
REVSTAT – Statistical Journal
Volume 22, Number 2, April 2024, 189–210

https://doi.org/10.57805/revstat.v22i2.458

Robust Estimation of Component Reliability
Based on System Lifetime Data with Known Signature

Authors: Xiaojie Zhu
– Department of Statistical Science, Southern Methodist University,

Dallas, Texas 75275-0332, U.S.A.
xiaojiez@mail.smu.edu

Hon Keung Tony Ng �

– Department of Mathematical Sciences, Bentley University,
Waltham, Massachusetts 02452, U.S.A.
tng@bentley.edu

Ping Shing Chan
– Department of Statistics, The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong
benchan@cuhk.edu.hk

Received: September 2020 Revised: May 2022 Accepted: May 2022

Abstract:

• This paper considers the estimation of component reliability based on system lifetime data with
known system signature using the minimum density divergence estimation method. Different es-
timation procedures based on the minimum density divergence estimation method are proposed.
Standard error estimation and interval estimation procedures are also studied. Then, a Monte Carlo
simulation study is used to evaluate the performance of those proposed procedures and compare
those procedures with the maximum likelihood estimation method under different contaminated
models. A numerical example is presented to illustrate the effectiveness of the proposed minimum
density divergence estimation method. We have shown that the proposed estimation procedures
are robust to contamination and model misspecification. Finally, concluding remarks with some
possible future research directions are provided.

Keywords:

• censoring; maximum likelihood estimation; minimum density divergence; Monte Carlo simulation;
Weibull distribution.

AMS Subject Classification:

• 62N02, 62N05, 62F35.

� Corresponding author

https://doi.org/10.57805/revstat.v22i2.458
mailto:xiaojiez@mail.smu.edu
https://orcid.org/0000-0003-4685-2199
mailto:tng@bentley.edu
https://orcid.org/0000-0002-6983-5845
mailto:benchan@cuhk.edu.hk


190 X. Zhu, H.K.T. Ng and P.S. Chan

1. INTRODUCTION

System lifetime data are commonly encountered in industrial and engineering settings.
In system reliability studies, engineers are always interested in the lifetime distribution of
the system as well as the lifetime distribution of the components which make up the system.
We consider here the situation that the lifetimes of an n-component system can be observed
but not the lifetime of the components. This situation occurs when putting the individual
component on a life testing experiment after the n-component system is built is not possible,
or when the distribution of the component lifetimes changes while they are used in a specified
system. Suppose the lifetimes of the n components in an n-component system are independent
and identically distributed (i.i.d.) random variables, denoted as X1, X2, ..., Xn, with prob-
ability density function (p.d.f.) fX(t;θ), cumulative distribution function (c.d.f.) FX(t;θ)
and survival function (s.f.) F̄X(t;θ), where θ is the parameter vector. We further denote
the ordered component lifetimes within an n-component system as X1:n < X2:n < ··· < Xn:n

with Xi:n be the i-th ordered component lifetime. Although the i.i.d. assumption is restric-
tive, there are many practical situations in which the i.i.d. assumption is applicable. For
instance, Bhattacharya and Samaniego [3] discussed some of the practical examples that the
i.i.d. assumption is reasonable such as batteries in a lighting device, wafers in a digital com-
puter, and spark plugs in an automobile, and Jin et al. [13] discussed that the performance
of “Redundant Array of Independent Disks (RAID)” computer hardware with n independent
disks can be designed to perform like a k-out-of-n system.

When the component lifetime follows an absolutely continuous distribution, the failure
time of an n-component system corresponds to the failure time of one of the n components.
We consider the coherent system in which every component is relevant and the system has
a monotone structure function [7]. In a coherent system consists of n i.i.d. components, the
system structure can be described by the system signature defined as an n-element probability
vector s = (s1, s2, ..., sn), where the i-th element is the probability that the i-th ordered
component failure causes the failure of the system [24], i.e.,

si = Pr(T = Xi:n) , i = 1, 2, ..., n.

Note that the system signature is only depending on the system structure and hence, it is
distribution-free. To illustrate the idea of system signature, we consider the 4-component
series-parallel III system with system lifetime T = min{X1,max{X2, X3, X4}} (Figure 1a).
For the 4-component series-parallel III system, there are 4! = 24 possible arrangements of
the component lifetimes. The 24 arrangements and their corresponding system lifetimes are
presented in Table 1. From Table 1, we can obtain

s1 = Pr(T = X1:4) = 6/24 = 1/4,

s2 = Pr(T = X2:4) = 6/24 = 1/4,

s3 = Pr(T = X3:4) = 12/24 = 1/2,

and s4 = Pr(T = X4:4) = 0.

Hence, the system signature of the 4-component series-parallel III system is s = (1/4, 1/4, 1/2, 0).
Similarly, for the 4-component mixed parallel I system (Figure 1b), the system signature is
s = (0, 1/2, 1/4, 1/4).
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Figure 1: Two 4-component systems for illustration.

Table 1: The 24 possible arrangements of the component lifetime in
a 4-component series-parallel III system.

System System
Arrangement

lifetime T
Arrangement

lifetime T

X1 < X2 < X3 < X4 X1:4 X3 < X1 < X4 < X2 X2:4

X1 < X2 < X4 < X3 X1:4 X3 < X4 < X1 < X2 X3:4

X1 < X4 < X2 < X3 X1:4 X3 < X1 < X2 < X4 X2:4

X1 < X4 < X3 < X2 X1:4 X3 < X4 < X1 < X2 X3:4

X1 < X3 < X2 < X4 X1:4 X3 < X2 < X1 < X4 X3:4

X1 < X3 < X4 < X2 X1:4 X3 < X2 < X4 < X1 X3:4

X2 < X1 < X3 < X4 X2:4 X4 < X1 < X2 < X3 X2:4

X2 < X1 < X4 < X3 X2:4 X4 < X1 < X3 < X2 X2:4

X2 < X3 < X1 < X4 X3:4 X4 < X2 < X1 < X3 X3:4

X2 < X3 < X4 < X1 X3:4 X4 < X2 < X3 < X1 X3:4

X2 < X4 < X1 < X3 X3:4 X4 < X3 < X1 < X2 X3:4

X2 < X4 < X3 < X1 X3:4 X4 < X3 < X2 < X1 X3:4

Given the system signature s, the p.d.f. and s.f. of the system lifetime T of an
n-component system can be expressed as

fT (t;θ) =
n∑

i=1

si

(
n

i

)
ifX(t;θ)[FX(t;θ)]i−1[F̄X(t;θ)

]n−i(1.1)

and F̄T (t;θ) =
n∑

i=1

si

i−1∑
j=0

[FX(t;θ)]j
[
F̄X(t;θ)

]n−j
,(1.2)

respectively [15]. Based on system lifetimes with known system signatures, the statisti-
cal inference of the component lifetime distribution have been discussed in the literature.
Balakrishnan et al. [1] developed an exact nonparametric inference for population quantiles
and tolerance limits of component lifetime distribution in a system. Balakrishnan et al. [2]
derived the best linear unbiased estimator (BLUE) for the parameters in the component
lifetime distribution. Navarro et al. [21] discussed the method of moments, the maximum
likelihood method and the least squares methods for system lifetime data under a propor-
tional hazard rate model. Chahkandi et al. [8] proposed several nonparametric methods to
construct prediction intervals for the lifetime of coherent systems. Zhang et al. [28] pro-
posed a regression-based estimation method for the model parameters of component lifetime
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distribution based on censored system failure data. Yang et al. [26] proposed a stochastic
expectation-maximization (EM) algorithm to obtain an approximation of the maximum like-
lihood estimates (MLEs) of the parameters in component lifetime distribution. Recently,
Yang et al. [27] and Hermanns et al. [12] considered the EM algorithm to obtain the MLEs
of the parameters in component lifetime distribution based on system lifetime data when the
system structure is unknown. The theory and applications of system signatures are an active
research area. For a comprehensive review and bibliometric analysis on system signatures,
one can refer to a recent paper by Naqvi et al. [19].

In industrial experiments on systems, there are many situations in which systems are
removed from experimentation before the occurrence of the failure of the system. Two com-
mon reasons for pre-planned censoring are saving the time on tests and reducing the cost
associated with the experiment because failure implies the destruction of a system which
may be costly [9, 18]. In this paper, we consider Type-II right censoring scheme in which the
number of observed failures is pre-specified as r and the experiment is terminated as soon as
the r-th ordered system failure is observed. Several studies on the Type-II censored system
lifetime data in a system with system signature have been conducted [2, 12, 21, 28, 26, 27].

In the manufacturing industry, defectives could be induced in the manufacturing pro-
cess due to different reasons such as human error, insufficient quality control, and failure
in addressing reliability aspects during the design stage, etc.. As Raina [22] pointed out,
zero-defect is an impossible goal to achieve or cost-prohibitive in the manufacturing pro-
cess. Manufacturing defects often lead to potential outliers or contamination of the lifetime
data. When there is outliers exist in observed lifetime data, the performance of the maxi-
mum likelihood or other classical estimation methods may be affected and a poor estimate of
the component reliability characteristics may be yielded. Note that the maximum likelihood
estimation is sensitive to the outliers as each observation contributes equal information to
the estimate. Therefore, it is desired to develop parameter estimation procedures that are
less sensitive to contaminated observations. Basu et al. [4] developed a family of density-
based divergences measures with a single parameter α that controls the trade-off between
robustness and efficiency, and proposed a procedure for estimating model parameters based
on minimizing the density divergence. Basu et al. [5] further extended the minimum den-
sity divergence procedure to censored survival data with and without contamination, and
found that the minimum density divergence estimator (MDE) is superior to the MLE when
there is contamination in the censored survival data. Recently, Riani et al. [23] developed
an alternative minimum density power divergence estimation procedure using the methods
of S-estimation. Basak et al. [6] proposed a procedure to determinate the optimal density
power divergence tuning parameter.

In this paper, we study the robust minimum density divergence estimation method
for the system lifetime with and without contamination. In Section 2, we introduced the
minimum density power divergence and its application to system lifetime data with known
system signatures. We also discuss the estimation of the standard error of the estimate and
interval estimation, and we show that the bootstrap method for standard error estimation
can be adopted for the MDEs. In Section 3, a numerical example is used to illustrate the
proposed MDEs. A Monte Carlo simulation study is presented in Section 4 to study the
performance of the proposed methodologies. Finally, some concluding remarks and possible
extensions are provided in Section 5.
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2. MINIMUM DENSITY DIVERGENCE ESTIMATOR FOR SYSTEM LIFE-
TIME DATA

2.1. Minimum density divergence estimator

The density power divergence, proposed by Basu et al. [4], describes a family of density-
based divergence measures between two p.d.f.s g(t) and f(t) with a single parameter α.
Consider that f(t;θ) is a parametric p.d.f. of the fitted model with parameter vector θ and
g(t) is the target p.d.f., the density power divergence between f(t;θ) and g(t) is defined as

dα(g, f) =
∫ [

f1+α(t;θ) −
(

1 +
1
α

)
g(t)fα(t;θ) +

1
α

g1+α(t)
]
dt, α > 0

(2.1)

and

(2.2) d0(g, f) = lim
α→0

dα(g, f) =
∫

g(t) ln
[

g(t)
f(t;θ)

]
dt.

dα(g, f) = 0 when f(t;θ) = g(t). The MDE of the parameter vector θ can be obtained by
minimizing the density power divergence between f(t;θ) and g(t) with respect to (w.r.t.) θ.
Since the term

∫ [
(1/α)g1+α(t)

]
dt in (2.1) does not depend on the parameter vector θ,

the minimum divergence estimator of θ can be obtained by minimizing

(2.3)
∫ [

f1+α(t;θθθ) −
(

1 +
1
α

)
g(t)fα(t;θθθ)

]
dt

w.r.t. θ.

The density power divergence reduces to the Kullack–Leibler divergence [16] when
α = 0, and is the mean squared error when α = 1. Hence, the minimum density power
divergence procedure is degenerated into the maximum likelihood method when α = 0, and
becomes the minimization of the mean squared error when α = 1. The parameter α in (2.1)
controls the trade-off between robustness and efficiency of the minimum divergence estimator
[4, 5]. It has been shown that the typical value of α is in between 0 and 1 and the estimation
procedure becomes less efficient as α increases [4]. Hence, in this paper, we consider the value
of α in (0, 1).

Basu et al. [5] proposed a method for using the empirical c.d.f. Ĝn to estimate the
target distribution G to obtain∫ [

f1+α(t;θ) − (1 + 1/α)g(t)fα(t;θ)
]
dt =

∫
f1+α(t;θ)dt −

∫
(1 + 1/α)fα(t;θ)dG(t)

≈
∫

f1+α(t;θ)dt −
∫

(1 + 1/α)fα(t;θ)dĜ(t).

Suppose that in a life testing experiment with m independent n-component systems and a
Type-II censored system lifetime data T1:m < T2:m < ··· < Tr:m (r < m) is observed, the em-
pirical c.d.f. of the system lifetime, ĜT (t), can be obtained by using the Kaplan–Meier (K-M)
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estimator of the survival function ŜT (t) = 1− ĜT (t) [14] based on the Type-II censored system
lifetime data. Then, the MDE of θ can be obtained at the system level by minimizing

(2.4) d̂α(g, f) =
∫

f1+α
T (t;θ)dt −

∫ (
1 +

1
α

)
fα

T (t;θ)dĜT (t)

w.r.t. θ. As this minimization is carried out at the system lifetime level, this estimator is
named as the MDE at system lifetime level, denoted as MDES .

In addition to the MDE at system lifetime level, the MDE can be considered at the
component level. Based on the K-M estimator of the survival function of the system lifetime
ŜT (t), a nonparametric empirical distribution of the component lifetime distribution ĜX(t)
can be obtained based on the relationship between FT and FX in (1.2) as

ŜT (t) =
n∑

i=1

si

i−1∑
j=0

[
ĜX(t)

]j[
1 − ĜX(t)

]n−j
.

Then, the model parameter θ can be estimated by minimizing the density power divergence
at component lifetime distribution

(2.5) d̂α(g, f) =
∫

f1+α
X (t;θ)dt −

∫ (
1 +

1
α

)
fα

X(t;θ)dĜX(t).

Since the MDE is obtained based on component lifetime distribution, we refer to the estimator
obtained by minimizing (2.5) as the MDE at the component lifetime level, denoted as MDEC .

Instead of estimating the c.d.f. nonparametrically, we consider the nonparametric kernel
density estimator to estimate the p.d.f. of system lifetime gT (t) [25]. With the observed
Type-II censored system lifetime data, the p.d.f. of system lifetime can be estimated using
the Gaussian kernel density estimator, denoted as ĝT (t). Then, the density power divergence
function can be expressed as

(2.6) d̂α(g, f) =
∫

f1+α
T (t;θ)dt −

∫ (
1 +

1
α

)
fα

T (t;θ)ĝT (t)dt.

A MDE of θ can be obtained by minimizing the density power divergence in (2.6) with the
estimated kernel density ĝT (t) w.r.t. θ. We name the MDE obtained by minimizing (2.6) as
the MDE with estimated p.d.f., denoted as MDEP .

For comparative purposes, we also consider the MLE of θ based on Type-II censored
system lifetime data. The log-likelihood function based on the observed Type-II censored
system lifetime data t1:m < t2:m < ··· < tr:m is

(2.7) lnL(θ|t1:m, t2:m...tr:m) =
r∑

k=1

ln fT (tk:m;θ) + (m − r) ln F̄T (tr:m;θ),

where r ≤ m is the number of observed system failures and m is the total number of systems
on the test. The MLE of θ can be obtained by maximizing the log-likelihood function in (2.7)
w.r.t. θ.
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2.2. Standard error estimation and confidence intervals

2.2.1. Based on the theoretical results from Basu et al. [4]

For the MDE, Theorem 2.2 in [4] proved that under some regularity conditions, the
MDE of the parameter θ (denoted as θ̂) is a consistent estimator for θ, and n1/2(θ̂ − θ)
is asymptotically multivariate normally distributed with zero mean and variance-covariance
matrix J−1KJ−1, where

J =
∫

uθ(t)u>θ(t)f
1+α(t, θ)dt

+
∫ [

iθ(t) − αuθ(t)u>θ(t)
]
[g(t) − f(t;θ)]fα(t;θ)dt(2.8)

and

K =
∫

uθ(t)u>θ(t)f
2α(t;θ)g(t)dt

−
[∫

uθf
α(t;θ)g(t)dt

][∫
uθf

α(t;θ)g(t)dt

]>
,(2.9)

with uθ(t) = ∂ ln f(t;θ)/∂θ, and iθ(t) = −∂uθ(t)/∂θ. Basu et al. [5] further proved that
the asymptotic property of the MDE holds for censored survival data as well. Based on
these results, the variance of the MDE can be approximated by discretizing the integrals in
(2.8) and (2.9) with the nonparametric estimated c.d.f. Ĝ(t) or the nonparametric estimated
p.d.f. ĝ(t). Considering the estimator MDES , θS , the standard error of the MDES can be
approximated as

ŜEA(θS) =
√

Ĵ−1
S K̂S Ĵ−1

S /n,(2.10)

where

ĴS =
∫ [

(1 + α)uθ̂S
(t)u>

θ̂S
(t) − iθ̂S

(t)
]
f1+α

T (t, θ̂S)dt

+
∫ [

iθ̂S
(t) − αuθ̂S

(t)u>
θ̂S

(t)
]
fα

T (t; θ̂S)dĜT (t)

and

K̂S =
∫

uθ̂S
(t)u>

θ̂S
(t)f2α

T (t; θ̂S)dĜT

−
[∫

uθ̂S
(t)fα

T (t; θ̂S)dĜT

][∫
uθ̂S

fα
T (t; θ̂S)dĜT

]>
,

where

uθ̂S
(t) =

1
fT (t;θ)

∂fT (t;θ)
∂θ

∣∣∣∣
θ=

ˆθS

and iθ̂S
(t) = −∂uθ(t)

∂θ

∣∣∣∣
θ=

ˆθS

.

The variance-covariance matrices of the estimators MDEC and MDEP , θ̂C and θ̂P , can
be obtained in a similar manner.
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2.2.2. Based on Fisher information matrix of the MLE

In our preliminary study (results are not presented here), we found that the performance
of the standard error estimation based on the theoretical results in [5] may not be satisfactory.
Therefore, we consider different ways to approximate the standard error of the MDE proposed
in this paper. Based on our observations in the preliminary study, the standard error of the
MLE and the standard error of the MDE is in the same order of magnitude, especially when
the value of α is close to 0. Hence, we consider a standard error estimation method based
on the Fisher information matrix similar to using the inverse of observed Fisher information
matrix in estimating the standard error of MLE. For the MLE of θ, the asymptotic variance-
covariance matrix of the MLE can be approximated by the inverse of the observed Fisher
information matrix, i.e.,

ŜEF (θ̂) =
√

V̂ar(θ̂) =

√√√√diag
([

−∂2 lnL(θ)
∂θ∂θ′

∣∣∣∣
θ=

ˆθ

]−1
)

,

where diag(A) denotes the diagonal elements of matrix A. According to the asymptotic theory
of the MLE, the sampling distribution of n1/2(θ̂− θ) is asymptotically multivariate normally
distributed with mean zero and variance Var(θ̂). When α = 0, the MDE is equivalent to the
MLE. Here, we propose to approximate the variance of the MDEs by inverting the observed
Fisher information by substituting θ with its MDE.

2.2.3. Based on bootstrap method

As we expected, when the value of α is far from zero, the performance of the approxima-
tion based on the Fisher information matrix may not fulfilling the expectations, therefore, we
also consider approximating the standard error of the MDE based on the bootstrap method.
Given the estimated parameters, parametric bootstrap samples of system lifetimes are gen-
erated with the corresponding censoring proportion. For each bootstrap sample, the MDE
is obtained as a bootstrap MDE. Based on B bootstrap MDEs, we compute the standard
deviation of those bootstrap MDEs as an approximation of the standard error of the MDE.
For instance, consider the MDE based on system-level data, suppose we have B bootstrap
samples and the B bootstrap MDEs are θ̂

(1)

S , θ̂
(2)

S , ..., θ̂
(B)

S , the standard error of the estimator
θ̂S can be approximated as

ŜEB(θ̂S) =

√√√√ 1
B

B∑
b=1

(θ̂
(b)

S − ¯̂
θS)2,(2.11)

where ¯̂
θS =

∑B
b=1 θ̂

(b)

S /B. The size of bootstrap samples needed will be discussed in Section 3
based on a Monte Carlo simulation study.

After obtaining the standard error estimate based on the methods described in Sections
2.2.1, 2.2.2, and 2.2.3, a two-sided 100(1 − α)% normal approximated confidence interval of
the k-th element of the parameter vector θ can be obtained as

[θkl, θku] =
[
θ̂k − z1−α/2ŜE(θ̂k), θ̂k + z1−α/2ŜE(θ̂k)

]
,
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where zq is the q-th upper percentile of the standard normal distribution. The performance
of the standard error estimation methods and the corresponding confidence intervals will be
evaluated via a Monte Carlo simulation study in Section 3.

3. MONTE CARLO SIMULATION STUDIES

In this section, Monte Carlo simulation studies are used to evaluate the performance of
the proposed estimation methods for different system structures, different sample sizes with
different censoring rates, different underlying distributions, and different values of α for the
MDE and different contamination proportions. Based on our preliminary study, since similar
observations are obtained based on different sample sizes, different system structures, and
different underlying distributions, for the sake of simplicity, we only present the simulation
results for the 4-component series-parallel III system (namely System I) and the 4-component
mixed parallel I system (namely System II) in Figure 1 for sample size m = 50 (with different
censoring rate) and the component lifetime X follows the two-parameter Weibull distribution
with p.d.f.

fX(x; a, b) =
b

a

(x

a

)b−1
exp

[
−

(x

a

)b
]
, x > 0,(3.1)

where a is the scale parameter and b is the shape parameter (denoted as Weibull(a, b)). The
Weibull distribution is considered here as it is one of the commonly used probability models
in lifetime data analysis which can be used to model items with increasing, constant, and
decreasing failure rates [17, 18]. Moreover, many other commonly used probability distri-
butions such as the exponential distribution and the Rayleigh distribution are special cases
of the Weibull distribution. We consider the scale parameter a = 3 or a = 9 and the shape
parameter to be 2 (b = 2). For the case that the contaminates have a longer lifetime than the
true distribution on average (namely the longer-life contamination model), the Weibull(3, 2)
distribution with a mean lifetime of 2.6587 is the true distribution, and the Weibull(9, 2) dis-
tribution with mean lifetime 7.9760 is the contaminated distribution. Similarly, for the case
that the contaminates have a shorter lifetime than the true distribution on average (namely
the shorter-life contamination model), the Weibull(9, 2) distribution is the true distribution
and the Weibull(3, 2) distribution is the contaminated distribution. We also consider other pa-
rameter settings; however, for the sake of brevity, we only present the results for Weibull(9, 2)
and Weibull(3, 2) here. In the simulation study, the contamination proportion is set to be
0%, 5%, 10% and 15%, the Type-II censoring rate (1− r/m) is set to be 0% and 5% (i.e., no
censoring and r = 0.95m, respectively). The power parameter α in the MDE method is set
to be 0.01, 0.1, 0.25, 0.5, 0.75 and 0.9.

3.1. Results for point estimation

To evaluate the performance of the proposed estimation procedures for point estimation,
the three proposed MDEs — MDES , MDEC and MDEP — are compared with the MLE in
terms of their mean squared errors (MSEs) for estimating the mean component lifetime, i.e.,
aΓ(1 + 1/b), where Γ(·) is the gamma function. Specifically, in the `-th simulation, we first



198 X. Zhu, H.K.T. Ng and P.S. Chan

estimate the parameter θ = (a, b) based on different methods, denoted as θ̂(`) = (â(`), b̂(`)) for
Weibull(a, b) distribution, and then the estimated mean component lifetime is computed as
â(`)Γ(1 + 1/b̂(`)). The MSE of an estimator is computed as

1
L

L∑
`=1

[
â(`)Γ(1 + 1/b̂(`)) − aΓ(1 + 1/b)

]2
.

The simulation results in this subsection are computed based on 10000 realizations (L =
10000). For comparative purposes, we define the relative efficiency of the MDE to MLE as

REMDE =
MSE(MLE)
MSE(MDE)

.

The value of relative efficiency greater than 1 indicates that the performance of the MDE is
better than the MLE. The relative efficiency for different censoring rates, different contami-
nation proportions, and different values of α for the combinations of System I and System II,
and the longer-life contamination model and shorter-life contamination model, are plotted
in Figures 2–5. From Figures 2–5, we observe that the performance of the MDEC is the
worst among the three proposed MDEs as the relative efficiency is below 1 in many cases.
Therefore, we focus the discussion of the results below on the MDES and MDEP .

In Figures 2 and 4, the relative efficiency of MDES , MDEC and MDEP for System I and
System II with longer-life contamination model are presented, respectively. We can observe
that MDES and MDEP have similar performance for System I and System II. When there
is no contamination (dashed lines with triangles in Figures 2 and 4), the relative efficiency is
less than 1 for MDES and MDEP , which indicates that the MLE performs better than MDES

and MDEP in terms of MSEs. When the contamination rate increases, the relative efficiency
increases and becomes larger than 1 for MDES and MDEP . Moreover, we observe that the
performances of MDES and MDEP improve when α gets closer to 1. These observations
are consistent in both no censoring case (Figures 2 and 4(a)–(c)) and the 5% censoring
case (Figures 2 and 4(d)–(f)). However, in the longer-life contamination model, the relative
efficiency in the censoring case is smaller than those in the complete sample case. This
indicates that Type-II censoring reduces the influence of the contamination in estimating the
parameters. It is likely that the contaminated observations with a longer life are censored in
the Type-II censoring scheme. For example, the relative efficiency of the MDES with α = 0.9
is close to 15 when the contamination rate is 15% with no censoring, while the relative
efficiency of the MDES with α = 0.9 reduces to 10 when the contamination rate of 15% with
5% censoring.

In Figures 3 and 5, the relative efficiency of MDES , MDEC and MDEP for System I and
System II with shorter-life contamination model are presented. We can observe that MDES

and MDEP have similar performance for System I and System II. In contrast to the longer-
life contamination model, MDES and MDEP have different performances in the shorter-life
contamination model. In the complete sample case, the MDES and MDEP have relative
efficiency greater than 1 when the contamination rate is over 10% in most cases (Figures 3
and 5 (a) and (c)). In the Type-II censoring with 5% censoring case, the MDES has relative
efficiency greater than 1 when the contamination rate is 15% and the value of α is close to
1 (Figures 3 and 5 (d)), while the MDEP has relative efficiency less than 1 in most cases
(Figures 3 and 5 (f)).
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Figure 2: Relative efficiency of estimated mean component lifetime for
System I with longer-life contamination model.
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Figure 3: Relative efficiency of estimated mean component lifetime for
System I with shorter-life contamination model.

In summary, the proposed estimator MDES has a better performance compared to
MDEC and MDEP and it shows an advantage over the MLE when there is contamination
present in the data. Moreover, the performance of MDES is not much worse than the MLE
even when there is no contamination or with a low contamination rate (i.e., relative efficiency
less than but close to 1). In the contamination cases, the value of α closer to 1 for the MDES

has better performance. Therefore, we recommend the use of MDES , especially when it is
suspected that there is contamination exists in the data. Based on these simulation results
and for the simplicity sake, we consider the MDES but not the MDEC and MDEP in the
subsequent study of the performance of standard error estimation and interval estimation.
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Figure 4: Relative efficiency of estimated mean component lifetime for
System II with longer-life contamination model.
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Figure 5: Relative efficiency of estimated mean component lifetime for
system II with shorter-life contamination model.

3.2. Results for standard error estimation and interval estimation

3.2.1. Determining a suitable bootstrap size for standard error estimation

To determine the required bootstrap size B for the standard error estimation for MDE
described in Section 2.2.3, following Efron and Tibshirani [10], we consider evaluating the
coefficient of variation of the standard error estimates to obtain a reasonable value of the
number of bootstrap replicates. We consider the coefficient of variation of the standard
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error estimates, which is computed as the ratio of the variance of the bootstrap estimate of
standard error ŜEB to the expectation of ŜEB with different bootstrap size B. The variability
of bootstrap estimates can be evaluated by using the coefficient of variation and a suitable
value of B is a value such that the variability does not change significantly after increasing
the value of B.

A Monte Carlo simulation is carried out to evaluate the coefficient of variation for
different bootstrap sizes B in order to determine the proper number of bootstrap replica-
tions. We simulate 200 samples of m = 50 system lifetimes based on System I (4-component
series-parallel III system) with true underlying component lifetime distribution Weibull(3, 2),
no contamination, and no censoring. For each simulation, given a bootstrap replication
number B, the bootstrap standard error estimate of MDES is calculated, denoted as ŜEB.

Then, with the 200 bootstrap standard error estimates ŜE
(1)

B , ŜE
(2)

B , ..., ŜE
(200)

B , the simulated
coefficient of variation is computed as:

ĈV (ŜEB) =
V̂ar(ŜEB)

Ê(ŜEB)
,

where

Ê(ŜEB) =
1
B

200∑
i=1

ŜE
(i)

B ,

and V̂ar(ŜEB) =
1
B

200∑
i=1

(ŜE
(i)

B − Ê(ŜEB))2.

Figure 6 presented the simulated coefficient of variation of the standard error of MDES . From
Figure 6, we observe that when the bootstrap size B gets above 250, a further increase in the
bootstrap size does not bring a substantial reduction in the variation. Hence, we consider the
number of bootstrap replications B = 250 in the Monte Carlo simulation study for evaluating
the performance of confidence intervals.

0 100 200 300 400 500

0
.1

5
0

.2
0

0
.2

5

(a)

bootstrap size

c
o

e
ff

ic
ie

n
t 

o
f 

v
a

ri
a

ti
o

n

alpha=0.01

alpha=0.10

alpha=0.25

alpha=0.50

alpha=0.75

alpha=0.90

0 100 200 300 400 500

0
.2

0
.4

0
.6

0
.8

(b)

bootstrap size

c
o

e
ff

ic
ie

n
t 

o
f 

v
a

ri
a

ti
o

n

alpha=0.01

alpha=0.10

alpha=0.25

alpha=0.50

alpha=0.75

alpha=0.90

Figure 6: Coefficients of variation of ŜEB for (a) shape parameter and (b) scale parameter
as functions of the number of bootstrap samples B.



202 X. Zhu, H.K.T. Ng and P.S. Chan

3.2.2. Performance of standard error estimates

To evaluate the performance of the three standard error estimation methods for MDE
presented in Section 2.2, we compare the simulated standard errors of the MDE based on the
system-level data, MDES , and the averaged values of the standard error estimates based on
the theoretical results from Basu et al. [4] (i.e., ŜEA), based on observed Fisher information
matrix (i.e., ŜEF ), and based on bootstrap method (i.e., ŜEB) with bootstrap size B = 250.
We simulate 1000 samples of m = 50 system lifetimes based on System 1 (4-component series-
parallel III system) with true underlying component lifetime distribution Weibull(3, 2), no
contamination, and no censoring. The simulation results are presented in Table 2.

Table 2: Simulated standard errors the MDES and the averaged standard error estimates
based on the theoretical results from [4] (ŜEA), based on observed Fisher information
matrix (ŜEF ), and based on bootstrap method (ŜEB) with bootstrap size B = 250.

α = 0.01 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

Simulated cSE(â) 0.179 0.180 0.184 0.196 0.210 0.219

Average cSEA(â) 0.013 0.011 0.008 0.006 0.005 0.005

Average cSEF (â) 0.214 0.206 0.190 0.172 0.165 0.164

Average cSEB(â) 0.205 0.210 0.197 0.183 0.187 0.189

Simulated cSE(b̂) 0.247 0.248 0.257 0.290 0.326 0.336

Average cSEA(b̂) 0.009 0.007 0.005 0.003 0.003 0.002

Average cSEF (b̂) 0.203 0.207 0.215 0.232 0.244 0.248

Average cSEB(b̂) 0.238 0.230 0.255 0.322 0.375 0.389

From Table 2, we observe that the standard error estimates based on the theoretical
results from Basu et al. [4] can seriously underestimate the standard error of MDES , while the
standard error estimates based on observed Fisher information matrix provide a reasonable
approximation to the standard errors of MDES when α is close to 0. Overall, among the
three standard error estimation methods for MDE, the bootstrap method with bootstrap
size B = 250 provides a reasonable approximation to standard error of the MDES for all
the values of α considered here. Therefore, in the following simulation study for confidence
intervals, we use the standard error estimates based on the bootstrap method.

3.2.3. Performance of confidence intervals

In this subsection, the simulated coverage probabilities and the average widths of 95%
confidence intervals of the Weibull parameters a and b for the MLE and the MDE based
on system-level data (MDES) with different values of α are compared. The two systems
(System I and System II) and the longer-life and shorter-life contamination models described
in Section 3 are considered here. Specifically, a two-sided 100(1− α)% normal approximated
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confidence interval of a is constructed as

[al, au] =
[
â − z1−α/2ŜE(â), â + z1−α/2ŜE(â)

]
,

where the estimated standard error ŜE(â) is obtained based on the bootstrap method. Sim-
ilarly, a two-sided 100(1 − α)% normal approximated confidence interval of b is constructed
as

[bl, bu] =
[
b̂ − z1−α/2ŜE(b̂), b̂ + z1−α/2ŜE(b̂)

]
,

where the estimated standard error ŜE(â) is obtained based on the bootstrap method. The
simulated coverage probability (CP) is computed as the proportion of cases that the true
value of the parameter falls within the confidence interval, and the average width (AW)
is computed as 2z1−α/2ŜE(â) and 2z1−α/2ŜE(b̂) for parameters a and b, respectively. The
simulation results are presented in Tables 3–4.

Table 3: Simulated coverage probabilities (in %) and average widths of confidence intervals of
the scale parameter computed based on MLE and MDES with different values of α
under the longer-life and shorter-life contamination models for System I.

Coverage Longer-life Contamination Model Shorter-life Contamination Model

Probability No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 93.9 88.1 44.9 18.0 93.3 92.0 58.0 24.5 93.7 92.4 86.3 80.7 93.6 92.3 87.8 82.0
MDES (α = 0.01) 93.9 92.3 59.1 31.7 87.9 93.1 79.5 50.6 93.6 92.2 86.0 80.0 88.6 84.7 75.3 67.5
MDES (α = 0.10) 93.9 94.7 73.5 45.9 89.7 93.2 81.3 55.5 93.7 92.5 87.1 81.6 89.8 87.0 79.6 72.1
MDES (α = 0.25) 93.9 95.2 93.1 82.6 91.3 93.2 86.1 70.2 93.3 91.8 83.3 73.2 90.9 89.2 82.8 73.6
MDES (α = 0.50) 93.3 94.6 95.9 95.8 92.7 93.3 92.6 91.5 92.6 91.4 82.8 71.3 92.0 91.2 85.2 75.7
MDES (α = 0.75) 92.9 94.0 95.4 95.9 93.1 93.6 94.8 95.5 92.1 90.5 81.4 68.8 92.2 91.4 85.2 74.8
MDES (α = 0.90) 92.3 93.8 95.3 95.7 93.2 93.6 95.0 95.9 91.6 90.1 80.2 67.6 92.2 91.3 84.6 73.8

Average Longer-life Contamination Model Shorter-life Contamination Model

Width No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 0.69 0.99 1.32 1.50 0.70 0.77 1.06 1.33 2.06 2.14 2.24 2.30 2.09 2.18 2.30 2.37
MDES (α = 0.01) 0.69 1.08 1.45 1.64 0.63 0.73 1.19 1.45 2.06 2.14 2.22 2.26 1.89 1.97 2.06 2.10
MDES (α = 0.10) 0.69 0.93 1.33 1.54 0.64 0.74 1.14 1.41 2.08 2.17 2.27 2.32 1.92 2.02 2.12 2.18
MDES (α = 0.25) 0.71 0.82 1.11 1.35 0.66 0.76 1.06 1.31 2.12 2.23 2.34 2.38 1.99 2.10 2.22 2.27
MDES (α = 0.50) 0.75 0.82 0.98 1.15 0.71 0.80 1.04 1.23 2.24 2.38 2.52 2.57 2.12 2.25 2.40 2.46
MDES (α = 0.75) 0.80 0.86 0.98 1.11 0.76 0.87 1.08 1.22 2.39 2.53 2.68 2.75 2.27 2.42 2.58 2.65
MDES (α = 0.90) 0.83 0.89 1.00 1.11 0.80 0.91 1.10 1.21 2.47 2.61 2.78 2.85 2.38 2.52 2.70 2.77

From Tables 3–4, we observe that when there is no contamination, the confidence in-
tervals based on MLEs give coverage probabilities close to the nominal 95% for both scale
and shape parameters. Compared with MDES , the confidence intervals based on MLEs give
the highest coverage probabilities and the smallest average widths when there is no contam-
ination (i.e., contamination rate is 0). However, when the contamination rate increases, the
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coverage probabilities of the confidence intervals based on MLEs decrease for both scale and
shape parameters and the average widths increase for the scale parameter but decrease for
the shape parameter. These observations are consistent in both the longer-life and shorter-life
contamination models with and without censoring for System I and System II. We also ob-
serve that the coverage probabilities of the confidence intervals based on MLEs are sensitive
to the contamination rate and the type of contamination. In the longer-life contamination
model, the coverage probabilities for both scale and shape parameters drop dramatically when
the contamination rate increases. For example, in Table 3, when the contamination rate is
15% with no censoring, the simulated coverage probabilities of the confidence intervals based
on MLE are only 18% for the scale parameter and 2% for the shape parameter under the
longer-life contamination model, while the simulated coverage probabilities of the confidence
intervals based on MLE are 80.7% for the scale parameter and 68.7% for the shape parameter
under the shorter-life contamination model.

Table 4: Simulated coverage probabilities and average widths of confidence intervals of the
shape parameter computed based on MLE and MDES with different values of α
under the longer-life and shorter-life contamination models for System I.

Coverage Longer-life Contamination Model Shorter-life Contamination Model

Probability No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 95.2 36.8 6.5 2.0 95.0 93.0 49.8 20.4 95.2 93.7 82.0 68.7 95.3 93.3 81.6 68.7
MDES (α = 0.01) 92.4 42.3 4.4 1.0 88.7 91.7 73.0 33.8 92.4 92.1 74.8 52.6 88.9 91.9 91.4 82.0
MDES (α = 0.10) 92.4 70.0 10.3 2.3 89.3 92.2 72.6 33.2 92.5 91.4 72.2 47.7 89.7 92.3 89.4 77.2
MDES (α = 0.25) 92.5 91.8 70.3 37.5 89.9 92.6 77.7 40.4 92.2 90.0 65.4 37.6 90.3 91.8 83.7 64.2
MDES (α = 0.50) 92.5 93.0 91.6 87.5 91.1 92.8 88.8 80.0 91.9 89.8 62.2 31.9 91.2 90.8 75.8 49.7
MDES (α = 0.75) 92.3 93.0 92.8 91.1 92.1 93.4 91.6 89.7 91.4 88.2 60.3 28.9 91.6 89.5 70.0 41.6
MDES (α = 0.90) 92.3 93.0 92.6 91.6 92.4 93.3 92.3 90.8 91.2 87.3 59.9 28.7 91.4 88.7 67.6 39.0

Average Longer-life Contamination Model Shorter-life Contamination Model

Width No censoring 5% censoring No censoring 5% censoring

Contamination
0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15% 0% 5% 10% 15%Proportion

MLE 0.95 0.68 0.56 0.53 1.02 0.96 0.77 0.66 0.95 0.90 0.84 0.80 1.02 0.96 0.89 0.85
MDES (α = 0.01) 1.01 0.78 0.57 0.54 1.25 1.12 0.98 0.79 1.01 0.86 0.71 0.64 1.25 1.04 0.85 0.76
MDES (α = 0.10) 1.01 0.84 0.60 0.55 1.24 1.11 0.94 0.77 1.01 0.86 0.70 0.62 1.24 1.04 0.84 0.74
MDES (α = 0.25) 1.05 1.03 0.89 0.74 1.25 1.10 0.91 0.76 1.05 0.89 0.71 0.62 1.25 1.06 0.83 0.73
MDES (α = 0.50) 1.20 1.18 1.14 1.09 1.33 1.17 1.02 1.00 1.20 1.01 0.75 0.63 1.31 1.12 0.84 0.70
MDES (α = 0.75) 1.41 1.37 1.31 1.24 1.49 1.34 1.21 1.19 1.39 1.17 0.82 0.65 1.45 1.23 0.90 0.71
MDES (α = 0.90) 1.51 1.47 1.39 1.32 1.57 1.46 1.31 1.28 1.54 1.28 0.88 0.68 1.55 1.34 0.94 0.73

Similar to the MLEs, the coverage probabilities of the confidence intervals based on
MDES are also sensitive to the contamination rate and the type of the contamination. For the
longer-life contamination model, the coverage probabilities of confidence intervals of the scale
parameter based on MDES with α close to 1 are closer to the nominal levels when the contam-
ination rate is high. However, for the shorter-life contamination model, the coverage proba-
bilities of the confidence intervals of the scale parameter based on MDES with α close to 1
are far away from the nominal level when the contamination rate is high (see Table 3).
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The confidence intervals based on MDES have better coverage probabilities than the confi-
dence intervals based on MLE in the longer-life contamination model when the contamination
rate is high. For example, when the contamination rate is 15% under the longer-life contam-
ination model, the coverage probabilities of the confidence intervals based on MDES with α

close to 1 can still maintain at 95.7% for the scale parameter (Table 3) and 91.6% for shape
parameter (Table 4), while the coverage probabilities of the confidence intervals of based on
MLE are down to 18% for scale parameter and 2% for shape parameter.

In general, for the longer-life contamination model, compared to the confidence intervals
based on MLE, the confidence intervals based on MDES have higher coverage probabilities
and larger average widths (Tables 3 and 4). Nevertheless, for the shorter-life contamination
model, compared to the confidence intervals based on MLE, the confidence intervals based
on MDES have lower coverage probabilities.

4. ILLUSTRATIVE EXAMPLE

In this section, a numerical example based on the system lifetime data of the 4-compo-
nent series-parallel III system with Weibull component lifetimes is used to illustrate the
estimation methods proposed in this paper. The system lifetime data was originally pre-
sented in [2] and further analyzed by [26]. The data are 10 system lifetimes from the
4-component system with system signature s = (1/4, 1/4, 1/2, 0) with component lifetime
follows Weibull(3, 2):

0.72717, 1.02050, 1.38633, 1.61244, 1.70590, 1.76789, 2.6786, 3.02676, 3.25943, 3.78497.

To illustrate the effect of contamination in the statistical inference procedures, we simulated
an observation from the Weibull(9, 2) to replace one of the observations in the original data
set. Specifically, the observation 1.76789 is replaced by 5.48619. The contaminated data set
is as follows.

0.72717, 1.02050, 1.38633, 1.61244, 1.70590, 5.48619, 2.6786, 3.02676, 3.25943, 3.78497.

Based on the original and the contaminated data sets, the MLE and the three proposed
MDEs of the Weibull parameters a and b and the corresponding confidence intervals are
presented in Tables 5 and 6.

For point estimation, form Tables 5 and 6, the MLE, MDES , MDEC and MDEP with
different values of α provide similar point estimates of the parameters a and b. By comparing
the estimates obtained from the data sets with and without contamination, the difference
between MDEs (especially α close to 1) obtained from the data sets with and without con-
tamination is smaller than the difference between MLEs obtained from the data sets with
and without contamination in general. For example, the MLE of a is 2.695 for the data set
without contamination and the MLE of a is 3.249 for the data set with contamination which
has a difference 0.554, while the MDES with α = 0.9 is 2.691 for the data set without con-
tamination and the MDES with α = 0.9 is 3.105 for the data set with contamination, which
has a difference 0.414.
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Table 5: Point and interval estimates for Weibull parameters
for the original data set presented in Section 4.

95% CI based on 95% CI based on 95% CI based on
Estimator â

cSEA(â) cSEF (â) cSEB(â)

MLE 2.695 (1.978, 3.412) (1.980, 3.410)

MDES

α = 0.01 2.696 (2.490, 2.902) (1.976, 3.416) (2.014, 3.378)
α = 0.10 2.700 (2.504, 2.896) (1.961, 3.439) (1.967, 3.433)
α = 0.25 2.706 (2.531, 2.881) (1.937, 3.475) (1.922, 3.490)
α = 0.50 2.710 (2.495, 2.925) (1.900, 3.520) (1.780, 3.640)
α = 0.75 2.703 (2.507, 2.899) (1.867, 3.539) (1.731, 3.675)
α = 0.90 2.691 (2.495, 2.887) (1.850, 3.532) (1.667, 3.715)

MDEC

α = 0.01 2.617 (2.421, 2.813) (2.003, 3.231) (2.019, 3.215)
α = 0.10 2.628 (2.442, 2.814) (2.002, 3.254) (2.027, 3.229)
α = 0.25 2.647 (2.483, 2.811) (1.997, 3.297) (2.024, 3.270)
α = 0.50 2.677 (2.538, 2.816) (1.987, 3.367) (1.976, 3.378)
α = 0.75 2.700 (2.576, 2.824) (1.972, 3.428) (1.909, 3.491)
α = 0.90 2.709 (2.585, 2.833) (1.960, 3.458) (1.896, 3.522)

MDEP

α = 0.01 2.769 (2.453, 3.085) (1.892, 3.646) (1.937, 3.601)
α = 0.10 2.782 (2.505, 3.059) (1.884, 3.680) (1.877, 3.687)
α = 0.25 2.802 (2.579, 3.025) (1.872, 3.732) (1.866, 3.738)
α = 0.50 2.829 (2.665, 2.993) (1.851, 3.807) (1.853, 3.805)
α = 0.75 2.848 (2.633, 3.063) (1.835, 3.861) (1.815, 3.881)
α = 0.90 2.855 (2.649, 3.061) (1.827, 3.883) (1.780, 3.930)

95% CI based on 95% CI based on 95% CI based on
Estimator b̂

cSEA(b̂) cSEF (b̂) cSEB(b̂)

MLE 2.004 (0.945, 3.063) (0.566, 3.442)

MDES

α = 0.01 1.999 (1.847, 2.151) (0.942, 3.056) (0.668, 3.330)
α = 0.10 1.946 (1.794, 2.098) (0.916, 2.976) (0.430, 3.462)
α = 0.25 1.872 (1.733, 2.011) (0.878, 2.866) (0.275, 3.469)
α = 0.50 1.782 (1.630, 1.934) (0.832, 2.732) (0.000, 3.705)
α = 0.75 1.718 (1.594, 1.842) (0.799, 2.637) (0.000, 5.163)
α = 0.90 1.690 (1.566, 1.814) (0.788, 2.592) (0.000, 4.666)

MDEC

α = 0.01 2.340 (2.188, 2.492) (1.079, 3.601) (0.310, 4.370)
α = 0.10 2.276 (2.124, 2.428) (1.058, 3.494) (0.349, 4.203)
α = 0.25 2.184 (2.045, 2.323) (1.024, 3.344) (0.257, 4.111)
α = 0.50 2.065 (1.941, 2.189) (0.974, 3.156) (0.000, 4.671)
α = 0.75 1.978 (1.854, 2.102) (0.932, 3.024) (0.000, 9.267)
α = 0.90 1.937 (1.813, 2.061) (0.911, 2.963) (0.000, 6.431)

MDEP

α = 0.01 1.732 (1.462, 2.002) (0.800, 2.664) (0.715, 2.749)
α = 0.10 1.713 (1.473, 1.953) (0.787, 2.639) (0.775, 2.651)
α = 0.25 1.688 (1.536, 1.840) (0.773, 2.603) (0.373, 3.003)
α = 0.50 1.653 (1.501, 1.805) (0.748, 2.558) (0.403, 2.903)
α = 0.75 1.627 (1.503, 1.751) (0.731, 2.523) (0.279, 2.975)
α = 0.90 1.615 (1.491, 1.739) (0.723, 2.507) (0.028, 3.202)

For interval estimation, in both with and without contamination cases (Tables 5 and 6),
the confidence intervals for the scale parameter based on the observed Fisher information ma-
trix are very close to the one obtained from the bootstrap method. However, the confidence
intervals for the shape parameter based on the bootstrap method is wider than those based
on the observed Fisher information matrix. The confidence intervals using MDEs with stan-
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dard error estimates based on the theoretical results are much narrower than the confidence
intervals with standard error estimates based on the observed Fisher information matrix and
based on the bootstrap method. This observation agrees with the results in the Monte Carlo
simulation that the standard error estimates based on the theoretical results are likely to
underestimate the standard errors of the MDEs.

Table 6: Point and interval estimates for Weibull parameters
for the contaminated data set presented in Section 4.

95% CI based on 95% CI based on 95% CI based on
Estimator â

cSEA(â) cSEF (â) cSEB(â)

MLE 3.249 (2.172, 4.326) (2.192, 4.306)

MDES

α = 0.01 3.248 (2.851, 3.645) (2.169, 4.327) (2.194, 4.302)
α = 0.10 3.235 (2.853, 3.617) (2.154, 4.316) (2.183, 4.287)
α = 0.25 3.210 (2.859, 3.561) (2.131, 4.289) (2.129, 4.291)
α = 0.50 3.165 (2.861, 3.469) (2.100, 4.230) (2.010, 4.320)
α = 0.75 3.124 (2.884, 3.364) (2.072, 4.176) (1.935, 4.313)
α = 0.90 3.105 (2.941, 3.269) (2.057, 4.153) (1.855, 4.355)

MDEC

α = 0.01 3.203 (2.887, 3.519) (2.261, 4.145) (2.329, 4.077)
α = 0.10 3.207 (2.910, 3.504) (2.247, 4.167) (2.292, 4.122)
α = 0.25 3.213 (2.965, 3.461) (2.225, 4.201) (2.269, 4.157)
α = 0.50 3.216 (3.030, 3.402) (2.194, 4.238) (2.168, 4.264)
α = 0.75 3.206 (2.983, 3.429) (2.165, 4.247) (2.090, 4.322)
α = 0.90 3.192 (2.969, 3.415) (2.148, 4.236) (2.036, 4.348)

MDEP

α = 0.01 3.368 (2.952, 3.784) (2.096, 4.640) (2.168, 4.568)
α = 0.10 3.379 (2.973, 3.785) (2.089, 4.669) (2.076, 4.682)
α = 0.25 3.392 (3.005, 3.779) (2.080, 4.704) (2.071, 4.713)
α = 0.50 3.406 (3.050, 3.762) (2.069, 4.743) (2.008, 4.804)
α = 0.75 3.414 (3.080, 3.748) (2.065, 4.763) (1.912, 4.916)
α = 0.90 3.416 (3.100, 3.732) (2.062, 4.770) (1.685, 5.147)

95% CI based on 95% CI based on 95% CI based on
Estimator b̂

cSEA(b̂) cSEF (b̂) cSEB(b̂)

MLE 1.607 (0.782, 2.432) (0.485, 2.729)

MDES

α = 0.01 1.604 (1.300, 1.908) (0.779, 2.429) (0.404, 2.804)
α = 0.10 1.588 (1.284, 1.892) (0.770, 2.406) (0.476, 2.700)
α = 0.25 1.569 (1.272, 1.866) (0.761, 2.377) (0.319, 2.819)
α = 0.50 1.550 (1.287, 1.813) (0.751, 2.349) (0.000, 3.695)
α = 0.75 1.535 (1.411, 1.659) (0.741, 2.329) (0.000, 4.102)
α = 0.90 1.525 (1.386, 1.664) (0.736, 2.314) (0.000, 3.997)

MDEC

α = 0.01 1.825 (1.593, 2.057) (0.899, 2.751) (0.206, 3.444)
α = 0.10 1.786 (1.571, 2.001) (0.879, 2.693) (0.382, 3.190)
α = 0.25 1.732 (1.580, 1.884) (0.851, 2.613) (0.162, 3.302)
α = 0.50 1.668 (1.504, 1.832) (0.816, 2.520) (0.000, 8.867)
α = 0.75 1.625 (1.501, 1.749) (0.791, 2.459) (0.000, 4.849)
α = 0.90 1.606 (1.482, 1.730) (0.781, 2.431) (0.000, 5.860)

MDEP

α = 0.01 1.464 (1.167, 1.761) (0.697, 2.231) (0.733, 2.195)
α = 0.10 1.455 (1.158, 1.752) (0.691, 2.219) (0.626, 2.284)
α = 0.25 1.444 (1.147, 1.741) (0.685, 2.203) (0.533, 2.355)
α = 0.50 1.433 (1.149, 1.717) (0.676, 2.190) (0.432, 2.434)
α = 0.75 1.428 (1.158, 1.698) (0.674, 2.182) (0.292, 2.564)
α = 0.90 1.426 (1.170, 1.682) (0.672, 2.180) (0.021, 2.831)
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5. CONCLUDING REMARKS

In this paper, we study the robust estimation method for the model parameters in the
component lifetime distribution based on system lifetime data with known system structure.
The minimum density power divergence estimation method is considered and three different
MDEs are proposed. Standard error estimation and interval estimation procedures based on
the MDEs are also studied. The three proposed estimation procedures are compared to the
maximum likelihood estimation method via a Monte Carlo simulation study. It is shown that
the minimum density power divergence estimation method based on system-level data can
provide better performance in both point and interval estimation when there is longer-life
contamination in the data. We have also shown that the standard error estimates based on
the bootstrap method can be adopted for estimating the standard errors of the MDEs.

From our simulation study, for point estimation, the MLE outperforms the MDEs when
there is no contamination in the data. However, we observe that the system-level MDE,
MDES , is a robust estimation procedure than the MLE when there is contamination in the
data. For interval estimation, we observe that the contaminated data considerably affect the
coverage probabilities of the confidence intervals based on MLE and MDES . The confidence
intervals based on MDES perform better than those based on MLE for contaminated data,
especially when the contamination rate is high (say, 10% or 15%) in the longer-life contam-
ination model. For contamination data with longer lifetimes, MDES with large value of α

(α = 0.75 or 0.9) is recommended. For contamination data with shorter lifetimes, MDES

with small value of α (α = 0.01 or 0.1) is recommended. Since the choice of the value α for
the MDES affects the results for the interval estimation, it is interesting to study the choice
of the value of α in the system-level minimum divergence estimator MDES . In practice, the
sample size m, the system signature s, and the censoring proportion are known, but the
underlying component lifetime distribution and the contamination rate are usually unknown.
The performance of the estimators with different values of α can be studied under different
underlying component lifetime distributions and contamination rates via simulation, and then
a reasonable range of the value of α can be obtained.

For future research, a systematic way to choose the value of α for the MDE can be stud-
ied. On the other hand, since the simulated coverage probabilities of the confidence intervals
based on the estimators studied in this paper can be much lower than the nominal level when
there is contamination in the data, it is desired to develop better standard error estimation
methods and confidence interval estimation methods which can provide better coverage prob-
abilities when the contamination rates. The current work can be extended to the situation
when the lifetime of the unit may be affected by one or more factors/explanatory variables
(such as temperature, voltage, load, etc.). For example, consider a Weibull regression model
in which K covariates z = (z1, z2, ..., zK) affect the scale parameter a in (3.1), then, we have
a parametric proportional hazard model for the lifetime X

fX(x;θ) = fX(x; a(z), b),

where

a(z) = exp(ν0 + ν1z1 + ν2z2 + ··· + νKzK)

and the parameter vector is θ = (ν0, ν1, ..., νK , b). The proposed minimum density divergence
estimation method can be applied to estimate the parameter vector θ = (ν0, ν1, ..., νK , b).



Robust estimation for system lifetime data 209

On the other hand, we assume that the system signature is known in this paper, however,
for some black box systems, we may not have any knowledge on the system structures.
Following the work by Yang et al. [27], one can develop robust procedures for estimating the
parameters of the component lifetime distribution and for identifying the system structure
based on system-level data simultaneously by assuming the system is a coherent system. We
are currently working on these extensions and we hope to report the findings in future work.
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