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Abstract:

� A further generalized version of one parameter polynomial exponential distribution
with binomial probability mass as a mixture called a Binomial Mixture One Pa-
rameter Polynomial Exponential Distribution (BMOPPE) is proposed in the article.
The moments and stochastic orderings are studied. Maximum likelihood estimator
(MLE) and uniformly minimum variance unbiased estimator (UMVUE) of the prob-
ability density function and the cumulative distribution function have been derived
and compared in the mean squared error sense. Estimation issues (both MLE and
UMVUE) of reliability functions- mission time and stress-strength have been consid-
ered, and asymptotic variances of MLEs and variances of UMVUEs have been derived.
UMVUEs of the variance of UMVUE of reliability functions have also been derived.
Simulation study results have been reported to validate the theoretical findings. Few
data sets have been fitted and compared.
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1. INTRODUCTION

The probability density function (PDF) of the Lindley distribution [See,
Lindley ([6])] is specified by

(1.1) fX(x, θ) =
θ2

1 + θ
(1 + x) exp (−θx), θ > 0, x > 0,

and the corresponding cumulative density function (CDF) is given by

(1.2) FX(x, θ) = 1− 1 + θ + θx

1 + θ
exp (−θx), θ > 0, x > 0.

A distribution that is close in form to (1.1) is the well-known exponential distri-
bution given by the PDF

fX(x, θ) = θ exp (−θx), θ > 0, x > 0.

Ghitany et al. ([5]) showed that in many ways the Lindley distribution is a
better model than one based on the exponential distribution. The distribu-
tion in (1.1) is a mixture of exponential and gamma distribution with shape
parameter 2 and scale parameter θ with mixing proportions θ

1+θ and 1
1+θ , re-

spectively. So, it is a Bernoulli mixture of gamma distributions of the form

fX(x; θ) =
∑1

k=0

(
1
k

) (
1

θ+1

)k (
θ

θ+1

)1−k
fGA(x; k+ 1, θ), where, fGA(x; k+ 1, θ) =

θk+1

Γ(k+1)x
k exp(−θx) is the gamma PDF with shape parameter k+ 1 and scale pa-

rameter θ. We generalize this distribution to binomial mixing with parameter r

and 1
θ+1 of the form fX(x; θ) =

∑r
k=0

(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
fGA(x; k + 1, θ).

It can be written in more generalized form of the PDF as

(1.3) fX(x, θ) =

∑r
k=0 akpkhk(x; θ)∑r

k=0 akpk
, θ > 0, x > 0,

where, pk =
(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
, hk(x; θ)) =

θk+1

Γ(k+1)x
(k+1)−1exp(−θx) and ak’s

are non-negative constants.
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It can also be rewritten as

(1.4) fX(x, θ) = h(θ)p(x) exp (−θx), θ > 0, x > 0,

where, h(θ) = 1∑r
k=0 ak(

r
k)

1

θk+1

, p(x) =
∑r

k=0
ak
k!

(
r
k

)
xk.

A random variable X is said to have a Binomial Mixture One Parameter
Polynomial Exponential (BMOPPE) with parameter θ, if its probability density
function (PDF) is given by

fX(x, θ) =

∑r
k=0 ak

(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
θk+1

Γ(k+1)x
(k+1)−1exp(−θx)∑r

k=0 ak
(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
,(1.5)

θ > 0, x > 0.

The CDF of the random variable X is given by

(1.6) F (x) =

∑r
k=0 ak

(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
γ(k + 1, θx)∑r

k=0 ak
(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
, θ > 0, x > 0,

where γ(s, t) = 1
Γs

∫ t
0 exp(−x)x

s−1dx is the lower incomplete gamma function.

The CDF can also be written as

(1.7) F (x) = 1−

(∑r
k=0 ak

(
r
k

)
1

θk+1Γ(k + 1, θx)∑r
k=0 ak

(
r
k

)
1

θk+1

)
, x, θ > 0,

where Γ(m,x) = 1
Γ(m)

∫∞
x e−uum−1du, the upper incomplete gamma function.

Bouchahed and Zeghdoudi ([4]) proposed a new and unified approach to
generalizing Lindley’s distribution and investigated its properties. Mukherjee et
al. ([10]) later called it the One Parameter Polynomial Exponential (OPPE)
family of distributions and studied the estimation aspect of the PDF and the
CDF of the distribution. The natural discrete version of the OPPE called the
Natural Discrete One Parameter Polynomial Exponential (NDOPPE) family of
distributions is studied by Maiti et al. ([9]), and the estimation aspect of the PMF
and the CDF is discussed by Mukherjee et al. ([11]). The OPPE is a mixture of
gamma distributions with some mixing probabilities. In contrast, the BMOPPE
is revisited with a different look, and it is also a mixture of gamma distributions
with binomial mixing probabilities, which is different from the previous one.
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(a) For r = 3 and θ = 0.5
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(b) For r = 4 and θ = 0.5
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(c) For r = 4 and θ = 1

Figure 1: Plot of PDF of BMOPPE and OPPE for different combinations

The article is organised as follows. Section 2 discusses different order mo-
ments and stochastic orderings of the random variable. In section 3, The max-
imum likelihood estimator (MLE) and uniformly minimum variance unbiased
estimator (UMVUE) of the PDF and the CDF are discussed. The estimators
are compared in the mean squared error (MSE) sense. This section also consid-
ers the estimation of both mission time and stress-strength reliability functions.
Asymptotic variances of MLEs and variances of MVUEs are derived. UMVUEs
of variances of UMVUE of reliability functions have been derived. Simulation
study results have been reported to verify the theoretical findings in section 4.
Three data sets have been analysed for illustration purposes in section 5. Section
6 is for making some concluding remarks.

2. Moments and Stochastic Orderings

The sth raw moments for BMOPPE distribution is

µ′s =

∑r
k=0 ak

(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
Γ(k+s+1)
θsΓ(k+1)∑r

k=0 ak
(
r
k

) (
1

θ+1

)k (
θ

θ+1

)r−k
.(2.1)

The coefficient of skewness and kurtosis measures have been shown in Figure 2.
These are shown for r = 1, 2, 3 and for different values of θ. The constants of
polynomial are taken as ai = 1, i = 0, 1, 2, 3. It is noticed that the distribution
is positively skewed, and skewness decreases with the increment of the degree of
the polynomial. Also, the distribution is leptokurtic, and it becomes long-tailed
with the increment of the degree of the polynomial.
The ordering relations between two BMOPPE random variables have been shown
in the following Theorem.
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Figure 2: Plot of Skewness and Kurtosis of BMOPPE for different θ and
r

Theorem 2.1. Let Xi ∼ BMOPPE(θi), i = 1, 2 be two random vari-
ables. If θ2 ≤ θ1, thenX1 ≺lr X2, X1 ≺hr X2, X1 ≺st X2 and X1 ≺cx X2

Proof: Since, Likelihood ratio order ⇒ Hazard rate order ⇒ Stochastic
order and Convex order ⇐⇒ Stochastic order, it is sufficient to show that
Likelihood ratio order holds.
We have

L(x) = ln

(
fX1(x)

fX2(x)

)
= (k + 1) ln

(
θ1
θ2

)
− (θ1 − θ2)x

Now,

△L(x) = d

dx

[
ln

(
fX1(x)

fX2(x)

)]
Clearly, it is evident that △L(x) ≤ 0, ∀θ2 ≤ θ1

3. Estimation of PDF and CDF and their applications in Reliability
Estimation

The PDF and the CDF estimates have immense importance in estimating
reliability functions (both mission time and stress-strength), entropy functions,
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Kullback-Leibler divergence measure, Fisher information, cumulative residual en-
tropy, quantile function, hazard rate function, etc. In this section, the MLE and
UMVUE of the reliability functions are to be attempted. The asymptotic vari-
ances/variances of the estimators and their estimators are to be discussed.

First, we will discuss the MLE and UMVUE of the PDF and the CDF of
BMOPPE family of distributions. Let X1, X2, ..., Xn be random sample of size n
drawn from the BMOPPE distribution in (1.5). The MLE of θ which is denoted
as θ̃ is obtained by numerically solving the equation∑r

k=0 ak
(
r
k

)
k+1
θk+2∑r

k=0 ak
(
r
k

)
1

θk+1

− X̄ = 0.(3.1)

Using the invariance property of MLE, one can obtain the MLEs of the PDF and
that of the CDF by substituting θ̃ in (1.5) and (1.6) respectively. Theoretical
expressions for the MSE of the MLEs are not available. MSE is to be studied
through simulation.

To derive the UMVUE of the PDF and that of the CDF (stated in Theorem
3.2), we will use the following Theorem 3.1 and Lemma 3.1.

Theorem 3.1. Let X1, X2, ..., Xn independently follow BMOPPE(θ).
Then the distribution of T = X1 +X2 + ....+Xn is

f(t) = hn(θ)
∑
y0

∑
y1

. . .
∑
yr

c(n, y0, y1, . . . , yr) exp(−θt)

×t
∑r

k=0(k+1)yk−1, t > 0,

with y0+y1+ ...+yr = n and c(n, y0, y1, . . . , yr) =
n!

y0!y1!...yr!

∏r
k=0[ak(

r
k)]

yk

Γ(
∑r

k=0(k+1)yk)
.

Proof: Since Xi’s are independent and identically distributed, the mo-
ment generating function (mgf) of T is

MT (t) = hn(θ)

[
r∑

k=0

ak

(
r

k

)
1

θk+1

(
1− t

θ

)−(k+1)
]n

= hn(θ)

[
a0

(
r

0

)
1

θ

(
1− t

θ

)−1

+ ....+ ar

(
r

r

)
1

θr+1

×
(
1− t

θ

)−(r+1)
]n

= hn(θ)
∑
y0

∑
y1

. . .
∑
yr

n!

y0!y1! . . . yr!

r∏
k=0

[
ak

(
r

k

)]yk
×θ−

∑r
k=0(k+1)yk

(
1− t

θ

)−
∑r

k=0(k+1)yk

.
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Hence, the distribution of T is

f(t) = hn(θ)
∑
y0

∑
y1

. . .
∑
yr

n!

y0!y1! . . . yr!

r∏
k=0

[
ak

(
r

k

)]yk
×θ−

∑r
k=0(k+1)ykfGA(t,

r∑
k=0

(k + 1)yk, θ)

= hn(θ)
∑
y0

∑
y1

. . .
∑
yr

c(n, y0, y1...., yr)t
∑r

k=0(k+1)yk−1 exp(−θt).

Lemma 3.1. The conditional distribution of X1 given T = X1 +X2 +
....+Xn is

fX1|T (x|t) =
p(x)

An(t)

∑
q0

∑
q1

...
∑
qr

c(n− 1, q0, q1, . . . , qr)

×(t− x)
∑r

k=0(k+1)qk−1, 0 < x < t,

where

An(t) =
∑
y0

∑
y1

. . .
∑
yr

c(n, y0, y1, . . . , yr)t
∑r

k=0(k+1)yk−1,

and

c(n− 1, q0, q1...., qr) =
(n− 1)!

q0!q1! . . . qr!

r∏
k=0

[
ak

(
r

k

)]qk 1

Γ(
∑r

k=0(k + 1)qk)
,

with q0 + q1 + q2 + ....+ qr = n− 1.

Proof: The proof is obviously conducted from

fX1|T (x|t) =
fX1(x)f(t− x)

f(t)

=
p(x)

An(t)

∑
q0

∑
q1

. . .
∑
qr

c(n− 1, q0, q1, . . . , qr)

×(t− x)
∑r

k=0(k+1)qk−1.

Theorem 3.2. Let T = t be given. Then

f̂(x) =
p(x)

An(t)

∑
q0

∑
q1

...
∑
qr

c(n− 1, q0, q1, . . . , qr)(3.2)

×(t− x)
∑r

k=0(k+1)qk−1, 0 < x < t,
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is UMVUE for f(x) and

F̂ (x) = 1− 1

An(t)

∑
q0

∑
q1

...
∑
qr

c(n− 1, q0, q1, . . . , qr)(3.3)

×
r∑

k=0

ak

(
r

k

)
1

Γ(k + 1)
t
∑r

k=0(k+1)qk+k

×B

(
(k + 1),

r∑
k=0

(k + 1)yk

)
Ix/t

(
(k + 1),

r∑
k=0

(k + 1)qk

)
,

0 < x < t,

is UMVUE for F (x), where Ix(α, β) =
1

B(α,β)

∫ 1
x u

α−1(1 − u)β−1du is an incom-

plete beta function and B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

Proof: The BMOPPE in (1.4) is a member of one parameter exponential
family with T =

∑n
i=1Xi as complete sufficient statistic.Therefore, by the use of

Lehmann-Scheffe theorem, we get the UMVUE of the PDF from Lemma 3.1.

F̂ (x) = 1−
∫ t

x
f̂(w)dw

= 1−
∫ t

x

p(w)

An(t)

∑
q0

∑
q1

...
∑
qr

c(n− 1, q0, q1, . . . , qr)

×(t− w)
∑r

k=0(k+1)qk−1dw

= 1− 1

An(t)

∑
q0

∑
q1

...
∑
qr

c(n− 1, q0, q1, . . . , qr)

×
r∑

k=0

ak

(
r

k

)
1

Γ(k + 1)
t
∑r

k=0(k+1)qk+k

×B

(
(k + 1),

r∑
k=0

(k + 1)yk

)
Ix/t

(
(k + 1),

r∑
k=0

(k + 1)qk

)
.

3.1. Mission Time Reliability

Suppose the life length of a component X is distributed as BMOPPE (θ).
Then the reliability of that component for a fixed mission time t0 (> 0) is

F̄X(t0) = P (X ≥ t0)

= h(θ)

r∑
k=0

ak
(
r
k

)
θk+1

Γ(k + 1, θt0).
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By using the relation between incomplete gamma function and Poisson probabil-
ity, F̄X(t0) can be written as

F̄X(t0) = h(θ)
r∑

k=0

ak
(
r
k

)
θk+1

k∑
j=0

e−θt0(θt0)
j

j!
.

3.1.1. The MLE

The MLE of F̄X(t0) based on a random sample of size n, is

˜̄FX(t0) = h(θ̃)

r∑
k=0

ak
(
r
k

)
θ̃k+1

k∑
j=0

e−θ̃t0(θ̃t0)
j

j!
,

where θ̃ is the solution of the equation (3.1). Since MSE( ˜̄FX(t0)) has no closed

form expression, we give the asymptotic distribution of ˜̄FX(t0) by using delta
theorem as follows

√
n
(˜̄FX(t0)− F̄X(t0)

)
d→ N

(
0,

1

I(θ)

[
dF̄X(t0)

dθ

]2)
,

where

I(θ) =

[∑r
k=0

ak(rk)
θk+1

] [∑r
k=0

ak(rk)(k+2)(k+1)

θk+3

]
−
[∑r

k=0

ak(rk)(k+1)

θk+2

]2
[∑r

k=0

ak(rk)
θk+1

]2
is the Fisher information about parameter θ for a single observation X.

3.1.2. The UMVUE

Application of incomplete beta function and binomial probability gives the
UMVUE of F̄X(t0) as

̂̄FX(t0) =
1

An(t)

∑
x0

∑
x1

...
∑
xr

∑r
i=0 xi=n−1

c(n− 1, x0, x1, . . . , xr)×

r∑
k=0

ak
(
r
k

)
Γ(k + 1)

t
∑r

k=0(k+1)xk+k
0 B

(
(k + 1),

r∑
k=0

(k + 1)xk

)
×

k∑
j=0

(∑r
l=0(l + 1)xl + k

j

)(
t0
t

)j (
1− t0

t

)∑r
l=0(l+1)xl+k−j

.
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For exponential family of distribution, Blight and Rao ([3]) considered
Bhattacharya bounds to calculate the variance of UMVUE of parametric function

ψ(θ). So, variance of ̂̄FX(t0) can be expressed as

V ar( ̂̄FX(t0)) =

∞∑
l=1

[F̄
(l)
X (t0)]

2

[J∗
l (θ)]

2
,

where

[J∗
l (θ)]

2 = [h(θ)]n
l∑

j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
×

[h(l−i)(θ)]n[h(l−j)(θ)]n

×
∑
x0

∑
x1

...
∑
xr

∑r
i=0 xi=n−1

c(n− 1, x0, x1, ..., xr)

×
Γ(i+ j +

∑r
l=0(l + 1)xl)

θi+j+
∑r

l=0(l+1)xl

is the Bhattacharya function and h(i)(θ) denotes the ith derivative of h with re-
spect to θ.

Now, for the derivation of UMVUE of V ar( ̂̄FX(t0)), we consider the rep-
resentation

V ar( ̂̄FX(t0)) = E( ̂̄F 2

X(t0))− [E( ̂̄FX(t0))]
2

= E( ̂̄F 2

X(t0))− F̄ 2
X(t0).

If Q̂1(t0) is the UMVUE of Q1(t0) = F̄ 2
X(t0), we get the UMVUE of V ar( ̂̄FX(t0))

as ̂̄F 2

X(t0)− Q̂1(t0). We start from the fact that

I[X1 ≥ t0, X2 ≥ t0] = I[X1 ≥ t0]I[X2 ≥ t0],

which implies that I[X1 ≥ t0, X2 ≥ t0] is unbiased for Q1(t0). Then, we get the
UMVUE by using Rao-Blackwell theorem as

Q̂1(t0) =
1

An(t)

∑
x0

∑
x1

...
∑
xr

∑r
i=0 xi=n−2

c(n− 2, x0, x1, . . . , xr)
r∑

k=0

×
r∑

l=0

akal
(
r
k

)(
r
l

)
Γ(k + 1)Γ(l + 1)

∑r
m=0(m+1)xm−1∑

i=0

(−1)i
(∑r

m=0(m+1)xm−1
i

)
l + i+ 1

×[t
∑r

m=0(m+1)xm+l

∑r
m=0(m+1)xm+l∑

u=0

(−1)u
(∑r

m=0(m+1)xm+l
u

)
tu(k + u+ 1)

×(tk+u+1 − tk+u+1
0 )− tl+i+1

0 t
∑r

m=0(m+1)xm−i−1

∑r
m=0(m+1)xm−i−1∑

v=0

×

(−1)v
(∑r

m=0(m+1)xm−i−1
v

)
tv(k + v + 1)

(tk+v+1 − tk+v+1
0 )].
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3.2. Stress Strength Reliability

For estimation of stress strength reliability, we assume the stress ran-
dom variable X follows BMOPPE (θ1) and strength random variable Y follows
BMOPPE (θ2) and they are independently distributed. Then the expression of
stress strength reliability becomes

R = P (X < Y )

=

∫ ∞

0
F̄Y (x)f(x)dx

= h(θ1)h(θ2)

r2∑
k2=0

bk2
(
r2
k2

)
θk2+1
2

r1∑
k1=0

ak1
(
r1
k1

)
θk1+1
1

×

k2∑
j=0

(
k1 + j

j

)(
θ2

θ1 + θ2

)j ( θ1
θ1 + θ2

)k1+1

.

3.2.1. The MLE of R

Let (x1, x2, ..., xn1) and (y1, y2, ..., yn2) are independent samples drawn from
BMOPPE (θ1) and BMOPPE (θ2), respectively. Let the MLEs of θ1 and θ2 are
θ̃1 and θ̃2, respectively. By putting the values of θ̃1 and θ̃2 in the expression of
R, we get R̃ by its invariance property as,

R̃ = h(θ̃1)h(θ̃2)

r2∑
k2=0

bk2
(
r2
k2

)
θ̃2

k2+1

r1∑
k1=0

ak1
(
r1
k1

)
θ̃1

k1+1
×

k2∑
j=0

(
k1 + j

j

)(
θ̃2

θ̃1 + θ̃2

)j (
θ̃1

θ̃1 + θ̃2

)k1+1

.

Similarlly as in mission time reliability, we derive the asymptotic distribution of
R̃ in the following theorem.

Theorem 3.3. If the ratio n1
n2

converges to a positive number κ when
both n1 and n2 tends to infinity. Then

√
n(R̃−R)

d→ N(0, σ2),

where σ2 = 1
I1(θ1)

[ ∂R∂θ1 ]
2 + κ

I2(θ2)
[ ∂R∂θ2 ]

2 and I1(θ1) is a Fisher information about

parameter θ1 in a single observation X, I2(θ2) is a fisher information about θ2 in
a single observation Y.
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Proof: Since log-likelihood equations satisfies all regularity conditions
of asymptotic normality for MLE, then we have

√
nj(θ̃j − θj)

d→ N(0, [Ij(θj)]
−1),

where

I1(θ1) =

[∑r1
k=0

ak(r1k )
θk+1
1

] [∑r1
k=0

ak(r1k )(k+2)(k+1)

θk+3
1

]
−
[∑r1

k=0

ak(r1k )(k+1)

θk+2
1

]2
[∑r1

k=0

ak(r1k )
θk+1
1

]2 ,

and

I1(θ2) =

[∑r2
k=0

bk(r2k )
θk+1
2

] [∑r2
k=0

bk(r2k )(k+2)(k+1)

θk+3
2

]
−
[∑r2

k=0

bk(r2k )(k+1)

θk+2
2

]2
[∑r2

k=0

bk(r2k )
θk+1
2

]2 .

Again, from the fact of independence of θ̃1 and θ̃2, we get

√
n1(θ̃1 − θ1, θ̃2 − θ2)

d→ N2(0, J(θ1, θ2)),

where

J(θ1, θ2) =

[
[I1(θ1)]

−1 0
0 κ[I2(θ2)]

−1

]
.

Now application of the transformation R = R(θ1, θ2) together with Delta theorem
conclude the proof.

3.2.2. The UMVUE of R

By using the UMVUE of mission time reliability and the PDF of the
BMOPPE distribution, the UMVUE of R can be expressed as

R̂ =

∫ Min(t1,t2)

x=0

̂̄F Y (x)f̂X(x)dx,

where, t1 =
∑n1

i=1 xi and t2 =
∑n2

i=1 yi, respectively. Evalution of the integral
gives the final form of the UMVUE of R as

R̂ =
1

An1(t1)An2(t2)

∑
q0

∑
q1

...
∑
qr1

∑r1
i=0 qi=n1−1

c(n1 − 1, q0, q1, . . . , qr1)

×t
∑r1

l=0(l+1)ql
1

∑
w0

∑
w1

...
∑
wr2

∑r2
i=0 wi=n2−1

c(n2 − 1, w0, w1, . . . , wr2)

×t
∑r2

m=0(m+1)wm

2 J1

(
r1∑
l=0

(l + 1)ql,

r2∑
m=0

(m+ 1)wm

)
,
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where

J1(α, β) =

r1∑
k1=0

ak1
(
r1
k1

)
tk11

Γ(k1 + 1)

r2∑
k2=0

bk2
(
r2
k2

)
tk22

Γ(k2 + 1)

k2∑
j=0

β+k2−j∑
i=0

(−1)i
(
t1
t2

)i+j

×(
β + k2
j

)(
β + k2 − j

i

)
B(k2 + 1, β)B(i+ j + k1 + 1, α)×

α+i+j+k1∑
l=i+j+k1+1

(
α+ i+ j + k1

l

)(
Min(t1, t2)

t1

)l

×

(
1− Min(t1, t2)

t1

)(α+i+j+k1−l)

.

Under certain regularity conditions, variance of R̂ takes the form [See,
Bartoszewicz([1])] as follows

V ar(R̂) =
∞∑
k=1

k∑
j=0

[
∂kR

∂θj1∂θ
k−j
2

1

Ij(θ1)Jk−j(θ2)

]2
,

where

[Il(θ1)]
2 = [h(θ1)]

n1

l∑
j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
×

[h(l−i)(θ1)]
n1 [h(l−j)(θ1)]

n1

×
∑
q0

∑
q1

...
∑
qr1

∑r1
i=0 qi=n1−1

c(n1 − 1, q0, q1, ..., qr1)

×
Γ(i+ j +

∑r1
l=0(l + 1)ql)

θ
i+j+

∑r1
l=0(l+1)ql

1

,

[Jl(θ2)]
2 = [h(θ2)]

n2

l∑
j=0

l∑
i=0

(−1)i+j

(
l

i

)(
l

j

)
×

[h(l−i)(θ2)]
n2 [h(l−j)(θ2)]

n2

×
∑
w0

∑
w1

...
∑
wr2

∑r2
i=0 wi=n2−1

c(n2 − 1, w0, w1, ..., wr2)

×
Γ(i+ j +

∑r2
l=0(l + 1)wl)

θ
i+j+

∑r2
l=0(l+1)wl

2

.

As earlier, the following representation

V ar(R̂) = E(R̂2)− [E(R̂)]2

= E(R̂2)−R2.
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gives the UMVUE of V ar(R̂) as R̂2 − Q̂2, where Q̂2 is the UMVUE of Q2 = R2.
Similarly, we give the final expression of Q̂2 in the following equation.

Q̂2

=
1

An1(t1)An2(t2)

∑
q0

∑
q1

...
∑
qr1

∑r1
i=0 qi=n1−2

c(n1 − 2, q0, q1, . . . , qr1)×

∑
w0

∑
w1

...
∑
wr2

∑r2
i=0 wi=n2−1

c(n2 − 1, w0, w1, . . . , wr2)

r1∑
k1=0

r1∑
l1=0

ak1al1
Γ(k1 + 1)

×
(
r1
k1

)(
r1
l1

)
Γ(l1 + 1)

r2∑
k2=0

r2∑
l2=0

bk2bl2
Γ(k2 + 1)

(
r2
k2

)(
r2
l2

)
Γ(l2 + 1)

∑r2
m=0(m+1)wm−1∑

i=0

(−1)i ×

(∑r2
m=0(m+1)wm−1

i

)
l2 + i+ 1

[t
∑r2

m=0(m+1)wm+l2
2

∑r2
m=0(m+1)wm+l2∑

u=0

(−1)u
(∑r2

m=0(m+1)wm+l2
u

)
tu2(k2 + u+ 1)

×[tu2J2(k1, l1,

r1∑
m=0

(m+ 1)qm − 1)− J2(k1 + k1 + u+ 1, l1,

r1∑
m=0

(m+ 1)qm − 1)]− t
∑r2

m=0(m+1)wm−i−1
2

∑r2
m=0(m+1)wm−i−1∑

v=0

(−1)v ×

(∑r2
m=0(m+1)wm−i−1

v

)
tv2(k2 + v + 1)

[tk2+v+1
2 J2(k1, l1 + l2 + i+ 1,

r1∑
m=0

(m+ 1)qm − 1)

−J2(k1 + k2 + v + 1, l1 + l2 + i+ 1,

r1∑
m=0

(m+ 1)qm − 1)]],

where

J2(a, b, β) =

β−1∑
i=0

(−1)i
(
β − 1

i

)
ta+b+β+1
1

b+ β + 1
B(a+ 1, b+ β + 1)×

a+b+β+1∑
j=a+1

(
a+ b+ β + 1

j

)(
Min(t1, t2)

t1

)j

×

(
1− Min(t1, t2)

t1

)a+b+β+1−j

.

4. Simulation study

Monte Carlo Simulation technique will not be helpful in generating random
samples from the BMOPPE distribution, since the equation

F (x) = u, u ∈ (0, 1)
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cannot explicitly be solved in x. However, since the distribution is a mixture of
gamma distributions given in (1.5), one can utilize this fact. For the BMOPPE
distribution, the generation of a random sample X1, X2, . . . , Xn is made using
the following algorithm:

1. Generate Ui ∼ Uniform(0, 1), i = 1(1)n.

2. If

∑j−1
k=0 ak(

r
k)

1

θk∑r
k=0 ak(

r
k)

1

θk

< Ui ≤
∑j

k=0 ak(
r
k)

1

θk∑r
k=0 ak(

r
k)

1

θk

, j = 1, 2, ..., r,then set Xi = Vi,

where Vi ∼ gamma(j + 1, θ) and if Ui ≤ a0∑r
k=0 ak(

r
k)

1

θk

, then set Xi =

Vi, where Vi ∼ exp(θ).
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(b) For CDF at θ = 1.05, x = 2, a0 = 0, a1 =
0.1, a2 = 1 and r = 2
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(c) For θ = 1.5, x = 2, a0 = 0.01, a1 =
0.02, a2 = 4 and r = 2
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(d) For θ = 1.5, x = 2, a0 = 0.01, a1 =
0.02, a2 = 4 and r = 2
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(e) For θ = 0.09, x = 2, a0 = 0.2, a1 =
0.1, a2 = 1 and r = 2
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(f) For θ = 0.09, x = 2, a0 = 0.2, a1 =
0.1, a2 = 1 and r = 2

Figure 3: Graph of simulated MSE of the MLE and UMVUE of the PDF
and the CDF of BMOPPE distribution

5. Data Analysis

In this section, we analyse three real data sets for comparing the perfor-
mances of the MLE and the UMVUE of the PDF and the CDF. The probability
model selection is made based on Akaike’s Information Criterion (AIC= −2 log-
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likelihood+2k, where k is the number of parameters involved in the model) for
each data set. Minimum is the AIC; better is the model fit. For our BMOPPE
model, there is only one parameter θ; it is sufficient to select the model with a
negative log-likelihood. But since this model is compared with other models with
more than one parameter, the analyses are based on AIC. The AIC is calculated
first using the MLE of the parameter(s), and the best model is selected. Then
the AIC of the chosen model is compared with the AIC of this model calculated
using the UMVUE of the PDF. It is mentioned that a0, a1, ..., ar and r are
known constants in the model; in practice, these are chosen by trial and error
such that AIC is at its minimum.

Data set-I, which is cited from Gross and Clark ([7]) and is given in Table
1, represents the relief times (in minutes) of 20 patients receiving an analgesic.
We calculate the AIC of different standard distributions of One Parameter Poly-
nomial Exponential (OPPE) family and few others from literature (presented in
Table 4) and it is observed that BMOPPE family with r = 2, a0 = 0, a1 = 0.1
and a2 = 1 is a better fit. The negative log-likelihood values of the selected model
calculated using the MLE and the UMVUE of the PDF are presented in Table
7. Figures 3(a)- (b) show the histogram, the estimated PDF, and the CDF.

Data set-II represents the number of million revolutions before failure for
each of the 23 ball bearings in the life test. It is obtained from Lawless ([8]) and
shown in Table 2. For ease of calculation, we divide each observation into the
data set by 2. The calculated AIC of different standard distributions of OPPE
family and few others have been shown in Table 5 and it is noticed that BMOPPE
family with r = 2, a0 = 0.2, a1 = 0.1 and a2 = 1 is a better fit. The negative
log-likelihood values of the selected model calculated using the MLE and the
UMVUE of the PDF are also presented in Table 7. Figures 3(c) and 3(d) present
the corresponding histogram, the estimated PDF, and the CDF.

Data set-III is a collection from Bjerkedal ([2]), and Table 3 displays the
survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli.
This data set has been fitted with a distribution of BMOPPE family with r = 2,
a0 = 0.01, a1 = 0.02 and a2 = 4 and it is found to be a good fit. AIC for this
distribution and some other distributions available in the literature are listed in
Table 6 that supports our claim. The negative log-likelihood values of the selected
model calculated using the MLE and the UMVUE of the PDF are also presented
in Table 7. The histogram, the estimated PDF, and the CDF have been shown
in Figures 3(e) and 3(f).

6. Concluding Remarks

The article searches for a more generalised version of Lindley distribution.
Starting with the Lindley distribution as a Bernoulli mixture of gamma distribu-
tions, a generalised binomial mixture of gamma distributions called the BMOPPE
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family of distributions has been derived. It is a revisit of the Lindley distribution
from a different angle. As a result, the generalised version of the Lindley, the
OPPE family of distributions, got mixed with the binomial probabilities, and
therefore, the BMOPPE is an improvement. Moments and stochastic orderings
are discussed. The process of generation of observations is pointed out, and the
results are summarised. Estimations of the PDF and the CDF are discussed. The
MLEs and UMVUEs are derived and compared. We have the estimators in biased
(i.e., MLE) and unbiased (i.e., UMVUE) classes. Estimators of reliability func-
tions are derived. Asymptotic variances of MLEs and variances of UMVUEs have
been derived. The UMVUEs of the variance of UMVUEs of reliability functions
have also been derived. These may be helpful in data analysis and comparison.
Few data sets have been fitted, and it is found that the proposed distribution
fits well in AIC sense. Even though the gain in AIC is minimal compared to the
OPPE family of distributions, the BMOPPE is an improvement and is preferred.

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7
4.1 1.8 1.5 1.2 1.4 3 1.7 2.3 1.6 2

Table 1: Relief times (in minutes) of 20 patients receiving an analgesic

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84
51.96 54.12 55.56 67.80 68.44 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

Table 2: The number of million revolutions before failure for each of the
23 ball bearings in the life tests

0.1 0.33 0.44 0.56 0.59 0.72 0.74 0.77 0.92
0.93 0.96 1 1 1.02 1.05 1.07 1.07 1.08
1.08 1.08 1.09 1.12 1.13 1.15 1.16 1.2 1.21
1.22 1.22 1.24 1.3 1.34 1.36 1.39 1.44 1.46
1.53 1.59 1.6 1.63 1.63 1.68 1.71 1.72 1.76
1.83 1.95 1.96 1.97 2.02 2.13 2.15 2.16 2.22
2.3 2.31 2.4 2.45 2.51 2.53 2.54 2.54 2.78
2.93 3.27 3.42 3.47 3.61 4.02 4.32 4.58 5.55

Table 3: Survival times (in days) of 72 guinea pigs
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Model −2 log-likelihood value AIC

BMOPPE (a0 = 0, a1 = 0.1 and a2 = 1) 48.10 50.10

Length-biased Lindley 49.70 51.70

Akash 59.52 61.52

Shanker 59.78 61.78

Lindley 60.50 62.50

Moment Exponential 52.32 54.32

Exponential 65.67 67.67

Table 4: Model selection criterion for data set-I

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0.2, a1 = 0.1 and a2 = 1) 195.26 197.26

Sujatha 195.38 197.38

Akash 227.06 229.06

Shanker 231.06 233.06

Lindley 231.47 233.47

Gamma 226.04 230.04

Weibull 232.27 236.27

Exponential 242.87 244.87

Table 5: Model selection criterion for data set-II

Model −2 log-likelihood value AIC

BMOPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 188.18 190.18

OPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 188.27 190.27

Lindley 213.85 215.85

New Generalized Lindley 188.36 194.36

Moment Exponential 208.40 210.40

Marshall-Olkin Exponential 206.36 210.36

Table 6: Model selection criterion for data set-III

Negative log-likelihood value
Data Set Model MLE UMVUE

I BMOPPE (a0 = 0, a1 = 0.1 and a2 = 1) 24.05 23.71

II BMOPPE (a0 = 0.2, a1 = 0.1 and a2 = 1) 97.63 97.52

III BMOPPE (a0 = 0.01, a1 = 0.02 and a2 = 4) 94.09 94.09

Table 7: Negative log-likelihood value using MLE and UMVUE fitted in
data set I-III



20 M. K. Ruidas, I. Mukherjee, M. M. Choudhury, S. S. Maiti and S. Adhya

Histogram and estimated PDF fitted to the data set−I
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(e) Fitted PDF at a0 = 0.01, a1 = 0.02 and
a2 = 4 to the data set-III
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(f) Fitted CDF at a0 = 0.01, a1 = 0.02 and
a2 = 4 to the data set-III

Figure 4: Graph of the estimated PDF and CDF of BMOPPE distribution
for different data sets.
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