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1. INTRODUCTION

The specification of identifiable statistical models is an extremely important step in
statistical inference. Data-driven decisions in unidentifiable models may be non-unique, i.e.

it may not be possible to choose a single optimal decision based solely on the data at hand (San
Mart́ın 2018 [22]). Therefore, be it in the classical or Bayesian framework, unidentifiability
may lead to severely wrong answers to scientific inquiries.

In classical statistics, for instance, lack of identifiability implies there does not exist a
consistent estimator for some or all of the model parameters (Paulino and Pereira 1994 [15]).
In other words, no matter how large the sample size, with an unidentifiable model we will never
be able to distinguish the true parameter value from at least one other alternative value.

Unidentifiability can also cause problems in the Bayesian setting. When using flat prior
distributions for unidentifiable parameters, the resulting posterior can still be flat. Moreover,
if the prior is improper, then the posterior may also be improper (Lindley 1971 [14]). However,
even if informative priors are used in this situation, it is not very clear what inferences can be
drawn a posteriori. San Mart́ın (2018) [22] argues for inference on the sufficient parameter
(see meaning therein) and shows how the influence of the prior distribution never vanishes
for unidentifiable parameters.

Most of the models in the statisticians’ basic toolkit enjoy solid theoretical foundations.
However, the recent advances in computational power have led to the appearance of more
complex models for which identifiability is not always guaranteed. Earlier, the theoretical de-
velopment of statistics was followed by the studies of computational feasibility of the models,
however, now a lot of theoretical work is to understand the properties of the newer modeling
strategies.

Due to the difficulty in answering the question of whether or not a particular statistical
model is identifiable, there is a sizable literature suggesting a diverse range of methods. There
have been approaches using differential geometry (Villaverde et al. 2019 [25]), differential
algebra (Bellu et al. 2007 [3]), measure theory (San Mart́ın 2015 [21]) etc. However, sometimes
theory alone does not end the issue and computational strategies are called upon to provide
empirical evidence of model identifiability.

A closely related concept is that of estimability or practical identifiability. It may be
the case that the statistical model is identifiable, but the data available is of poor quality
or the model has been incorrectly specified. This may hinder the ability to estimate the
model parameters and the uncertainty associated with such estimates, which can affect both
inferential and predictive tasks. In other words, estimability deals with the question of
whether the data at hand can reliably estimate the desired quantities. Identifiability, however,
is concerned with the existence, for any two distinct parameter values, of a hypothetical data
set which can differentiate between them. As such, lack of estimability does not imply lack
of identifiability, although the converse is always true (Paulino and Pereira 1994 [15]).

Lack of estimability is commonly caused by low signal-to-noise ratio in the data, low sam-
ple size, or inappropriate sampling scheme (Lele et al. 2010 [13]). These problems often result
in a likelihood function of the parameters that have many local maxima or an almost flat region.
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In these scenarios, any given estimation algorithm might result in parameter estimates which
yield considerably distinct inferential conclusions. Furthermore, confidence regions may
present one or more coordinates assuming unreasonably large values.

Recently, Lele et al. (2007) [12] proposed an algorithm for maximum likelihood esti-
mation, called Data Cloning, which is of particular relevance in latent variable models. The
method is quite intuitive and draws motivation from the idea of replicability of experiments
in frequentist statistics. To be more specific, the data cloning algorithm starts from a prior
distribution on the parameter space and sequentially updates it using the same data set until
some diagnostic measures reach specified thresholds.

As Lele et al. (2010) [13] show, if the model is unidentifiable then convergence issues can
be easily spotted with the tools for diagnosing convergence of the algorithm. Data cloning has
been used earlier for studying model estimability. Campbell and Lele (2014) [4]) proposed an
ANOVA test of estimability based on data cloning and Peacock et al. (2017) [16] employed
data cloning to assess estimability of a spatio-temporal model under distinct study designs
based on an observed data set.

Our objective in this paper is to introduce data cloning as a practical tool for the
assessment of identifiability of statistical models. For this, we show how to plan and perform
a simulation study that can shed light on possible problems in the structure of the statistical
model. Our idea is somewhat similar to that of Peacock et al. (2017) [16] in that we also
employ simulated data. However, instead of exploring possible alternative study designs
based on observed data, we advocate the exploration of a multitude of possible data based
on as many as possible parameter values to study the structure of the model itself.

In Section 2 we present the data cloning algorithm and its main diagnostic measures
that can be used to study model identifiability. In Section 3 we present the formal definitions
of identifiability of statistical models, relate them to data cloning, and show, theoretically,
how the identifiability issue reveals itself in the Gaussian dynamic linear model. Finally, in
Section 4 we present a simulation study using the package dclone (Solymos 2010 [23]) from R
(R Core Team 2020 [19]) and JAGS (Plummer 2017 [18]), and discuss the evidence it brings
about identifiability in the adopted model.

2. DATA CLONING

In the subjective realm of Bayesian inference, a great deal of discomfort in the prior
specification vanishes for highly informative data. An important result in Bayesian asymp-
totics, due to Walker (1969) [26], shows that, under some regularity conditions, for large n the
posterior distribution π(θ|y1, ..., yn) is approximately Gaussian with mean θ̂, the maximum
likelihood estimate of θ, and covariance matrix I−1(θ̂), the inverse of the Fisher information
evaluated at this maximum. For this, see also Turkman et al. (2019), Sec. 8.1 [24].

Suppose we performed an experiment k times independently and happened to observe
the exact same realization y(j) = y = (y1, ..., yn) for all j ∈ {1, ..., k} with probability density
function f(y|θ) for each experiment. Let πk(θ|y) denote the posterior distribution updated
with samples for k such experiments. Since the k experiments are independent, Bayes theorem
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says this distribution is

(2.1) πk(θ|y) ∝ f(y(1), ...,y(k)|θ)π(θ) ∝ π(θ)
k∏

j=1

f(y|θ) ∝ π(θ){f(y|θ)}k .

Let L(θ;y(1), ...,y(k)) and l(θ;y(1), ...,y(k)) denote the likelihood and log-likelihood functions
of these experiments, respectively. If θ̂(n) is maximum likelihood estimate under any one of
the k experiments, then it follows immediately that

(2.2) θ̂ = arg sup
θ∈Θ

L(θ;y(1), ...,y(k)) = arg sup
θ∈Θ

[L(θ;y)]k = arg sup
θ∈Θ

L(θ;y) = θ̂(n)

and if we let V(X) denote the covariance matrix of a random vector X, then

(2.3) I(θ̂) = V

(
∂`(θ;Y(1), ...,Y(k))

∂θ

)∣∣∣∣∣
θ=θ̂

= V

 k∑
j=1

∂`(θ;Y(j))
∂θ

∣∣∣∣∣
θ=θ̂

= kI(θ̂(n)) ,

in which the last equality follows from the independence of the experiments. Therefore, for
a fixed n and k arbitrarily large, our posterior distribution would be well approximated by a
Gaussian distribution with mean θ̂(n) and covariance matrix 1

kI
−1
(
θ̂(n)

)
.

Note that we have not made a single comment about what prior π(θ) we started with.
In fact, the previous results are valid as long as the prior distribution and the likelihood
function satisfy some mild regularity conditions. In other words, for any two such priors π1

and π2 over Θ, there is a number of experiments, k, for which the posterior distributions
would be arbitrarily close to each other (Lele et al. 2010 [13]).

Similarly, with minor modifications, the results above can be applied to latent vari-
able models. Since the experiments are performed independently, realizations of the hidden
stochastic process {X(j)}, j ∈ {1, ..., k}, are also assumed to have occurred k times inde-
pendently. We begin by assigning a joint prior distribution π(θ,x) = π(x|θ)π(θ) for the
parameters and latent variables. The resulting posterior distribution is given by

(2.4) πk(θ,x|y) =
π(θ)

∏k
j=1 f(y(j)|x(j),θ)π(x(j)|θ)

f(y(1), ...,y(k))
.

For inference on the parameter vector, it suffices to marginalize on x, which is made easier
by the assumption of independence:

πk(θ|y) =
∫
X

π(θ,x|y(j), ...,y(k))dx

=

{∫
X
∏k

j=1 f(y|x(j),θ)π(x(j)|θ)dx(j)
}

π(θ)

f(y(1), ...,y(k))

=

{∏k
j=1 L(θ;y)

}
π(θ)

f(y(1), ...,y(k))

=
{L(θ;y)}kπ(θ)∫

Θ{L(θ;y)}kπ(θ)dθ
.(2.5)
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In summary, if we obtained such an odd data set over a very large number of inde-
pendent experiments, from (almost) arbitrary initial prior distributions, we could perform
frequentist inference within the Bayesian setting. All that is required is we take samples from
the posterior distribution of θ and compute the mean vector and covariance matrix.

At first glance, it may seem that we replaced the high-dimensional integral required for
maximum likelihood estimation, namely L(θ;y), with a possibly much more complicated one
in the denominator of (2.5). However, commonly employed Bayesian software for probabilistic
sampling avoid the integration procedure altogether, which surely is an important reason why
there is increasing adoption of the subjective paradigm amongst researchers dealing with
complex latent variable models (Lele et al. 2010 [13]).

2.1. The Algorithm

Admittedly, repeating the same experiment may be just as infeasible as simply increas-
ing the sample size. Thus, given a dataset, Lele et al. (2007) [12] propose that we clone it k

times, with k as large as is computationally possible, and then draw samples from the k-times
cloned posterior πk. Although what we are using is in fact fake data, the machine on which
the sampling algorithm will run cannot tell the difference.

As before, let y = (y1, ..., yn) denote the available realization of a measurement process
generated by a hidden latent process. Suppose θ is a continuous random vector, p(θ) is a
proposal distribution, and define the burn-in length Nburn < Nsim, the simulation length for
the Metropolis-Hastings algorithm. Algorithm 1 provides a way to sample from πk; for the
regularity conditions we direct the reader to Lele et al. (2010) [13].

Algorithm 1: Data Cloning Metropolis-Hastings (Lele et al. 2007 [12])

Generate θ∗ ∼ p(θ) and x∗(1), ...,x∗(k) ∼ π(x|θ∗);1

for l ∈ {1, ..., Nsim} do2

Compute q∗ =
∏k

j=1 f(y|x∗(j),θ∗);3

Generate θ# ∼ p(θ) and x#(1), ...,x#(k) ∼ π(x|θ#);4

Compute q# =
∏k

j=1 f(y|x#(j),θ#);5

Generate U ∼ Uniform(0, 1);6

if U < min
{
1, q#/q∗

}
then7

Set (θ,x(1), ...,x(k))l = (θ#,x#(1), ...,x#(k));8

else9

Set (θ,x(1), ...,x(k))l = (θ∗,x∗(1), ...,x∗(k));10

end11

end12

Discard (θ,x(j), ...,x(k))1, ..., (θ,x(j), ...,x(k))Nburn−1;13

As long as the number of clones k is large enough and the regularity conditions are
satisfied, the mean of the samples drawn from Algorithm 1 is a numerical approximation to
the maximum likelihood estimate. Also, their covariance matrix is the inverse of the k-times
scaled observed Fisher information matrix. As pointed out in Lele et al. (2007) [12], increasing
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the number of clones provides better numerical accuracy in the estimates. However, this does
increase the computational cost of the algorithm considerably, since for each new clone we
must simulate the latent process generating it. For models in which the number of latent
variables grows exponentially with the sample size, the data cloning algorithm will surely
demand an unreasonable amount of computational time. Nevertheless, it performs incredibly
well for longitudinal and time series data, since the number of latent variables is usually on
the order of the sample size.

2.2. Convergence Diagnostics

Another great feature of data cloning is the plethora of diagnostic measures available.
On one hand, since we are using probabilistic sampling algorithms, it is mandatory to diag-
nose convergence of the sampling algorithm itself. For this, measures such as the potential
scale reduction factor R̂ (Gelman and Rubin 1992 [8]) and the effective sample size Neff , for
example, assess convergence of the Markov chains and the within-chains autocorrelations, re-
spectively. For these and other measures and their implementation, see for instance Turkman
et al. (2019), Ch. 9 [24].

On the other hand, for likelihood-based inference, we need to ensure the posterior
distribution is well approximated by a Gaussian distribution and also that this distribution
degenerates at a point. Indeed, only then we can be confident that the influence of the
choice of prior distribution has vanished and the mean of the posterior samples is a good
approximation of the desired maximum likelihood estimate. Specific to the data cloning
algorithm, we need to check whether the posterior distribution

(i) has become nearly degenerate and
(ii) nearly Gaussian.

The number of clones required for these behaviors depends heavily on the likelihood function
and prior distribution chosen. Fortunately, the diagnostic measures recommended by Lele et

al. (2010) [13] are simple to compute and allow the selection of an adequate number of clones
for the problem at hand.

If the assumptions of the data cloning algorithm are satisfied, then the Fisher informa-
tion matrix is positive definite in a neighborhood around the maximum likelihood estimate.
Furthermore, recall from Equation (2.3) that, in the k-times cloned posterior πk, the estimate
of the inverse Fisher information matrix from the posterior samples is scaled by the inverse of
k. Therefore, as we increase the number of clones, the eigenvalues of the estimated covariance
matrix from the samples should decrease at approximately a rate k−1.

For a positive definite matrix, the Courant-Fischer Theorem ensures that the greatest
eigenvalue provides an upper bound on the elements of the main diagonal (Horn and Johnson
2012 [10]). Hence, since the greatest eigenvalue should decrease at the rate k−1, we have an
upper bound on the rate at which the elements of the main diagonal of the estimated inverse
Fisher information matrix must decrease. This enables us to measure the rate at which the
posterior distribution is degenerating to a point mass probability measure on the maximum
likelihood estimate, since the elements in the main diagonal of the said matrix represent an
estimate of the posterior variances for the model parameters.
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Let λmax,k denote the maximum eigenvalue of the k-times cloned posterior covariance
matrix. Then, for large k and under regularity conditions,

(2.6) λS
max,k =

λmax,k

λmax,1
≈ 1

k
.

Lele et al. (2010) [13] call λS
max,k the scaled maximum eigenvalue for k clones. The authors

suggest monitoring this quantity to assess its rate of convergence to zero as we increase the
number of clones. The closer this measure is to zero, the more mass the posterior distribution
assigns to small neighborhoods of the (possibly) maximum likelihood estimate.

For the second item, the normality of the posterior distribution, Lele et al. (2010) [13]
suggest computing two statistics from the posterior samples. As before, let p be the dimension
of the parameter vector θ and N denote the number of samples obtained from Algorithm 1
after discarding the ones from the burn-in period. Let Ei denote the (i− 0.5)/N quantile of
a χ2

p distribution, i ∈ {1, ..., N}. Define

(2.7) Oi = (θi − θ̄)>Σ̂−1(θi − θ̄)

for i ∈ {1, ..., N}, with Σ̂ the estimated posterior covariance matrix and let O(i) denote their
ordered values. Since O(i) are simply estimates of Ei, the statistics

(2.8) MSE =
1
N

N∑
i=1

(O(i) − E(i))
2

and

(2.9) r2 = 1− ρ̂2
(
O(1), ..., O(N);E1, ..., EN

)
,

in which ρ̂ denotes the estimated Pearson correlation coefficient, approach zero as the number
of clones k increases.

Solymos (2010) [23] provides an implementation of data cloning for R (R Core Team
2020 [19]). The package allows the use of common probabilistic sampling software amongst
Bayesian practitioners, such as JAGS (Plummer 2017 [18]) and Stan (Carpenter et al. (2017)
[5]) to perform sampling from the cloned posterior distribution and includes all diagnostic
measures described above. The paper by Solymos (2010) [23] and also the original papers by
Lele et al. (2007) [12] and Lele et al. (2010) [13] provide plenty of examples to get acquainted
with data cloning.

3. IDENTIFIABILITY

Let Y denote a sample space, A a σ-algebra of subsets of Y and M(Y,A) denote the set
of probability measures on (Y,A). In statistical theory, the inferential procedure is enabled by
equipping the measurable space (Y,A) with a family of probability measures F ⊂M(Y,A).
For practical purposes, this family is defined through a known map Φ : Θ →M(Y,A), with
Θ being the parameter space in the parametric scenario. Specifically, a statistical model is a
triple E = (Y,A,F = {Pθ : θ ∈ Θ}), in which F is a family of probability measures on (Y,A)
indexed by the parameter space Θ.
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Notice the definition of a statistical model imposes no restrictions on Θ, allowing for
parametric, semiparametric and nonparametric structures (San Mart́ın 2018 [22]). We assume
in this paper that:

(i) Θ ⊂ Rp is an Euclidean space;

(ii) the sample space Y is equipped with a topology and A = B(Y) is the Borel
σ-algebra obtained from the topology on Y;

(iii) the probability measures in F are absolutely continuous with respect to some
measure on (Y,A).

The latter constraint allows for much simplification in the discussion since now we can rep-
resent F = {fθ : θ ∈ Θ} as a family of probability density functions. We are now ready to
define identifiability of a parameter in the sampling theoretical framework.

Definition 3.1. Let E be a statistical model. A parameter θ ∈ Θ is said to be iden-
tifiable if for any θ∗ ∈ Θ, fθ(y) = fθ∗(y) occurs, for all y ∈ Y, if and only if θ∗ = θ.

The concept above is referred to as global identifiability (Koopmans and Reiersol 1950
[11]). This is done to distinguish it from local identifiability, which we define below. However,
in this paper, we refer to the former property as simply identifiability.

Definition 3.2. Let E be a statistical model. A parameter θ ∈ Θ is said to be locally
identifiable if there exists ε > 0 and a neighborhood Nε(θ) ⊂ Θ of θ such that for any
θ∗ ∈ Nε(θ), fθ(y) = fθ∗(y) occurs, for all y ∈ Y, if and only if θ∗ = θ.

We can see thus that local identifiability is weaker than (global) identifiability. In fact,
a globally identifiable parameter is always locally identifiable. The converse, however, need
not be true.

So far the definitions allow us to talk only about a single point in the parameter space.
For the inferential procedure to be satisfactory, we would like to know whether all parameter
values θ ∈ Θ are identifiable. Fortunately, the definitions above are easily extended to the
entire parameter space Θ.

Definition 3.3. A statistical model E is said to be identifiable (locally identifiable)
if for all θ ∈ Θ, θ is identifiable (locally identifiable).

Parameters which yield the same likelihood function are said to be observationally
equivalent, and it is possible to construct an equivalence relation using the concept of iden-
tifiability; see for example Picci (1977) [17] or Florens and Simoni (2011) [6] and references
therein. This relation ∼ is such that, for any θ,θ∗ ∈ Θ, θ ∼ θ∗ if, and only if, fθ(y) = fθ∗(y)
for all y ∈ Y. Through the equivalence relation defined above we obtain the quotient space
Θ̃ = Θ/∼. The elements of the quotient spaces are the equivalence classes induced by ∼ on
Θ. Thus, there always exists a canonical statistical model EΘ̃ = (Y,A,F = {f[θ] : [θ] ∈ Θ̃})
which is set identifiable, i.e. the family F is indexed by the equivalence classes.

An easy-to-prove property of equivalence classes which makes them very convenient for
studying identifiability is that they are disjoint. Thus, it is sufficient for statistical identifia-
bility to define a function which maps each equivalence class to a single element in that class,
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since then the equivalence classes will be reduced to singletons. Florens and Simoni (2011) [6]
call such functions sections. Let [θ] ∈ Θ̃ denote the class of equivalence of θ ∈ Θ, i.e.

[θ] = {θ∗ ∈ Θ : θ∗ ∼ θ}.

Definition 3.4. A section is a function σ : Θ̃→Θ such that for all [θ]∈ Θ̃, σ([θ])∈ [θ].

As previously mentioned, the equivalence classes being disjoint leads us to an iden-
tifiable statistical model Eσ = (Y,A,F = {fθ : θ ∈ σ(Θ̃)}), in which σ is any one section.
Moreover, the choice of section is really irrelevant, as Paulino and Pereira (1994) [15] point
out, since for any two sections σ and σ∗, there exists a bijective function h : σ(Θ̃) → σ∗(Θ̃).

3.1. Implications to Data Cloning

Another important consequence of identifiability which we exploit in this paper is that,
if E happens to be unidentifiable, then the maximum likelihood estimate of θ for any given
sample (if it exists) is not unique. In fact, given any point estimate θ̂(y) ∈ Θ, there is θ̂∗(y) ∈
[θ̂] such that L(θ̂; y) = L(θ̂∗; y). It becomes clear now why consistency of the maximum
likelihood procedure is no longer guaranteed. Under model unidentifiability thus there is a
class of equivalence of undistinguishable candidates to the maximum likelihood estimate

(3.1) [θ̂] = arg sup
[θ]∈Θ̃

L([θ]; y) =
{

θ ∈ Θ : θ = arg sup
θ∈Θ

L(θ; y)
}

.

Lele et al. (2010) [13] discuss the behavior of the k-times cloned posterior distribution
under model unidentifiability. In this scenario, let [θ̂] be the equivalence class of the maximum
likelihood estimate. The authors show that if [θ̂] is not a singleton, then

(3.2) πk(θ|y) L−→ π(θ)∫
[θ̂] π(θ)dθ

, ∀θ ∈ [θ̂] .

Therefore, it seems we can, in theory, use data cloning to investigate the identifiability of
complex statistical models. If the posterior samples generated using data cloning, for in-
creasing values of k, do not seem normally distributed and/or seem to degenerate at a set of
values, then the model may be unidentifiable.

In reality, however, we must not hurry to conclusions. Identifiability of statistical
models can only be assessed using analytical techniques and it is a mathematical question
in general. It precedes statistical inference (Koopmans and Reiersol 1950 [11]). What we
can study with data cloning diagnostics is model estimability under a particular data set.
However, detecting estimability issues over many distinct data sets would lead us to question
the very structure of the statistical model we are employing. Thus, a general guideline for a
simulation study for assessing identifiability using data cloning is:

(i) for various sample sizes, simulate several data sets from a postulated statistical
model;

(ii) for each data set, fit the model using data cloning with distinct prior distributions
and with increasing values of the number of clones k;

(iii) analyze the posterior samples to study the behavior of the algorithm.
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Data cloning diagnostics should always reveal convergence issues when the algorithm is used to
estimate the parameters of an unidentifiable model. However, under possibly very informative
priors and weakly informative data, it may happen that even for large values of k the sampling
algorithm will output samples from πk which do not indicate problems. This is resonant with
the arguments of Lindley (1971) [14] on the irrelevance of the question of identifiability within
the subjective Bayesian paradigm.

Furthermore, even if the statistical model is identifiable, there are plenty of other ways
in which the data cloning algorithm may fail to converge. It is no coincidence that advances
in Bayesian computational methods have been accompanied by developments of techniques
for diagnosing convergence issues. Since data cloning uses MCMC algorithms for likelihood-
based inference, the same convergence issues of sampling algorithms that Bayesian analyses
face must also be considered.

3.2. Unidentifiability of the Gaussian DLM

The Gaussian dynamic linear model is particularly convenient for our purposes since it
illustrates many aspects of identifiability in a simple manner.

Definition 3.5. The dynamic model with state and observation equations

(3.3)


Yt = FXt + νt , νt

iid∼ N (0, V )

Xt = GXt−1 + ωt , ωt
iid∼ N (0,W )

X0 ∼ N (m0, C0)

is called a univariate Gaussian dynamic linear model with parameter vector θ =
(F,G, V,W ) ∈ R2 × R2

+ and initial information set D0 = {m0, C0}.

The statistical model of Definition 3.5 is not identifiable as it is. This is a well known
result in the literature of dynamic models and some identifiability constraints for the mul-
tivariate scenario can be found in Harvey (1989) [9]. The usual path to a proof of the
unidentifiability of the dynamic linear model employs a change of variables in its defining
observation and process equations. Under Gaussian errors it is easy to see that for any real
number s 6= 0

(3.4)

Yt = FXt + νt

Xt = GXt−1 + ωt

⇐⇒

Yt = (Fs−1)(sXt) + νt

sXt = G(sXt−1) + sωt

⇐⇒

Yt = F ∗X∗
t + νt

X∗
t = GX∗

t−1 + ω∗t

,

in which F ∗ = Fs−1, ω∗t = sωt and X∗
t = sXt, for all t ∈ T . Notice now the process equation

random error is distributed as ω∗t
iid∼ N (0,W ∗), with W ∗ = s2W .

Therefore, this change of variables implies that, if θ = (F,G, V,W ) is the original
parameter vector and θ∗ = (F ∗, G, V,W ∗) is the parameter vector that results from the
transformation proposed, then it follows that for all (y1, ..., yT ) ∈ Y we have fθ(y1, ..., yT ) =
fθ∗(y1, ..., yT ) for any s 6= 0.
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The structural equations define the density functions uniquely and the arguments above
are sufficient to prove this model is unidentifiable. The general suggestions for enforcing model
identifiability in this context are to

(i) fix the parameter F to a known non-zero constant or

(ii) fix the process variance W to a known positive constant and constrain F to be
either strictly positive or strictly negative (Harvey 1989 [9]).

Thus, in the identifiable statistical model, one must choose between estimating F or estimat-
ing W .

There are, however, an infinite number of other restrictions, or sections, on the param-
eter space which lead to the same statistical model up to a bijective function. Firstly, note
that for the Gaussian dynamic linear model, the equivalence classes are readily built from
the proof in (3.4). As a matter of fact, we know that θ ∼ θ∗ if there exists s ∈ R such that

θ = (F,G, V,W ) ∼ (F/s, G, V, s2W ) = (F ∗, G, V,W ∗) = θ∗ .

This, in turn, implies θ ∼ θ∗ whenever F 2W = (F ∗)2W ∗. If we let (a, b, c) ∈ R× R2
+, then

we can write the quotient space as

(3.5) Θ̃ =
⋃

(a,b,c)∈R×R2
+

{
{(F,G, V,W ) ∈ Θ : G = a, V = b and F 2W = c}

}
.

We recall once again that the equivalence classes are disjoint. Therefore, once we
build them, it is sufficient for model identifiability that we find a section σ : Θ̃ → Θ such
that the equivalence classes of σ(Θ̃) ⊂ Θ are singletons (Paulino and Pereira 1994 [15]). For
clarity of exposition, let [(a, b, c)] = {(F,G, V,W ) ∈ Θ : G = a, V = b, F 2W = c} ∈ Θ̃ denote
the equivalence classes on Θ for all (a, b, c) ∈ R× R2

+. The general identifiability constraints
can now be stated as

Proposition 3.1. Let E be the Gaussian dynamic linear model as in Definition 3.5.

A sufficient condition for the function σ : Θ̃ → Θ to be a section on Θ̃ is that for all (a, b, c) ∈
R×R2

+, the set function σ : [(a, b, c)] 7→ (u1(a, b, c), G, V, u2(a, b, c)), with u2
1u2 : (a, b, c) 7→ c.

Proof: We need to show that σ is injective and σ([(a, b, c)] ∈ [(a, b, c)] for all such
equivalence classes. The latter follows immediatly from the fact that if θ = (F,G, V,W ) is
such that G = a, V = b and F 2W = c, then θ ∈ [(a, b, c)]. Moreover, since equivalence classes
are disjoint this implies σ is injective. Therefore, taking F = u1(a, b, c) and W = u2(a, b, c),
the proof is complete.

We can now write the commonly suggested restrictions for the Gaussian DLM as sec-
tions on the parameter space. Fixing F = s, for some real constant s 6= 0, is equivalent to
conducting inference over the section σF : [(a, b, c)] 7→ (s,G, V, c/s2). Also, fixing W = s, for
some s ∈ R+ is equivalent to adopting the section σW : [(a, b, c)] 7→ (

√
c/s, G, V, s).

Nevertheless, there is nothing wrong with using an unidentifiable statistical model as
long as inference (or prediction) is conducted on identifiable quantities. An example, sug-
gested to us by one of the reviewers, is that of a linear model with rank defficient design matrix:
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even though some, or all, of the regression parameters are unidentifiable, the mean response
can always be estimated uniquely from the data. We emphasize, however, that we would
refer to the previous problem as an unidentifiability problem only when the design matrix is
always rank defficient no matter what data we observe, such as in high-dimensional scenar-
ios. In case some exploratory variables collected are perfectly (or highly) correlated only for
a particular data set, we would refer to it as a problem of model estimability.

4. SIMULATION STUDY

In this section we present and discuss the results of several simulation studies in which
the data cloning algorithm is employed to assess identifiability of the Gaussian dynamic
linear model. Ideally, data cloning should not present any convergence issues when used
for maximum likelihood estimation in an identifiable model. On the other hand, we would
expect to see clear failures in all of the convergence measures available whenever data cloning
is employed in an unidentifiable model. Before proceeding to the results there are some
important points that need to be discussed so that the motivation behind the simulation
study is clear.

Firstly, our main objective is to show how to use data cloning as a tool to assess
identifiability statistical models. Our choice to illustrate the procedure through the dynamic
linear model is justified by the fact that it is a latent variable model for which the identifying
constraints are known. Hence, we can perfectly discern convergence issues due to model
unidentifiability from those due to poor performance of the sampling algorithms.

Secondly, Lele et al. (2010) [13] advise using distinct prior distributions when perform-
ing data cloning. A simulation study for identifiability analysis should also take this into
account as we need to be sure that there exists a number of clones for which the influence
of any prior distribution vanishes. The more prior distributions we test the better is the
study. As proposed by Lele et al. (2010) [13], we adopt three prior setups: uninformative,
informative and disinformative. The first is simply as vague as possible, the second puts most
of its probability mass around the true parameter value and the third is also an informative
prior distribution, but most of its probability mass is allocated somewhat far from the true
parameter values.

Lastly, we recommend employing both varying sample sizes and parameters. The former
allows a view of the convergence of the maximum likelihood estimator, while the latter allows
us to explore regions of the parameter space that may be of practical interest.

Data cloning is computationally demanding, although for a single data set setting the
number of clones to a high value may not be a problem. For our purposes, we will be fitting
the same model under multiple distinct settings and it is just not feasible to use a high
number of clones. It does not matter, however, because we are not interested in finding the
maximum likelihood estimate, but in gathering evidence of whether or not it can be found
uniquely. Multiple starting values plus strong diagnostic measures of convergence allow us to
gather solid evidence of model identifiability and issues thereof.
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4.1. Simulation Parameters

We have chosen to simulate time series of sizes 25, 50, and 100. The simulated states
are in Figure 1. To test distinct parameter vectors we vary the amount of noise added to
the sample by the measurement process. This is done by considering the ratio between the
variance of the process and measurement errors to be W/V = 0.5, 1, 2, and 10.
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Figure 1: Simulated states for each adopted sample size.
The true parameter values used are displayed in Table 1.

We recall the parameter vector for the dynamic linear model under normality assump-
tions is θ = (F,G, V,W ) ∈ R2 × R2

+ = Θ. The four true parameter setups we use for simu-
lating the time series are displayed in Table 1. Some illustrations of the effect of increasing
the measurement error are available in Figure 2. We can see in the plots that increasing the
measurement noise makes it harder to visually detect any patterns from the hidden states.
We would expect that noisy and/or small datasets would be very challenging for data cloning
since the likelihood function might not be well-behaved around the (possibly non-unique)
maximum likelihood estimate. Nevertheless, similar situations would be challenging for most
alternative estimation methods as well.

Table 1: True parameter values for simulation of the Gaussian dynamic linear model.

Setup F G V W

W/V = 1/2 1 1 2 1
W/V = 1 1 1 1 1
W/V = 2 1 1 0.5 1
W/V = 10 1 1 0.1 1
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Figure 2: Plot of 10 simulated time series of length 100 arising from the hidden states in Figure 1.
Each panel represents a signal-to-noise ratio W/V as presented in Table 1.

For the standard deviations
√

W and
√

V , we adopted half-Cauchy prior distributions
with scale equal to 10 as uninformative priors. This prior distribution is recommended by
Gelman (2006) [7] for hierarchical models as an ideal alternative to the widely used gamma
prior with small hyperparameters. Since our true parameter values are quite small compared
to the tails of these prior distributions, we expect their added information to be insignificant
compared to the data.

The F parameter receives a N (0, 104) in the uninformative setup. If we were to be
faithful to the identifiability constraints required for this model, we would have to employ
prior distributions which assign zero mass to negative values for F . However, the model is
unidentifiable whether or not we restrict this parameter to the positive real line. Nonetheless,
when performing some pre-tests for the simulation study, sampling F from priors on R+

resulted in running times up to three times longer than when using priors on R.

The parameter G regulates the autoregressive behavior of the hidden states. The data
we simulate assumes that these latent variables behave as a Gaussian random walk. We know
that for values of G outside the open interval (−1, 1) the latent process is non-stationary
(Harvey 1989 [9]). Lele et al. (2007) [12] use a uniform prior distribution on the interval
(−1, 1) for this parameter, enforcing stationarity of the latent stochastic process. In our
simulations, the data is clearly non-stationary. Therefore, we consider a N (0, 104) as the
uninformative prior setup for G. This prior allows the process to present highly explosive
growth behaviors if the data behaves as such. It is highly unlikely that this prior distribution
would be used in a purely Bayesian framework, but data cloning allows us to use such largely
uninformative prior distributions with ease.

In Table 2 we present the uninformative prior setup just discussed together with the
informative and disinformative ones. The choice of the latter two, as previously discussed,
simply aims to assign more probability mass closer or further (respectively) from the true
parameter values. Notice that since the parameterization of the Gaussian distribution in
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JAGS (Plummer 2007 [18]) is given by the mean and precision (i.e. the inverse of the variance),
the prior distributions in Table 2 are provided in terms of the precision parameters 1/W and
1/V instead of W and V , respectively.

Table 2: Prior distributions chosen to represent the uninformative, informative
and disinformative prior setups. The notation HC−2 indicates the dis-
tribution of the inverse of the square of a Half-Cauchy random variable,
while λ denotes the signal-to-noise ratio W/V .

Prior Setup F G 1/V 1/W

Uninformative N (0, 104) N (0, 104) HC−2(0, 10) HC−2(0, 10)
Informative N (1, 1) N (1, 1) Γ(4−1, (4λ)−1) Γ(4−1, 4−1)

Disinformative N (10, 5) N (−1, 1) Γ(1, 5−1) Γ(1, 5−1)

4.2. Data Cloning Diagnostics

We begin our study of identifiability through the scaled maximum eigenvalue, λS
max,k,

of the posterior covariance matrix, which should decay at about the theoretical rate of 1/k, in
which k denotes the number of clones used. In Figure 3 we display this measure for the case
of the unidentifiable dynamic linear model. Since some of the resulting eigenvalues presented
very high values, the graph with all of the observed measures is uninteresting due to the
scaling of the ordinate axis.
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Figure 3: Box-plots of the scaled maximum eigenvalues of the posterior
covariance matrix for the unidentifiable dynamic linear model.
The dashed line represents the theoretical rate of convergence.
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We have chosen thus to display in Figure 3 only the 50% smallest scaled eigenvalues
obtained from the simulations using the informative and disinformative setup. The posteriors
arising from uninformative prior distributions presented extremely high scaled eigenvalues
even at the maximum number of clones for each sample size, which is a very strong evidence of
identifiability issues. Nevertheless, the quantities in Figure 3 should still follow the theoretical
convergence rate as long as the model is identifiable (which we know it is not).

It is easy to see in Figure 3 that λS
max,k does not decay at the theoretical rate for the

disinformative prior distributions. On the other hand, the informative prior setup seems
to yield reasonable values for this diagnostic measure as the number of clones increases.
However, we can see some odd behavior, particularly in the lower sample sizes with a low
signal-to-noise ratio. Note that many λS

max,k are already much below the theoretical rate of
convergence in the first steps of the data cloning. This may be a sign that the variance of
the unidentifiable parameters is being held low by the variance of the prior distribution.

Summing up, the scaled maximum eigenvalues observed from fitting an unidentifiable
model resulted in undesired convergence properties and, in the case of the uninformative prior
distributions, unreasonably high values for the eigenvalues of the posterior covariance matrix.
This is in accordance with what we would expect from an unidentifiable model and indicates
that data cloning is pointing towards identifiability issues when they are indeed present.
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Figure 4: Box-plots of the scaled maximum eigenvalues of the posterior covariance matrix
for the identifiable dynamic linear model in which we have set F to its true value.
The dashed line represents the theoretical rate of convergence.

In Figure 4 we present the λS
max,k drawn from an identifiable model in which we have

fixed the parameter F to its true value. As the number of clones increases the theoretical rate
of convergence is followed tightly by the quantities resulting from all three prior distributions.
This is a clear indicator that the posterior distributions are becoming increasingly degenerated
at the expected rate. Another important consideration is that all three prior setups differ
only within small clone numbers, which indicates the influence of the prior distribution is
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indeed vanishing. Once again, therefore, the main diagnostic for data cloning has provided
satisfactory results for the dynamic linear model. It exhibited no convergence issues when
there are indeed no identifiability problems. This indicates constraining the parameter space
by fixing the parameter F has led to a statistical model for which all parameters can be
reliably estimated.

Table 3 presents the quartiles for λmax,k taken at the best-case scenario: the sample
size is 100 and the number of clones k is 64. We can see the quartiles in the identifiable
model are very close to each other, while the ones for the unidentifiable model are not.
This is yet another strong evidence that there is still a considerable influence of the prior
distributions on the joint posterior distribution of the parameters. There is an issue, however,
because the quartiles for the maximum eigenvalues are quite small under the informative and
disinformative setups even under unidentifiability. This indicates the posterior variance is
decreasing as we increase the number of clones, which obviously should not happen since the
model is unidentifiable. Nonetheless, for the uninformative setup, the maximum eigenvalues
are of an order 104 higher than those from the informative setup.

Table 3: Quartiles for the maximum eigenvalues of the posterior covariance matrix
of the parameters of the dynamic linear model. The values are for both the
unidentifiable and identifiable models at the sample size of 100 and with
number of clones equal to 64.

Identifiable Unidentifiable
W/V Prior

P25 P50 P75 P25 P50 P75

Uninformative 0.0035 0.0045 0.0055 32.1684 65.6898 140.4389
Informative 0.0035 0.0044 0.0054 0.0048 0.0079 0.01150.5
Disinformative 0.0034 0.0044 0.0054 0.0795 0.1493 0.3428

Uninformative 0.0019 0.0024 0.0032 40.4107 76.1869 132.6472
Informative 0.0019 0.0025 0.0032 0.0024 0.0037 0.00661
Disinformative 0.0019 0.0024 0.0032 0.1070 0.1670 0.2772

Uninformative 0.0015 0.0019 0.0024 38.6173 61.5385 113.3972
Informative 0.0015 0.0019 0.0024 0.0017 0.0029 0.00482
Disinformative 0.0015 0.0018 0.0023 0.0496 0.1045 0.2125

Uninformative 0.0012 0.0014 0.0016 29.9088 49.6416 72.4899
Informative 0.0012 0.0014 0.0016 0.0014 0.0019 0.002910
Disinformative 0.0012 0.0013 0.0016 0.0221 0.0454 0.0802

If we compare the quartiles over the three prior setups, it becomes clear there is still
strong influence of the prior distribution even at 100 clones of the original dataset when
the model is unidentifiable. However, under a single prior setup the conclusions related to
the variance of the posterior distribution would differ considerably. In the informative prior
setting, in particular, the quartiles of the maximum eigenvalues indicate no identifiability
problems at all. The quartiles in this case are all small and reasonably close to each other,
indicating the variance of the posterior distribution is small since the maximum eigenvalue
provides an upper bound on the variances of the parameters. Therefore, for our purposes
it would seem that the observed decay rate for the scaled maximum eigenvalue is the most
appropriate of the two measures of degeneracy. By measuring the decay of λS

max,k, we were
able to detect possible identifiability problems across all prior settings.
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We can also check whether the posterior is reasonably close to a Gaussian distribution.
This is done, as suggested by Lele et al. (2010) [13], through the measures presented in (2.8)
and (2.9). In Table 4 we present the average of these diagnostics for each of the scenarios
explored in the simulations. Overall, these diagnostic measures are greater, on average, in the
unidentifiable than in the identifiable model. Furthermore, their averages seem to decrease
in magnitude as the sample size increases, which is also to be expected.

Table 4: Diagnostic measures for normality of the samples from the posterior distribution
of the parameters of the dynamic linear model.

W/V = 0.5 W/V = 1 W/V = 2 W/V = 10
Size Prior Setup Constraint

MSE r̃2 MSE r̃2 MSE r̃2 MSE r̃2

F = 1 3.173 0.088 1.718 0.068 1.590 0.065 1.891 0.078
Uninformative

None 15.327 0.178 10.277 0.155 8.449 0.137 4.551 0.105

F = 1 2.335 0.078 1.416 0.062 1.030 0.052 1.909 0.074
Informative

None 13.662 0.175 10.891 0.159 7.148 0.130 3.779 0.091

F = 1 2.430 0.083 1.398 0.062 0.989 0.052 1.194 0.054

25

Disinformative
None 11.578 0.164 8.214 0.148 7.640 0.135 5.015 0.102

F = 1 3.699 0.092 1.600 0.057 0.624 0.039 0.393 0.030
Uninformative

None 7.237 0.130 4.569 0.110 3.036 0.091 1.933 0.068

F = 1 1.697 0.068 0.965 0.050 0.557 0.037 0.468 0.033
Informative

None 5.467 0.112 3.947 0.101 2.704 0.086 1.301 0.055

F = 1 2.556 0.083 1.229 0.055 0.678 0.040 0.409 0.031

50

Disinformative
None 4.660 0.105 3.876 0.102 2.596 0.083 1.433 0.060

F = 1 0.591 0.037 0.364 0.028 0.253 0.021 0.224 0.020
Uninformative

None 1.541 0.057 1.046 0.050 0.832 0.041 1.051 0.026

F = 1 0.529 0.035 0.344 0.026 0.218 0.020 0.241 0.022
Informative

None 1.425 0.059 0.915 0.047 0.578 0.034 0.345 0.024

F = 1 0.623 0.038 0.394 0.029 0.255 0.022 0.177 0.017

100

Disinformative
None 1.329 0.057 0.905 0.046 0.511 0.032 0.450 0.029

However, we would be hard-pressed to say these quantities have provided evidence
of model unidentifiability (or identifiability). The values obtained under both scenarios,
especially for the r̃2, are satisfactory and also not very far apart from each other. For the
MSE, in particular, it is to be expected that a model with one extra parameter, which is
the case for the unidentifiable model, would require larger sample sizes or number of clones
to achieve the same precision as a model with a lower number of parameters.

Furthermore, the quadratic form in Equation (2.7) may follow a chi-squared distribution
even if the underlying probability distribution is not Gaussian. Azzalini and Valle (1996) [1],
for example, show that this result holds for the quadratic form of p-variate Skew-Gaussian
random variables. Therefore, these measures alone do not suffice to assess identifiability issues
when using data cloning because it is possible these present reasonable values even when the
posterior distribution is not Gaussian.

Therefore, although both the MSE and r̃2 certainly serve their purpose when the
interest is in obtaining the maximum likelihood estimates, for identifiability purposes they
have not presented themselves as useful indicators of identifiability issues for this simple
model and we do not advocate them to be heavily relied upon.
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4.3. MCMC Diagnostics

We now move to the assessment of the quality of the posterior samples for maximum
likelihood estimation. Firstly, we would like to know whether the Markov chains resulting
from each of the three distinct prior setups, at the largest number of clones adopted, are
targeting the same posterior distribution. For this task, we simply pretend we have run three
independent chains under the same initial conditions, when in fact we used three distinct prior
distributions. Within the Bayesian paradigm, individuals carrying distinct prior information
about the same quantities need not arrive at the same inferential conclusions for finite samples,
although asymptotic theory ensures this happens under some regularity conditions (Walker
1969 [26]). The differences in the posterior distributions for such individuals are even more
pronounced whenever complex models and small and/or weakly informative data is at hand.

We emphasize yet again, however, that data cloning is a maximum likelihood estimation
algorithm. Being so, it can not be affected by prior opinions. By collecting the chains from
the three distinct prior setups, diagnostics such as the R̂ can be used to check if the samples
are being drawn from the same posterior distribution.

We provide in Table 5 the proportion of the simulations in which the R̂ comparing
three chains, one from each prior setup, is below the usual thresholds of 1.05 and 1.10. It
is immediately clear that none of the simulations for the unidentifiable model have yielded
joint posterior distributions for the parameter vector which are acceptably close enough from
each other when starting from different prior distributions. For the identifiable model, the
proportion starts low for the lower sample size of 25 and a low signal-to-noise ratio of 0.5 and
reaches 1 for the sample size of 100. This is as to be expected, if not for the fact that many
simulations do not yield close enough joint posterior distributions for some of the scenarios
explored in this identifiable statistical model.

Table 5: Proportion of the simulations for which there is evidence that, starting from distinct
prior distributions, the Markov chains are targeting the same posterior distribution.
The values for the Gelman-Rubin diagnostic are computed at the highest number of
clones for each sample size of the dynamic linear model.

Identifiable Unidentifiable
Size W/V

R̂ < 1.05 R̂ < 1.10 R̂ < 1.05 R̂ < 1.10

0.5 0.74 0.76 0 0
1.0 0.90 0.91 0 0
2.0 0.84 0.86 0 0

25

10.0 0.44 0.51 0 0

0.5 0.51 0.55 0 0
1.0 0.86 0.90 0 0
2.0 0.98 0.99 0 0

50

10.0 0.97 0.98 0 0

0.5 1.00 1.00 0 0
1.0 1.00 1.00 0 0
2.0 1.00 1.00 0 0

100

10.0 0.94 0.98 0 0
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It is possible that for some of the length 25 time series, the likelihood is very flat
in a region around the maximum likelihood estimate. In this scenario, we would need a
much larger number of clones to see that the Markov chains target the same joint posterior
distribution. Nevertheless, the results from the Gelman-Rubin diagnostic point towards the
clear failure of the data cloning when the model is unidentifiable, and present extremely
promising results for the identifiable one. Were we unaware of the model’s identifiability
issues, these results, albeit not proof of unidentifiability, would surely lead us to reconsider
the model structure.

There is one last point we need to verify when checking for model identifiability: the
posterior means. The Gelman-Rubin diagnostic does not necessarily indicate that the poste-
rior means, which are maximum likelihood estimates for a sufficiently large number of clones,
are different. It can happen that the posterior means are very close to each other, while the
posterior variance is not. Recall the Gelman-Rubin diagnostic indicates whether independent
Markov chains happen to target the same posterior distribution. In other words, we could
start from two or more distinct prior distributions and arrive at posterior distributions with
the same mean but different variances. These are, thus, different posterior distributions and
the Gelman-Rubin diagnostic will point towards convergence issues.

From Table 5 and Figure 3 we already know there is evidence of model unidentifiability.
However, if the posterior means from distinct prior distributions were the same, we would
have some evidence that we are able to reliably estimate the model parameters. Moreover, it
might be the case that the unidentifiability issues found so far arise from poor tuning of the
sampling algorithm.

In Table 6 we provide the average of the posterior means for the unidentifiable and iden-
tifiable Gaussian dynamic linear model with true signal-to-noise ratio W/V = 1 and sample
size of 100. We also display the average effective sample size as a measure of the quality of
the estimation of the posterior mean. Since we have drawn 1000 samples from each posterior
distribution, we would want the effective sample size to be as close as possible to the total
number of samples drawn. However, due to the very nature of MCMC algorithms it is ex-
pected that Neff will be lower than the number of samples even if the model is identifiable.
When using this measure, we are looking for parameters for which the Neff is noticeably
lower than both the total number of samples and the Neff for other parameters.

If we focus on the parameters G and V , we can see that the averages of their posterior
means are not considerably far apart from each other. However, we see that for the trouble-
some parameters W and F the posterior means under unidentifiability are heavily influenced
by the choice of the prior distribution. Furthermore, the average effective sample size ranges
from 1% to 5% of the total number of samples, indicating the chains for both parameters
are highly autocorrelated. These results point towards extremely poor mixing of the Markov
chains and, together with the diagnostics previously discussed, indicate clear failure of the
model fitting procedure for the unidentifiable dynamic linear model.

However, the results for the identifiable functional F 2W , although not as good as that
for the identifiable model, are still close to each other and also to the true value. This
illustrates our previous comment that there is no harm in using unidentifiable statistical
models, as long as the inferences are based on identifiable quantities. Hence, if we were
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interested in maximum likelihood estimation of any identifiable functional of θ, data cloning
would yield good numerical approximations even if we had chosen to use the unidentifiable
dynamic linear model.

Table 6: Averages of posterior means and effective sample sizes for the unidentifiable and
identifiable Gaussian DLM with true signal-to-noise ratio W/V = 1 and sample size
of 100. The true value for all parameters is 1 (see Table 1).

Identifiable Unidentifiable
Parameter Prior Setup

Mean Neff Mean Neff

Uninformative — — 0.09 3.81
Informative — — 1.89 3.69F
Disinformative — — 8.34 2.69

Uninformative 1.01 507.96 1.01 500.96
Informative 1.01 504.54 1.01 503.79G
Disinformative 1.01 494.54 1.01 507.68

Uninformative 1.23 369.44 1.23 370.97
Informative 1.23 284.53 1.23 282.88V
Disinformative 1.23 291.20 1.23 274.98

Uninformative 0.76 302.04 110.5 16.81
Informative 0.76 208.40 0.22 16.87W
Disinformative 0.76 213.76 0.01 8.37

Uninformative 0.76 302.04 0.76 311.37
Informative 0.76 208.40 0.77 210.41F 2W
Disinformative 0.76 213.76 0.80 218.34

Furthermore, as expected, the behavior within the identifiable model, in which we set
F = 1, is exactly what we would want to see if we were using data cloning for maximum
likelihood estimation. The posterior means, which we would like to call maximum likelihood
estimates, seem to be independent of the choice of the prior distribution at the largest number
of clones. The effective sample sizes are all satisfactory and indicate that the chains may be
adequately exploring the posterior distribution. Given that the R̂ diagnostics in Table 5
revealed the posterior distribution seems to be independent of the choice of prior distribution
in the identifiable model at the highest number of clones adopted, we could gather the samples
from all three chains to increase the effective sample size even further. Doing so would reduce
the Monte Carlo variance of the numerical approximation to the maximum likelihood estimate
and, consequently, improve the estimation of the Fisher information matrix.

5. FINAL COMMENTS

In this paper, we have explored the capabilities of data cloning as a tool for identifiability
analysis of statistical models through a simulation study with the Gaussian dynamic linear
model. Through an example, we have shown how such a simulation study can be planned
and performed to gather evidence of possible model unidentifiability and how to interpret the
most relevant diagnostic measures for the data cloning algorithm.
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We found the bounds on the posterior covariance matrix of the parameters, its max-
imum eigenvalue λmax,k, to be a good indicator of model identifiability. Its scaled version,
λS

max,k, also yielded strong results since it exhibited convergence problems when they existed,
while also indicating proper convergence of the algorithm in the identifiable model. The mea-
sures of normality did not present results as interesting as did λS

max,k. Both r̃2 and MSE,
suggested by Lele et al. (2010) [13], did not show significantly distinct values under either the
identifiable or unidentifiable model. If we also consider the fact that these diagnostics can be
satisfactory for quadratic forms of distributions other than the Gaussian, then our conclusion
is that they are unreliable for identifiability analysis. However, for the purpose of maximum
likelihood estimation using data cloning they must not be overlooked.

By exploiting distinct prior distributions, we were able to find clear parameter iden-
tifiability issues through the Gelman-Rubin diagnostic R̂. Together with the data cloning
diagnostics and the posterior means of the parameters, the evidence gathered through the
diagnostics led us to the correct conclusion that the unconstrained Gaussian dynamic linear
model is unidentifiable. Nonetheless, it also allowed us to conclude that fixing the parameter
F to a known constant was enough to ensure statistical identifiability.

Overall, we find the results from the simulation study are very promising and indicate
data cloning can (and should) be used as a tool for identifiability analysis, although some care
must be taken as to how to do it properly. We emphasize here, once more, the importance of
employing distinct prior distributions, parameter values and sample sizes in the simulation
study to ensure that the evidence of identifiability, or lack of it, are consistent across an as
wide as possible range of real possibilities.

There are also models for which MCMC algorithms either perform poorly or are simply
too computationally demanding, for example those involving stochastic partial differential
equations. As mentioned by one of the reviewers, the integrated nested Laplace approxi-
mation (Rue et al. 2009 [20]), or INLA for short, employs deterministic approximations to
posterior distributions and has been paired up with data cloning for maximum likelihood
estimation (see Baghishani et al. 2012 [2]). Although not as widely applicable as MCMC
algorithms, INLA has been shown to be both extremely fast and precise when compared to
the former. Furthermore, we are unaware of any studies on the usage of INLA and data
cloning specifically for identifiability analysis and this may be an interesting venture within
this topic.

Finally, we must also emphasize that identifiability cannot in general be proved based
on simulation studies. After all, identifiability is a structural property of statistical models
and it is impossible to exhaust the possible combinations of parameters and infinite sample
sizes in a simulation study. Therefore, we are restricted to finite samples and a few points
of interest in the parameter space. This implies that, at best, we can gather evidence of
local identifiability in a region of practical interest of the postulated parameter space. The
enterprise is nevertheless worth the effort since any evidence even of local unidentifiability in
a statistical model can indicate undesired behavior of inferential procedures.
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