2

,

where

[Il(θ1)]2 = [h(θ1)]n1

l∑
j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
[h(l−i)(θ1)]n1 [h(l−j)(θ1)]n1

×
∑
q0

∑
q1

···
∑
qr1
Pr1

i=0 qi=n1−1

c(n1 − 1, q0, q1, ..., qr1)
Γ(i+ j +

∑r1
l=0(l + 1)ql)

θ
i+j+

Pr1
l=0(l+1)ql

1

,

[Jl(θ2)]2 = [h(θ2)]n2

l∑
j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
[h(l−i)(θ2)]n2 [h(l−j)(θ2)]n2

×
∑
w0

∑
w1

···
∑
wr2

Pr2
i=0 wi=n2−1

c(n2 − 1, w0, w1, ..., wr2)
Γ(i+ j +

∑r2
l=0(l + 1)wl)

θ
i+j+

Pr2
l=0(l+1)wl

2

.

As earlier, the following representation

Var(R̂) = E(R̂2)− [E(R̂)]2

= E(R̂2)−R2
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gives the UMVUE of Var(R̂) as R̂2 − Q̂2, where Q̂2 is the UMVUE of Q2 = R2. Similarly,
we give the final expression of Q̂2 in the following equation:

Q̂2 =
1

An1(t1)An2(t2)

∑
q0

∑
q1

···
∑
qr1
Pr1

i=0 qi=n1−2

c(n1 − 2, q0, q1, ..., qr1)

×
∑
w0

∑
w1

···
∑
wr2

Pr2
i=0 wi=n2−1

c(n2 − 1, w0, w1, ..., wr2)

×
r1∑

k1=0

r1∑
l1=0

ak1al1

Γ(k1 + 1)

(
r1

k1

)(
r1

l1

)
Γ(l1 + 1)

r2∑
k2=0

r2∑
l2=0

bk2bl2
Γ(k2 + 1)

(
r2

k2

)(
r2

l2

)
Γ(l2 + 1)

×

Pr2
m=0(m+1)wm−1∑

i=0

(−1)i
(Pr2

m=0(m+1)wm−1
i

)
l2 + i+ 1

×

tPr2
m=0(m+1)wm+l2

2

Pr2
m=0(m+1)wm+l2∑

u=0

(−1)u
(Pr2

m=0(m+1)wm+l2
u

)
tu2(k2 + u+ 1)

×

tu2 J2

(
k1, l1,

r1∑
m=0

(m+1)qm−1

)
− J2

(
k1+k1+u+1, l1,

r1∑
m=0

(m+1)qm−1

)
− t

Pr2
m=0(m+1)wm−i−1

2

Pr2
m=0(m+1)wm−i−1∑

v=0

(−1)v
(Pr2

m=0(m+1)wm−i−1
v

)
tv2(k2 + v + 1)

×

tk2+v+1
2 J2

(
k1, l1+ l2+i+1,

r1∑
m=0

(m+1)qm−1

)

− J2

(
k1+k2+v+1, l1+ l2+i+1,

r1∑
m=0

(m+1)qm−1

)
,

where

J2(a, b, β) =
β−1∑
i=0

(−1)i

(
β − 1
i

)
ta+b+β+1
1

b+ β + 1
B(a+ 1, b+ β + 1)

×
a+b+β+1∑

j=a+1

(
a+ b+ β + 1

j

)(
Min(t1, t2)

t1

)j (
1− Min(t1, t2)

t1

)a+b+β+1−j

.

4. SIMULATION STUDY

Monte Carlo Simulation technique will not be helpful in generating random samples
from the BMOPPE distribution, since the equation

F (x) = u, u ∈ (0, 1),

cannot explicitly be solved in x. However, since the distribution is a mixture of gamma
distributions given in (1.5), one can utilize this fact. For the BMOPPE distribution, the
generation of a random sample X1, X2, ..., Xn is made using the following algorithm:
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1. Generate Ui ∼ Uniform(0, 1), i = 1(1)n.

2. If
Pj−1

k=0 ak(r
k) 1

θkPr
k=0 ak(r

k) 1

θk

< Ui ≤
Pj

k=0 ak(r
k) 1

θkPr
k=0 ak(r

k) 1

θk

, j = 1, 2, ..., r, then set Xi = Vi, where Vi ∼

gamma(j + 1, θ) and if Ui ≤ a0Pr
k=0 ak(r

k) 1

θk

, then set Xi = Vi, where Vi ∼ exp(θ).

The graphical representation of mean squared error (MSE) of the MLE and UMVUE
of the PDF and the CDF of some BMOPPE distributions for different values of parameter
based on simulation data is shown in Figure 3.

5. DATA ANALYSIS

In this section, we analyse three real data sets for comparing the performances of
the MLE and the UMVUE of the PDF and the CDF. The probability model selection is
made based on Akaike’s Information Criterion (AIC = −2 log-likelihood + 2k, where k is the
number of parameters involved in the model) for each data set. Minimum is the AIC; better
is the model fit. For our BMOPPE model, there is only one parameter θ; it is sufficient to
select the model with a negative log-likelihood. But since this model is compared with other
models with more than one parameter, the analyses are based on AIC. The AIC is calculated
first using the MLE of the parameter(s), and the best model is selected. Then the AIC of
the chosen model is compared with the AIC of this model calculated using the UMVUE of
the PDF. It is mentioned that a0, a1, ..., ar and r are known constants in the model; in
practice, these are chosen by trial and error such that AIC is at its minimum.

Data set-I, which is cited from Gross and Clark ([6]) and is given in Table 1, represents
the relief times (in minutes) of 20 patients receiving an analgesic. We calculate the AIC of
different standard distributions of One Parameter Polynomial Exponential (OPPE) family
and few others from literature (presented in Table 4) and it is observed that BMOPPE family
with r = 2, a0 = 0, a1 = 0.1 and a2 = 1 is a better fit. The negative log-likelihood values of
the selected model calculated using the MLE and the UMVUE of the PDF are presented in
Table 7. Figures 4(a)–(b) show the histogram, the estimated PDF, and the CDF.

Data set-II represents the number of million revolutions before failure for each of the
23 ball bearings in the life test. It is obtained from Lawless ([7]) and shown in Table 2.
For ease of calculation, we divide each observation into the data set by 2. The calculated
AIC of different standard distributions of OPPE family and few others have been shown in
Table 5 and it is noticed that BMOPPE family with r = 2, a0 = 0.2, a1 = 0.1 and a2 = 1
is a better fit. The negative log-likelihood values of the selected model calculated using the
MLE and the UMVUE of the PDF are also presented in Table 7. Figures 4(c)–(d) present
the corresponding histogram, the estimated PDF, and the CDF.

Data set-III is a collection from Bjerkedal ([2]), and Table 3 displays the survival times
(in days) of 72 guinea pigs infected with virulent tubercle bacilli. This data set has been fitted
with a distribution of BMOPPE family with r = 2, a0 = 0.01, a1 = 0.02 and a2 = 4 and it
is found to be a good fit. AIC for this distribution and some other distributions available
in the literature are listed in Table 6 that supports our claim. The negative log-likelihood
values of the selected model calculated using the MLE and the UMVUE of the PDF are also
presented in Table 7. The histogram, the estimated PDF, and the CDF have been shown in
Figures 4(e)–(f).
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(a) For PDF at θ = 1.05, x = 2, a0 = 0,
a1 = 0.1, a2 = 1 and r = 2.
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(b) For CDF at θ = 1.05, x = 2, a0 = 0,
a1 = 0.1, a2 = 1 and r = 2.
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(c) For θ = 1.5, x = 2, a0 = 0.01, a1 = 0.02,
a2 = 4 and r = 2.
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(d) For θ = 1.5, x = 2, a0 = 0.01, a1 = 0.02,
a2 = 4 and r = 2.
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(e) For θ = 0.09, x = 2, a0 = 0.2, a1 = 0.1,
a2 = 1 and r = 2.
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(f) For θ = 0.09, x = 2, a0 = 0.2, a1 = 0.1,
a2 = 1 and r = 2.

Figure 3: Graph of simulated MSE of the MLE and UMVUE of the PDF and the CDF
of BMOPPE distribution.
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(a) Fitted PDF at a0 = 0.2, a1 = 0.1 and a2 = 1
to the data set-I.
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(b) Fitted CDF at a0 = 0.2, a1 = 0.1 and a2 = 1
to the data set-I.

Histogram and estimated PDF fitted to the data set−II
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(c) Fitted PDF at a0 = 0, a1 = 0.1 and a2 = 1
to the data set-II.
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(d) Fitted CDF at a0 = 0, a1 = 0.1 and a2 = 1
to the data set-II.

Histogram and estimated PDF fitted to the data set−III
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(e) Fitted PDF at a0 = 0.01, a1 = 0.02 and a2 = 4
to the data set-III.
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(f) Fitted CDF at a0 =0.01, a1 =0.02 and a2 =4
to the data set-III.

Figure 4: Graph of the estimated PDF and CDF of BMOPPE distribution for different data sets.
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Table 1: Relief times (in minutes) of 20 patients receiving an analgesic.

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7

4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2

Table 2: The number of million revolutions before failure
for each of the 23 ball bearings in the life tests.

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84

51.96 54.12 55.56 67.80 68.44 68.64 68.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40

Table 3: Survival times (in days) of 72 guinea pigs.

0.1 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92

0.93 0.96 1 1 1.02 1.05 1.07 1.07 1.08

1.08 1.08 1.09 1.12 1.13 1.15 1.16 1.2 1.21

1.22 1.22 1.24 1.3 1.34 1.36 1.39 1.44 1.46

1.53 1.59 1.6 1.63 1.63 1.68 1.71 1.72 1.76

1.83 1.95 1.96 1.97 2.02 2.13 2.15 2.16 2.22

2.3 2.31 2.4 2.45 2.51 2.53 2.54 2.54 2.78

2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55

Table 4: Model selection criterion for data set-I.

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0, a1 = 0.1 and a2 = 1) 48.10 50.10

Length-biased Lindley 49.70 51.70

Akash 59.52 61.52

Shanker 59.78 61.78

Lindley 60.50 62.50

Moment Exponential 52.32 54.32

Exponential 65.67 67.67

Table 5: Model selection criterion for data set-II.

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0.2, a1 = 0.1 and a2 = 1) 195.26 197.26

Sujatha 195.38 197.38

Akash 227.06 229.06

Shanker 231.06 233.06

Lindley 231.47 233.47

Gamma 226.04 230.04

Weibull 232.27 236.27

Exponential 242.87 244.87
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Table 6: Model selection criterion for data set-III.

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 188.18 190.18

OPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 188.27 190.27

Lindley 213.85 215.85

New Generalized Lindley 188.36 194.36

Moment Exponential 208.40 210.40

Marshall–Olkin Exponential 206.36 210.36

Table 7: Negative log-likelihood value using MLE and UMVUE fitted in data set I–III.

Negative log-likelihood value
Data Set Model

MLE UMVUE

I BMOPPE (a0 = 0, a1 = 0.1 and a2 = 1) 24.05 23.71

II BMOPPE (a0 = 0.2, a1 = 0.1 and a2 = 1) 97.63 97.52

III BMOPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 94.09 94.09

6. CONCLUDING REMARKS

The article searches for a more generalised version of Lindley distribution. Starting
with the Lindley distribution as a Bernoulli mixture of gamma distributions, a generalised
binomial mixture of gamma distributions called the BMOPPE family of distributions has
been derived. It is a revisit of the Lindley distribution from a different angle. As a result,
the generalised version of the Lindley, the OPPE family of distributions, got mixed with
the binomial probabilities, and therefore, the BMOPPE is an improvement. Moments and
stochastic orderings are discussed. The process of generation of observations is pointed out,
and the results are summarised. Estimations of the PDF and the CDF are discussed. The
MLEs and UMVUEs are derived and compared. We have the estimators in biased (i.e., MLE)
and unbiased (i.e., UMVUE) classes. Estimators of reliability functions are derived. Asymp-
totic variances of MLEs and variances of UMVUEs have been derived. The UMVUEs of the
variance of UMVUEs of reliability functions have also been derived. These may be helpful
in data analysis and comparison. Few data sets have been fitted, and it is found that the
proposed distribution fits well in AIC sense. Even though the gain in AIC is minimal com-
pared to the OPPE family of distributions, the BMOPPE is an improvement and is preferred.
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