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1. INTRODUCTION

System lifetime data are commonly encountered in industrial and engi-
neering settings. In system reliability studies, engineers are always interested
in the lifetime distribution of the system as well as the lifetime distribution of
the components which make up the system. We consider here the situation that
the lifetimes of an n-component system can be observed but not the lifetime of
the components. This situation occurs when putting the individual component
on a life testing experiment after the n-component system is built is not pos-
sible, or when the distribution of the component lifetimes changes while they
are used in a specified system. Suppose the lifetimes of the n components in an
n-component system are independent and identically distributed (i.i.d.) random
variables, denoted as X1, X2, . . . , Xn, with probability density function (p.d.f.)
fX(t;θ), cumulative distribution function (c.d.f.) FX(t;θ) and survival function
(s.f.) F̄X(t;θ), where θ is the parameter vector. We further denote the ordered
component lifetimes within an n-component system as X1:n < X2:n < . . . < Xn:n

with Xi:n be the i-th ordered component lifetime. Although the i.i.d. assumption
is restrictive, there are many practical situations in which the i.i.d. assumption is
applicable. For instance, Bhattacharya and Samaniego [3] discussed some of the
practical examples that the i.i.d. assumption is reasonable such as batteries in a
lighting device, wafers in a digital computer, and spark plugs in an automobile,
and Jin et al. [13] discussed that the performance of “Redundant Array of In-
dependent Disks (RAID)” computer hardware with n independent disks can be
designed to perform like a k-out-of-n system.

When the component lifetime follows an absolutely continuous distribu-
tion, the failure time of an n-component system corresponds to the failure time
of one of the n components. We consider the coherent system in which every
component is relevant and the system has a monotone structure function [7].
In a coherent system consists of n i.i.d. components, the system structure can
be described by the system signature defined as an n-element probability vector
s = (s1, s2, . . . , sn), where the i-th element is the probability that the i-th ordered
component failure causes the failure of the system [24], i.e.,

si = Pr(T = Xi:n), i = 1, 2, . . . , n.

Note that the system signature is only depending on the system structure and
hence, it is distribution-free. To illustrate the idea of system signature, we con-
sider the 4-component series-parallel III system with system lifetime
T = min{X1,max{X2, X3, X4}} (Figure 1a). For the 4-component series-parallel
III system, there are 4! = 24 possible arrangements of the component lifetimes,
The 24 arrangements and their corresponding system lifetimes are presented in
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Figure 1: Two 4-component systems for illustration.

Table 1. From Table 1, we can obtain

s1 = Pr(T = X1:4) = 6/24 = 1/4,

s2 = Pr(T = X2:4) = 6/24 = 1/4,

s3 = Pr(T = X3:4) = 12/24 = 1/2,

and s4 = Pr(T = X4:4) = 0.

Hence, the system signature of the 4-component series-parallel III system is s =
(1/4, 1/4, 1/2, 0). Similarly, for the 4-component mixed parallel I system (Figure
1b), the system signature is s = (0, 1/2, 1/4, 1/4).

System System
Arrangement lifetime T Arrangement lifetime T

X1 < X2 < X3 < X4 X1:4 X3 < X1 < X4 < X2 X2:4

X1 < X2 < X4 < X4 X1:4 X3 < X4 < X1 < X2 X3:4

X1 < X4 < X2 < X3 X1:4 X3 < X1 < X2 < X4 X2:4

X1 < X4 < X3 < X2 X1:4 X3 < X4 < X1 < X2 X3:4

X1 < X3 < X2 < X4 X1:4 X3 < X2 < X1 < X4 X3:4

X1 < X3 < X4 < X2 X1:4 X3 < X2 < X4 < X1 X3:4

X2 < X1 < X3 < X4 X2:4 X4 < X1 < X2 < X3 X2:4

X2 < X1 < X4 < X3 X2:4 X4 < X1 < X3 < X2 X2:4

X2 < X3 < X1 < X4 X3:4 X4 < X2 < X1 < X3 X3:4

X2 < X3 < X4 < X1 X3:4 X4 < X2 < X1 < X1 X3:4

X2 < X4 < X1 < X3 X3:4 X4 < X3 < X1 < X2 X3:4

X2 < X3 < X3 < X1 X3:4 X4 < X3 < X2 < X1 X3:4

Table 1: The 24 possible arrangements of the component lifetime in a
4-component series-parallel III system

Given the system signature s, the p.d.f. and s.f. of the system lifetime T
of an n-component system can be expressed as

fT (t;θ) =
n∑

i=1

si

(
n

i

)
ifX(t;θ) [FX(t;θ)]i−1 [F̄X(t;θ)

]n−i
(1.1)

and F̄T (t;θ) =

n∑
i=1

si

i−1∑
j=0

[FX(t;θ)]j
[
F̄X(t;θ)

]n−j
,(1.2)
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respectively [15]. Based on system lifetimes with known system signatures, the
statistical inference of the component lifetime distribution have been discussed in
the literature. Balakrishnan et al. [1] developed an exact nonparametric inference
for population quantiles and tolerance limits of component lifetime distribution
in a system. Balakrishnan et al. [2] derived the best linear unbiased estimator
(BLUE) for the parameters in the component lifetime distribution. Navarro et al.
[21] discussed the method of moments, the maximum likelihood method and the
least squares methods for system lifetime data under a proportional hazard rate
model. Chahkandi et al. [8] proposed several nonparametric methods to con-
struct prediction intervals for the lifetime of coherent systems. Zhang et al. [28]
proposed a regression-based estimation method for the model parameters of com-
ponent lifetime distribution based on censored system failure data. Yang et al.
[26] proposed a stochastic expectation-maximization (EM) algorithm to obtain
an approximation of the maximum likelihood estimates (MLEs) of the parame-
ters in component lifetime distribution. Recently, Yang et al. [27] and Hermanns
et al. [12] considered the EM algorithm to obtain the MLEs of the parameters in
component lifetime distribution based on system lifetime data when the system
structure is unknown. The theory and applications of system signatures are an
active research area. For a comprehensive review and bibliometric analysis on
system signatures, one can refer to a recent paper by Naqvi et al. [19].

In industrial experiments on systems, there are many situations in which
systems are removed from experimentation before the occurrence of the failure of
the system. Two common reasons for pre-planned censoring are saving the time
on tests and reducing the cost associated with the experiment because failure
implies the destruction of a system which may be costly [9, 18]. In this paper, we
consider Type-II right censoring scheme in which the number of observed failures
is pre-specified as r and the experiment is terminated as soon as the r-th ordered
system failure is observed. Several studies on the Type-II censored system lifetime
data in a system with system signature have been conducted [2, 12, 21, 28, 26, 27].

In the manufacturing industry, defectives could be induced in the manufac-
turing process due to different reasons such as human error, insufficient quality
control, and failure in addressing reliability aspects during the design stage, etc..
As Raina [22] pointed out, zero-defect is an impossible goal to achieve or cost-
prohibitive in the manufacturing process. Manufacturing defects often lead to
potential outliers or contamination of the lifetime data. When there is outliers
exist in observed lifetime data, the performance of the maximum likelihood or
other classical estimation methods may be affected and a poor estimate of the
component reliability characteristics may be yielded. Note that the maximum
likelihood estimation is sensitive to the outliers as each observation contributes
equal information to the estimate. Therefore, it is desired to develop parame-
ter estimation procedures that are less sensitive to contaminated observations.
Basu et al. [4] developed a family of density-based divergences measures with a
single parameter α that controls the trade-off between robustness and efficiency,
and proposed a procedure for estimating model parameters based on minimizing
the density divergence. Basu et al. [5] further extended the minimum density
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divergence procedure to censored survival data with and without contamination,
and found that the minimum density divergence estimator (MDE) is superior to
the MLE when there is contamination in the censored survival data. Recently,
Riani et al. [23] developed an alternative minimum density power divergence
estimation procedure using the methods of S-estimation. Basak et al. [6] pro-
posed a procedure to determinate the optimal density power divergence tuning
parameter.

In this paper, we study the robust minimum density divergence estimation
method for the system lifetime with and without contamination. In Section 2, we
introduced the minimum density power divergence and its application to system
lifetime data with known system signatures. We also discuss the estimation of
the standard error of the estimate and interval estimation, and we show that the
bootstrap method for standard error estimation can be adopted for the MDEs.
In Section 3, a numerical example is used to illustrate the proposed MDEs. A
Monte Carlo simulation study is presented in Section 4 to study the performance
of the proposed methodologies. Finally, some concluding remarks and possible
extensions are provided in Section 5.

2. MINIMUM DENSITY DIVERGENCE ESTIMATOR FOR SYS-
TEM LIFETIME DATA

2.1. Minimum density divergence estimator

The density power divergence, proposed by Basu et al. [4], describes a
family of density-based divergence measures between two p.d.f.s g(t) and f(t)
with a single parameter α. Consider that f(t;θ) is a parametric p.d.f. of the
fitted model with parameter vector θ and g(t) is the target p.d.f., the density
power divergence between f(t;θ) and g(t) is defined as

dα(g, f) =

∫ [
f1+α(t;θ)−

(
1 +

1

α

)
g(t)fα(t;θ) +

1

α
g1+α(t)

]
dt, α > 0

(2.1)

and

(2.2) d0(g, f) = lim
α→0

dα(g, f) =

∫
g(t) ln

[
g(t)

f(t;θ)

]
dt.

dα(g, f) = 0 when f(t;θ) = g(t). The MDE of the parameter vector θ can be
obtained by minimizing the density power divergence between f(t;θ) and g(t)
with respect to (w.r.t.) θ. Since the term

∫ [
(1/α)g1+α(t)

]
dt in Eq. (2.1) does

not depend on the parameter vector θ, the minimum divergence estimator of θ
can be obtained by minimizing

(2.3)

∫ [
f1+α(t;θθθ)−

(
1 +

1

α

)
g(t)fα(t;θθθ)

]
dt
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w.r.t. θ.

The density power divergence reduces to the Kullack-Leibler divergence [16]
when α = 0, and is the mean squared error when α = 1. Hence, the minimum
density power divergence procedure is degenerated into the maximum likelihood
method when α = 0, and becomes the minimization of the mean squared error
when α = 1. The parameter α in Eq. (2.1) controls the trade-off between
robustness and efficiency of the minimum divergence estimator [4, 5]. It has
been shown that the typical value of α is in between 0 and 1 and the estimation
procedure becomes less efficient as α increases [4]. Hence, in this paper, we
consider the value of α in (0, 1).

Basu et al. [5] proposed a method for using the empirical c.d.f. Ĝn to
estimate the target distribution G to obtain∫ [

f1+α(t;θ)− (1 + 1/α)g(t)fα(t;θ)
]
dt

=

∫
f1+α(t;θ)dt−

∫
(1 + 1/α)fα(t;θ)dG(t)

≈
∫

f1+α(t;θ)dt−
∫
(1 + 1/α)fα(t;θ)dĜ(t).

Suppose that in a life testing experiment with m independent n-component sys-
tems and a Type-II censored system lifetime data T1:m < T2:m < . . . < Tr:m

(r < m) is observed, the empirical c.d.f. of the system lifetime, ĜT (t), can
be obtained by using the Kaplan-Meier (K-M) estimator of the survival function
ŜT (t) = 1−ĜT (t) [14] based on the Type-II censored system lifetime data. Then,
the MDE of θ can be obtained at the system level by minimizing

(2.4) d̂α(g, f) =

∫
f1+α
T (t;θ)dt−

∫ (
1 +

1

α

)
fα
T (t;θ)dĜT (t)

w.r.t. θ. As this minimization is carried out at the system lifetime level, this
estimator is named as the MDE at system lifetime level, denoted as MDES .

In addition to the MDE at system lifetime level, the MDE can be consid-
ered at the component level. Based on the K-M estimator of the survival function
of the system lifetime ŜT (t), a nonparametric empirical distribution of the com-
ponent lifetime distribution ĜX(t) can be obtained based on the relationship
between FT and FX in Eq. (1.2) as

ŜT (t) =
n∑

i=1

si

i−1∑
j=0

[
ĜX(t)

]j [
1− ĜX(t)

]n−j
.

Then, the model parameter θ can be estimated by minimizing the density power
divergence at component lifetime distribution

(2.5) d̂α(g, f) =

∫
f1+α
X (t;θ)dt−

∫ (
1 +

1

α

)
fα
X(t;θ)dĜX(t).
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Since the MDE is obtained based on component lifetime distribution, we refer to
the estimator obtained by minimizing Eq. (2.5) as the MDE at the component
lifetime level, denoted as MDEC .

Instead of estimating the c.d.f. nonparametrically, we consider the non-
parametric kernel density estimator to estimate the p.d.f. of system lifetime
gT (t) [25]. With the observed Type-II censored system lifetime data, the p.d.f.
of system lifetime can be estimated using the Gaussian kernel density estimator,
denoted as ĝT (t). Then, the density power divergence function can be expressed
as

(2.6) d̂α(g, f) =

∫
f1+α
T (t;θ)dt−

∫ (
1 +

1

α

)
fα
T (t;θ)ĝT (t)dt.

A MDE of θ can be obtained by minimizing the density power divergence in
Eq. (2.6) with the estimated kernel density ĝT (t) w.r.t. θ. We name the MDE
obtained by minimizing Eq. (2.6) as the MDE with estimated p.d.f., denoted as
MDEP .

For comparative purposes, we also consider the MLE of θ based on Type-II
censored system lifetime data. The log-likelihood function based on the observed
Type-II censored system lifetime data t1:m < t2:m < . . . , tr:m is

(2.7) lnL(θ|t1:m, t2:m...tr:m) =
r∑

k=1

ln fT (tk:m;θ) + (m− r) ln F̄T (tr:m;θ),

where r ≤ m is the number of observed system failures and m is the total number
of systems on the test. The MLE of θ can be obtained by maximizing the log-
likelihood function in Eq. (2.7) w.r.t. θ.

2.2. Standard error estimation and confidence intervals

2.2.1. Based on the theoretical results from Basu et al. [4]

For the MDE, Theorem 2.2 in [4] proved that under some regularity con-
ditions, the MDE of the parameter θ (denoted as θ̂) is a consistent estimator for
θ, and n1/2(θ̂ − θ) is asymptotically multivariate normally distributed with zero
mean and variance-covariance matrix J−1KJ−1, where

J =

∫
uθ(t)u

T
θ (t)f

1+α(t,θ)dt

+

∫ [
iθ(t)− αuθ(t)u

T
θ (t)

]
[g(t)− f(t;θ)] fα(t;θ)dt(2.8)
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and

K =

∫
uθ(t)u

T
θ (t)f

2α(t;θ)g(t)dt

−
[∫

uθf
α(t;θ)g(t)dt

] [∫
uθf

α(t;θ)g(t)dt

]T
(2.9)

with uθ(t) = ∂ ln f(t;θ)/∂θ, and iθ(t) = −∂uθ(t)/∂θ. Basu et al. [5] further
proved that the asymptotic property of the MDE holds for censored survival data
as well. Based on these results, the variance of the MDE can be approximated by
discretizing the integrals in Eqs. (2.8) and (2.9) with the nonparametric estimated
c.d.f. Ĝ(t) or the nonparametric estimated p.d.f. ĝ(t). Consider the estimator
MDES , θS , the standard error of the MDES can be approximated as

ŜEA(θS) =

√
Ĵ−1
S K̂S Ĵ

−1
S /n,(2.10)

where

ĴS =

∫ [
(1 + α)uθ̂S

(t)uT
θ̂S
(t)− iθ̂S (t)

]
f1+α
T (t, θ̂S)dt

+

∫ [
iθ̂S (t)− αuθ̂S

(t)uT
θ̂S
(t)

]
fα
T (t; θ̂S)dĜT (t)

and

K̂S =

∫
uθ̂S

(t)uT
θ̂S
(t)f2α

T (t; θ̂S)dĜT

−
[∫

uθ̂S
(t)fα

T (t; θ̂S)dĜT

] [∫
uθ̂S

fα
T (t; θ̂S)dĜT

]T
,

where

uθ̂S
(t) =

1

fT (t;θ)

∂fT (t;θ)

∂θ

∣∣∣∣
θ=

ˆθS

and iθ̂S (t) = −∂uθ(t)

∂θ

∣∣∣∣
θ=

ˆθS

.

The variance-covariance matrices of the estimators MDEC and MDEP ,
θ̂C and θ̂P , can be obtained in a similar manner.

2.2.2. Based on Fisher information matrix of the MLE

In our preliminary study (results are not presented here), we found that the
performance of the standard error estimation based on the theoretical results in
[5] may not be satisfactory. Therefore, we consider different ways to approximate
the standard error of the MDE proposed in this paper. Based on our observations
in the preliminary study, the standard error of the MLE and the standard error
of the MDE is in the same order of magnitude, especially when the value of
α is close to 0. Hence, we consider a standard error estimation method based



Robust Estimation for System Lifetime Data 9

on the Fisher information matrix similar to using the inverse of observed Fisher
information matrix in estimating the standard error of MLE. For the MLE of θ,
the asymptotic variance-covariance matrix of the MLE can be approximated by
the inverse of the observed Fisher information matrix, i.e.,

ŜEF (θ̂) =

√
V̂ ar(θ̂) =

√√√√diag

([
−∂2 lnL(θ)

∂θ∂θ′

∣∣∣∣
θ=

ˆθ

]−1
)
,

where diag(A) denotes the diagonal elements of matrix A. According to the
asymptotic theory of the MLE, the sampling distribution of n1/2(θ̂−θ) is asymp-
totically multivariate normally distributed with mean zero and variance V ar(θ̂).
When α = 0, the MDE is equivalent to the MLE. Here, we propose to approxi-
mate the variance of the MDEs by inverting the observed Fisher information by
substituting θ with its MDE.

2.2.3. Based on bootstrap method

As we expected, when the value of α is far from zero, the performance
of the approximation based on the Fisher information matrix may not fulfilling
the expectations, therefore, we also consider approximating the standard error
of the MDE based on the bootstrap method. Given the estimated parameters,
parametric bootstrap samples of system lifetimes are generated with the corre-
sponding censoring proportion. For each bootstrap sample, the MDE is obtained
as a bootstrap MDE. Based on B bootstrap MDEs, we compute the standard
deviation of those bootstrap MDEs as an approximation of the standard error of
the MDE. For instance, consider the MDE based on system-level data, suppose

we have B bootstrap samples and the B bootstrap MDEs are θ̂
(1)

S , θ̂
(2)

S , . . ., θ̂
(B)

S ,
the standard error of the estimator θ̂S can be approximated as

ŜEB(θ̂S) =

√√√√ 1

B

B∑
b=1

(θ̂
(b)

S − ¯̂
θS)2,(2.11)

where
¯̂
θS =

∑B
b=1 θ̂

(b)

S /B. The size of bootstrap samples needed will be discussed
in Section 3 based on a Monte Carlo simulation study.

After obtaining the standard error estimate based on the methods described
in Sections 2.2.1, 2.2.2, and 2.2.3, a two-sided 100(1−α)% normal approximated
confidence interval of the k-th element of the parameter vector θ can be obtained
as

θkl, θku] =
[
θ̂k − z1−α/2ŜE(θ̂k), θ̂k + z1−α/2ŜE(θ̂k)

]
,

where zq is the q-th upper percentile of the standard normal distribution. The
performance of the standard error estimation methods and the corresponding
confidence intervals will be evaluated via a Monte Carlo simulation study in
Section 3.
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3. MONTE CARLO SIMULATION STUDIES

In this section, Monte Carlo simulation studies are used to evaluate the
performance of the proposed estimation methods for different system structures,
different sample sizes with different censoring rates, different underlying distribu-
tions, and different values of α for the MDE and different contamination propor-
tions. Based on our preliminary study, since similar observations are obtained
based on different sample sizes, different system structures, and different un-
derlying distributions, for the sake of simplicity, we only present the simulation
results for the 4-component series-parallel III system (namely System I) and the
4-component mixed parallel I system (namely System II) in Figure 1 for sample
size m = 50 (with different censoring rate) and the component lifetime X follows
the two-parameter Weibull distribution with p.d.f.

fX(x; a, b) =
b

a

(x
a

)b−1
exp

[
−
(x
a

)b
]
, x > 0,(3.1)

where a is the scale parameter and b is the shape parameter (denoted as
Weibull(a, b). The Weibull distribution is considered here as it is one of the
commonly used probability models in lifetime data analysis which can be used
to model items with increasing, constant, and decreasing failure rates [17, 18].
Moreover, many other commonly used probability distributions such as the expo-
nential distribution and the Rayleigh distribution are special cases of the Weibull
distribution. We consider the scale parameters a = 3 or a = 9 and the shape
parameter to be 2 (b = 2). For the case that the contaminates have a longer
lifetime than the true distribution on average (namely the longer-life contam-
ination model), the Weibull(3, 2) distribution with a mean lifetime of 2.6587
is the true distribution, and the Weibull(9, 2) distribution with mean lifetime
7.9760 is the contaminated distribution. Similarly, for the case that the con-
taminates have a shorter lifetime than the true distribution on average (namely
the shorter-life contamination model), the Weibull(9, 2) distribution is the true
distribution and the Weibull(3, 2) distribution is the contaminated distribution.
We also consider other parameter settings; however, for the sake of brevity, we
only present the results for Weibull(9, 2) and Weibull(3, 2) here. In the simula-
tion study, the contamination proportion is set to be 0%, 5%, 10% and 15%, the
Type-II censoring rate (1− r/m) is set to be 0% and 5% (i.e., no censoring and
r = 0.95m, respectively). The power parameter α in the MDE method is set to
be 0.01, 0.1, 0.25, 0.5, 0.75 and 0.9.

3.1. Results for point estimation

To evaluate the performance of the proposed estimation procedures for
point estimation, the three proposed MDEs – MDES , MDEC and MDEP –
are compared with the MLE in terms of their mean squared errors (MSEs) for
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estimating the mean component lifetime, i.e., aΓ(1+1/b), where Γ(·) is the gamma
function. Specifically, in the ℓ-th simulation, we first estimate the parameter θ =
(a, b) based on different methods, denoted as θ̂(ℓ) = (â(ℓ), b̂(ℓ)) for Weibull(a, b)
distribution, and then the estimated mean component lifetime is computed as
â(ℓ)Γ(1 + 1/b̂(ℓ)). The MSE of an estimator is computed as

1

L

L∑
ℓ=1

[
â(ℓ)Γ(1 + 1/b̂(ℓ))− aΓ(1 + 1/b)

]2
.

The simulation results in this subsection are computed based on 10000 realiza-
tions (L = 10000). For comparative purposes, we define the relative efficiency of
the MDE to MLE as

REMDE =
MSE(MLE)

MSE(MDE)
.

The value of relative efficiency greater than 1 indicates that the performance of
the MDE is better than the MLE. The relative efficiency for different censor-
ing rates, different contamination proportions, and different values of α for the
combinations of System I and System II, and the longer-life contamination model
and shorter-life contamination model, are plotted in Figures 2–5. From Figures
2–5, we observe that the performance of the MDEC is the worst among the three
proposed MDEs as the relative efficiency is below 1 in many cases. Therefore, we
focus the discussion of the results below on the MDES and MDEP .

In Figures 2 and 4, the relative efficiency of MDES , MDEC and MDEP

for System I and System II with longer-life contamination model are presented,
respectively. We can observe that MDES and MDEP have similar performance
for System I and System II. When there is no contamination (dashed lines with
triangles in Figures 2 and 4), the relative efficiency is less than 1 for MDES

and MDEP , which indicates that the MLE performs better than MDES and
MDEP in terms of MSEs. When the contamination rate increases, the relative
efficiency increases and becomes larger than 1 for MDES and MDEP . Moreover,
we observe that the performances of MDES and MDEP improve when α gets
closer to 1. These observations are consistent in both no censoring case (Figures 2
and 4 (a) – (c)) and the 5% censoring case (Figures 2 and 4 (d) – (f)). However,
in the longer-life contamination model, the relative efficiency in the censoring
case is smaller than those in the complete sample case. This indicates that
Type-II censoring reduces the influence of the contamination in estimating the
parameters. It is likely that the contaminated observations with a longer life are
censored in the Type-II censoring scheme. For example, the relative efficiency of
the MDES with α = 0.9 is close to 15 when the contamination rate is 15% with
no censoring, while the relative efficiency of the MDES with α = 0.9 reduces to
10 when the contamination rate of 15% with 5% censoring.

In Figures 3 and 5, the relative efficiency of MDES , MDEC and MDEP

for System I and System II with shorter-life contamination model are presented.
We can observe that MDES and MDEP have similar performance for System I
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Figure 2: Relative efficiency of estimated mean component lifetime for
System I with longer-life contamination model

and System II. In contrast to the longer-life contamination model, MDES and
MDEP have different performances in the shorter-life contamination model. In
the complete sample case, the MDES and MDEP have relative efficiency greater
than 1 when the contamination rate is over 10% in most cases (Figures 3 and
5 (a) and (c)). In the Type-II censoring with 5% censoring case, the MDES

has relative efficiency greater than 1 when the contamination rate is 15% and
the value of α is close to 1 (Figures 3 and 5 (d)), while the MDEP has relative
efficiency less than 1 in most cases (Figures 3 and 5 (f))

In summary, the proposed estimator MDES has a better performance com-
pared toMDEC andMDEP and it shows an advantage over the MLE when there
is contamination present in the data. Moreover, the performance of MDES is
not much worse than the MLE even when there is no contamination or with a
low contamination rate (i.e., relative efficiency less than but close to 1). In the
contamination cases, the value of α closer to 1 for the MDES has better per-
formance. Therefore, we recommend the use of MDES , especially when it is
suspected that there is contamination exists in the data. Based on these sim-
ulation results and for the simplicity sake, we consider the MDES but not the
MDEC and MDEP in the subsequent study of the performance of standard error
estimation and interval estimation.
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Figure 3: Relative efficiency of estimated mean component lifetime for
System I with shorter-life contamination model
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Figure 4: Relative efficiency of estimated mean component lifetime for
System II with longer-life contamination model

3.2. Results for standard error estimation and interval estimation

3.2.1. Determining a suitable bootstrap size for standard error estimation

To determine the required bootstrap size B for the standard error estima-
tion for MDE described in Section 2.2.3, following Efron and Tibshirani [10], we
consider evaluating the coefficient of variation of the standard error estimates to
obtain a reasonable value of the number of bootstrap replicates. We consider
the coefficient of variation of the standard error estimates, which is computed as
the ratio of the variance of the bootstrap estimate of standard error ŜEB to the
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Figure 5: Relative efficiency of estimated mean component lifetime for
system II with shorter-life contamination model

expectation of ŜEB with different bootstrap size B. The variability of bootstrap
estimates can be evaluated by using the coefficient of variation and a suitable
value of B is a value such that the variability does not change significantly after
increasing the value of B.

A Monte Carlo simulation is carried out to evaluate the coefficient of vari-
ation for different bootstrap sizes B in order to determine the proper number
of bootstrap replications. We simulate 200 samples of m = 50 system lifetimes
based on System I (4-component series-parallel III system) with true underlying
component lifetime distribution Weibull(3, 2), no contamination, and no censor-
ing. For each simulation, given a bootstrap replication number B, the bootstrap
standard error estimate of MDES is calculated, denoted as ŜEB. Then, with the

200 bootstrap standard error estimates ŜE
(1)
B , ŜE

(2)
B , . . ., ŜE

(200)
B , the simulated

coefficient of variation is computed as:

ĈV (ŜEB) =
V̂ ar(ŜEB)

Ê(ŜEB)
,

where

Ê(ŜEB) =
1

B

200∑
i=1

ŜE
(i)

B ,

and V̂ ar(ŜEB) =
1

B

200∑
i=1

(ŜE
(i)

B − Ê(ŜEB))
2.

Figure 6 presented the simulated coefficient of variation of the standard error of
MDES . From Figures and 6, we observe that when the bootstrap size B gets
above 250, a further increase in the bootstrap size does not bring a substantial re-
duction in the variation. Hence, we consider the number of bootstrap replications
B = 250 in the Monte Carlo simulation study for evaluating the performance of
confidence intervals.
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Figure 6: Coefficients of variation of ŜEB for (a) shape parameter and (b)
scale parameter as functions of the number of bootstrap samples
B

3.2.2. Performance of standard error estimates

To evaluate the performance of the three standard error estimation meth-
ods for MDE presented in Section 2.2, we compare the simulated standard errors
of the MDE based on the system-level data, MDES , and the averaged values
of the standard error estimates based on the theoretical results from Basu et al.
[4] (i.e., ŜEA), based on observed Fisher information matrix (i.e., ŜEF ), and

based on bootstrap method (i.e., ŜEB) with bootstrap size B = 250. We simu-
late 1000 samples of m = 50 system lifetimes based on System 1 (4-component
series-parallel III system) with true underlying component lifetime distribution
Weibull(3, 2), no contamination, and no censoring. The simulation results are
presented in Table 2.

From Table 2, we observe that the standard error estimates based on the
theoretical results from Basu et al. [4] can seriously underestimate the standard
error of MDES , while the standard error estimates based on observed Fisher
information matrix provide a reasonable approximation to the standard errors of
MDES when α is close to 0. Overall, among the three standard error estimation
methods for MDE, the bootstrap method with bootstrap size B = 250 provides
a reasonable approximation to standard error of the MDES for all the values of
α considered here. Therefore, in the following simulation study for confidence
intervals, we use the standard error estimates based on the bootstrap method.
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α = 0.01 α = 0.1 α = 0.25 α = 0.5 α = 0.75 α = 0.9

Simulated ŜE(â) 0.179 0.180 0.184 0.196 0.210 0.219

Average ŜEA(â) 0.013 0.011 0.008 0.006 0.005 0.005

Average ŜEF (â) 0.214 0.206 0.190 0.172 0.165 0.164

Average ŜEB(â) 0.205 0.210 0.197 0.183 0.187 0.189

Simulated ŜE(b̂) 0.247 0.248 0.257 0.290 0.326 0.336

Average ŜEA(b̂) 0.009 0.007 0.005 0.003 0.003 0.002

Average ŜEF (b̂) 0.203 0.207 0.215 0.232 0.244 0.248

Average ŜEB(b̂) 0.238 0.230 0.255 0.322 0.375 0.389

Table 2: Simulated standard errors the MDES and the averaged stan-
dard error estimates based on the theoretical results from [4]

(ŜEA), based on observed Fisher information matrix (ŜEF ),

and based on bootstrap method (ŜEB) with bootstrap size
B = 250

3.2.3. Performance of confidence intervals

In this subsection, the simulated coverage probabilities and the average
widths of 95% confidence intervals of the Weibull parameters a and b for the
MLE and the MDE based on system-level data (MDES) with different values of
α are compared. The two systems (System I and System II) and the longer-life
and shorter-life contamination models described in Section 3 are considered here.
Specifically, a two-sided 100(1−α)% normal approximated confidence interval of
a is constructed as

[al, au] =
[
â− z1−α/2ŜE(â), â+ z1−α/2ŜE(â)

]
,

where the estimated standard error ŜE(â) is obtained based on the bootstrap
method. Similarly, a two-sided 100(1 − α)% normal approximated confidence
interval of b is constructed as

[bl, bu] =
[
b̂− z1−α/2ŜE(b̂), b̂+ z1−α/2ŜE(b̂)

]
,

where the estimated standard error ŜE(â) is obtained based on the bootstrap
method. The simulated coverage probability (CP) is computed as the proportion
of cases that the true value of the parameter falls within the confidence interval,
and the average width (AW) is computed as 2z1−α/2ŜE(â) and 2z1−α/2ŜE(b̂) for
parameters a and b, respectively. The simulation results are presented in Tables
3 – 4.

From Tables 3 – 4, we observe that when there is no contamination, the
confidence intervals based on MLEs give coverage probabilities close to the nom-
inal 95% for both scale and shape parameters. Compared with MDES , the
confidence intervals based on MLEs give the highest coverage probabilities and
the smallest average widths when there is no contamination (i.e., contamination
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rate is 0). However, when the contamination rate increases, the coverage prob-
abilities of the confidence intervals based on MLEs decrease for both scale and
shape parameters and the average widths increase for the scale parameter but
decrease for the shape parameter. These observations are consistent in both the
longer-life and shorter-life contamination models with and without censoring for
System I and System II. We also observe that the coverage probabilities of the
confidence intervals based on MLEs are sensitive to the contamination rate and
the type of contamination. In the longer-life contamination model, the coverage
probabilities for both scale and shape parameters drop dramatically when the
contamination rate increases. For example, in Table 3, when the contamination
rate is 15% with no censoring, the simulated coverage probabilities of the confi-
dence intervals based on MLE are only 18% for the scale parameter and 2% for
the shape parameter under the longer-life contamination model, while the simu-
lated coverage probabilities of the confidence intervals based on MLE are 80.7%
for the scale parameter and 68.7% for the shape parameter under the shorter-life
contamination model.

Similar to the MLEs, the coverage probabilities of the confidence intervals
based on MDES are also sensitive to the contamination rate and the type of
the contamination. For the longer-life contamination model, the coverage prob-
abilities of confidence intervals of the scale parameter based on MDES with α
close to 1 are closer to the nominal levels when the contamination rate is high.
However, for the shorter-life contamination model, the coverage probabilities of
the confidence intervals of the scale parameter based on MDES with α close
to 1 are far away from the nominal level when the contamination rate is high
(see, Table 3). The confidence intervals based on MDES have better coverage
probabilities than the confidence intervals based on MLE in the longer-life con-
tamination model when the contamination rate is high. For example, when the
contamination rate is 15% under the longer-life contamination model, the cov-
erage probabilities of the confidence intervals based on MDES with α close to
1 can still maintain at 95.7% for the scale parameter (Table 3) and 91.6% for
shape parameter (Table 4), while the coverage probabilities of the confidence in-
tervals of based on MLE are down to 18% for scale parameter and 2% for shape
parameter.

In general, for the longer-life contamination model, compared to the con-
fidence intervals based on MLE, the confidence intervals based on MDES have
higher coverage probabilities and larger average widths (Tables 3 and 4). Nev-
ertheless, for the shorter-life contamination model, compared to the confidence
intervals based on MLE, the confidence intervals based on MDES have lower
coverage probabilities.
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4. ILLUSTRATIVE EXAMPLE

In this section, a numerical example based on the system lifetime data of
the 4-component series-parallel III system with Weibull component lifetimes is
used to illustrate the estimation methods proposed in this paper. The system
lifetime data was originally presented in [2] and further analyzed by [26]. The
data are 10 system lifetimes from the 4-component system with system signature
s = (1/4, 1/4, 1/2, 0) with component lifetime follows Weibull(3, 2) :

0.72717, 1.02050, 1.38633, 1.61244, 1.70590, 1.76789, 2.6786, 3.02676, 3.25943, 3.78497

To illustrate the effect of contamination in the statistical inference procedures,
we simulated an observation from the Weibull(9, 2) to replace one of the obser-
vations in the original data set. Specifically, the observation 1.76789 is replaced
by 5.48619. The contaminated data set is as follows.

0.72717, 1.02050, 1.38633, 1.61244, 1.70590, 5.48619, 2.6786, 3.02676, 3.25943, 3.78497

Based on the original and the contaminated data sets, the MLE and the three
proposed MDEs of the Weibull parameters a and b and the corresponding confi-
dence intervals are presented in Tables 5 and 6.

For point estimation, form Tables 5 and 6, the MLE, MDES , MDEC

and MDEP with different values of α provide similar point estimates of the
parameters a and b. By comparing the estimates obtained from the data sets
with and without contamination, the difference between MDEs (especially α close
to 1) obtained from the data sets with and without contamination is smaller
than the difference between MLEs obtained from the data sets with and without
contamination in general. For example, the MLE of a is 2.695 for the data
set without contamination and the MLE of a is 3.249 for the data set with
contamination which has a difference 0.554, while the MDES with α = 0.9
is 2.691 for the data set without contamination and the MDES with α = 0.9 is
3.105 for the data set with contamination, which has a difference 0.414.

For interval estimation, in both with and without contamination cases (Ta-
bles 5 and 6), the confidence intervals for the scale parameter based on the ob-
served Fisher information matrix are very close to the one obtained from the
bootstrap method. However, the confidence intervals for the shape parameter
based on the bootstrap method is wider than those based on the observed Fisher
information matrix. The confidence intervals using MDEs with standard error
estimates based on the theoretical results are much narrower than the confidence
intervals with standard error estimates based on the observed Fisher information
matrix and based on the bootstrap method. This observation agrees with the
results in the Monte Carlo simulation that the standard error estimates based
on the theoretical results are likely to underestimate the standard errors of the
MDEs.
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95% CI based on 95% CI based on 95% CI based on

Estimator â ŜEA(â) ŜEF (â) ŜEB(â)
MLE 2.695 (1.978, 3.412) (1.980, 3.410)
MDES

α = 0.01 2.696 (2.490, 2.902) (1.976, 3.416) (2.014, 3.378)
α = 0.10 2.700 (2.504, 2.896) (1.961, 3.439) (1.967, 3.433)
α = 0.25 2.706 (2.531, 2.881) (1.937, 3.475) (1.922, 3.490)
α = 0.50 2.710 (2.495, 2.925) (1.900, 3.520) (1.780, 3.640)
α = 0.75 2.703 (2.507, 2.899) (1.867, 3.539) (1.731, 3.675)
α = 0.90 2.691 (2.495, 2.887) (1.850, 3.532) (1.667, 3.715)
MDEC

α = 0.01 2.617 (2.421, 2.813) (2.003, 3.231) (2.019, 3.215)
α = 0.10 2.628 (2.442, 2.814) (2.002, 3.254) (2.027, 3.229)
α = 0.25 2.647 (2.483, 2.811) (1.997, 3.297) (2.024, 3.270)
α = 0.50 2.677 (2.538, 2.816) (1.987, 3.367) (1.976, 3.378)
α = 0.75 2.700 (2.576, 2.824) (1.972, 3.428) (1.909, 3.491)
α = 0.90 2.709 (2.585, 2.833) (1.960, 3.458) (1.896, 3.522)
MDEP

α = 0.01 2.769 (2.453, 3.085) (1.892, 3.646) (1.937, 3.601)
α = 0.10 2.782 (2.505, 3.059) (1.884, 3.680) (1.877, 3.687)
α = 0.25 2.802 (2.579, 3.025) (1.872, 3.732) (1.866, 3.738)
α = 0.50 2.829 (2.665, 2.993) (1.851, 3.807) (1.853, 3.805)
α = 0.75 2.848 (2.633, 3.063) (1.835, 3.861) (1.815, 3.881)
α = 0.90 2.855 (2.649, 3.061) (1.827, 3.883) (1.780, 3.930)

95% CI based on 95% CI based on 95% CI based on

Estimator b̂ ŜEA(b̂) ŜEF (b̂) ŜEB(b̂)
MLE 2.004 (0.945, 3.063) (0.566, 3.442)

MDES

α = 0.01 1.999 (1.847, 2.151) (0.942, 3.056) (0.668, 3.330)
α = 0.10 1.946 (1.794, 2.098) (0.916, 2.976) (0.430, 3.462)
α = 0.25 1.872 (1.733, 2.011) (0.878, 2.866) (0.275, 3.469)
α = 0.50 1.782 (1.630, 1.934) (0.832, 2.732) (0.000, 3.705)
α = 0.75 1.718 (1.594, 1.842) (0.799, 2.637) (0.000, 5.163)
α = 0.90 1.690 (1.566, 1.814) (0.788, 2.592) (0.000, 4.666)
MDEC

α = 0.01 2.340 (2.188, 2.492) (1.079, 3.601) (0.310, 4.370)
α = 0.10 2.276 (2.124, 2.428) (1.058, 3.494) (0.349, 4.203)
α = 0.25 2.184 (2.045, 2.323) (1.024, 3.344) (0.257, 4.111)
α = 0.50 2.065 (1.941, 2.189) (0.974, 3.156) (0.000, 4.671)
α = 0.75 1.978 (1.854, 2.102) (0.932, 3.024) (0.000, 9.267)
α = 0.90 1.937 (1.813, 2.061) (0.911, 2.963) (0.000, 6.431)
MDEP

α = 0.01 1.732 (1.462, 2.002) (0.800, 2.664) (0.715, 2.749)
α = 0.10 1.713 (1.473, 1.953) (0.787, 2.639) (0.775, 2.651)
α = 0.25 1.688 (1.536, 1.840) (0.773, 2.603) (0.373, 3.003)
α = 0.50 1.653 (1.501, 1.805) (0.748, 2.558) (0.403, 2.903)
α = 0.75 1.627 (1.503, 1.751) (0.731, 2.523) (0.279, 2.975)
α = 0.90 1.615 (1.491, 1.739) (0.723, 2.507) (0.028, 3.202)

Table 5: Point and interval estimates for Weibull parameters for the orig-
inal data set presented in Section 4

5. CONCLUDING REMARKS

In this paper, we study the robust estimation method for the model pa-
rameters in the component lifetime distribution based on system lifetime data
with known system structure. The minimum density power divergence estima-
tion method is considered and three different MDEs are proposed. Standard error
estimation and interval estimation procedures based on the MDEs are also stud-
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95% CI based on 95% CI based on 95% CI based on

Estimator â ŜEA(â) ŜEF (â) ŜEB(â)
MLE 3.249 (2.172, 4.326) (2.192, 4.306)

MDES

α = 0.01 3.248 (2.851, 3.645) (2.169, 4.327) (2.194, 4.302)
α = 0.10 3.235 (2.853, 3.617) (2.154, 4.316) (2.183, 4.287)
α = 0.25 3.210 (2.859, 3.561) (2.131, 4.289) (2.129, 4.291)
α = 0.50 3.165 (2.861, 3.469) (2.100, 4.230) (2.010, 4.320)
α = 0.75 3.124 (2.884, 3.364) (2.072, 4.176) (1.935, 4.313)
α = 0.90 3.105 (2.941, 3.269) (2.057, 4.153) (1.855, 4.355)
MDEC

α = 0.01 3.203 (2.887, 3.519) (2.261, 4.145) (2.329, 4.077)
α = 0.10 3.207 (2.910, 3.504) (2.247, 4.167) (2.292, 4.122)
α = 0.25 3.213 (2.965, 3.461) (2.225, 4.201) (2.269, 4.157)
α = 0.50 3.216 (3.030, 3.402) (2.194, 4.238) (2.168, 4.264)
α = 0.75 3.206 (2.983, 3.429) (2.165, 4.247) (2.090, 4.322)
α = 0.90 3.192 (2.969, 3.415) (2.148, 4.236) (2.036, 4.348)
MDEP

α = 0.01 3.368 (2.952, 3.784) (2.096, 4.640) (2.168, 4.568)
α = 0.10 3.379 (2.973, 3.785) (2.089, 4.669) (2.076, 4.682)
α = 0.25 3.392 (3.005, 3.779) (2.080, 4.704) (2.071, 4.713)
α = 0.50 3.406 (3.050, 3.762) (2.069, 4.743) (2.008, 4.804)
α = 0.75 3.414 (3.080, 3.748) (2.065, 4.763) (1.912, 4.916)
α = 0.90 3.416 (3.100, 3.732) (2.062, 4.770) (1.685, 5.147)

95% CI based on 95% CI based on 95% CI based on

Estimator b̂ ŜEA(b̂) ŜEF (b̂) ŜEB(b̂)
MLE 1.607 (0.782, 2.432) (0.485, 2.729)

MDES

α = 0.01 1.604 (1.300, 1.908) (0.779, 2.429) (0.404, 2.804)
α = 0.10 1.588 (1.284, 1.892) (0.770, 2.406) (0.476, 2.700)
α = 0.25 1.569 (1.272, 1.866) (0.761, 2.377) (0.319, 2.819)
α = 0.50 1.550 (1.287, 1.813) (0.751, 2.349) (0.000, 3.695)
α = 0.75 1.535 (1.411, 1.659) (0.741, 2.329) (0.000, 4.102)
α = 0.90 1.525 (1.386, 1.664) (0.736, 2.314) (0.000, 3.997)
MDEC

α = 0.01 1.825 (1.593, 2.057) (0.899, 2.751) (0.206, 3.444)
α = 0.10 1.786 (1.571, 2.001) (0.879, 2.693) (0.382, 3.190)
α = 0.25 1.732 (1.580, 1.884) (0.851, 2.613) (0.162, 3.302)
α = 0.50 1.668 (1.504, 1.832) (0.816, 2.520) (0.000, 8.867)
α = 0.75 1.625 (1.501, 1.749) (0.791, 2.459) (0.000, 4.849)
α = 0.90 1.606 (1.482, 1.730) (0.781, 2.431) (0.000, 5.860)
MDEP

α = 0.01 1.464 (1.167, 1.761) (0.697, 2.231) (0.733, 2.195)
α = 0.10 1.455 (1.158, 1.752) (0.691, 2.219) (0.626, 2.284)
α = 0.25 1.444 (1.147, 1.741) (0.685, 2.203) (0.533, 2.355)
α = 0.50 1.433 (1.149, 1.717) (0.676, 2.190) (0.432, 2.434)
α = 0.75 1.428 (1.158, 1.698) (0.674, 2.182) (0.292, 2.564)
α = 0.90 1.426 (1.170, 1.682) (0.672, 2.180) (0.021, 2.831)

Table 6: Point and interval estimates for Weibull parameters for the con-
taminated data set presented in Section 4.

ied. The three proposed estimation procedures are compared to the maximum
likelihood estimation method via a Monte Carlo simulation study. It is shown
that the minimum density power divergence estimation method based on system-
level data can provide better performance in both point and interval estimation
when there is longer-life contamination in the data. We have also shown that
the standard error estimates based on the bootstrap method can be adopted for
estimating the standard errors of the MDEs.

From our simulation study, for point estimation, the MLE outperforms the
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MDEs when there is no contamination in the data. However, we observe that
the system-level MDE, MDES , is a robust estimation procedure than the MLE
when there is contamination in the data. For interval estimation, we observe
that the contaminated data considerably affect the coverage probabilities of the
confidence intervals based on MLE and MDES . The confidence intervals based
on MDES perform better than those based on MLE for contaminated data,
especially when the contamination rate is high (say, 10% or 15%) in the longer-
life contamination model. For contamination data with longer lifetimes, MDES

with large value of α (α = 0.75 or 0.9) is recommended. For contamination
data with shorter lifetimes, MDES with small value of α (α = 0.01 or 0.1) is
recommended. Since the choice of the value α for the MDES affects the results
for the interval estimation, it is interesting to study the choice of the value of
α in the system-level minimum divergence estimator MDES . In practice, the
sample size m, the system signature s, and the censoring proportion are known,
but the underlying component lifetime distribution and the contamination rate
are usually unknown. The performance of the estimators with different values of
α can be studied under different underlying component lifetime distributions and
contamination rates via simulation, and then a reasonable range of the value of
α can be obtained.

For future research, a systematic way to choose the value of α for the MDE
can be studied. On the other hand, since the simulated coverage probabilities
of the confidence intervals based on the estimators studied in this paper can
be much lower than the nominal level when there is contamination in the data,
it is desired to develop better standard error estimation methods and confidence
interval estimation methods which can provide better coverage probabilities when
the contamination rates. The current work can be extended to the situation
when the lifetime of the unit may be affected by one or more factors/explanatory
variables (such as temperature, voltage, load, etc.). For example, consider a
Weibull regression model in which K covariates z = (z1, z2, . . . , zK) affects the
scale parameter a in Eq. (3.1), then, we have a parametric proportional hazard
model for the lifetime X

fX(x;θ) = fX(x; a(z), b),

where

a(z) = exp (ν0 + ν1z1 + ν2z2 + . . .+ νKzK)

and the parameter vector is θ = (ν0, ν1, . . . , νK , b). The proposed minimum
density divergence estimation method can be applied to estimate the parameter
vector θ = (ν0, ν1, . . . , νK , b). On the other hand, we assume that the system
signature is known in this paper, however, for some black box systems, we may
not have any knowledge on the system structures. Following the work by Yang et
al. [27], one can develop robust procedures for estimating the parameters of the
component lifetime distribution and for identifying the system structure based on
system-level data simultaneously by assuming the system is a coherent system.
We are currently working on these extensions and we hope to report the findings
in future work.
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