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1. INTRODUCTION

In the last two decades, there has been an increasing interest in building statistical
models for estimating the probability of rare and extreme events. These models involving
extreme value theory (EVT) are of a great interest in environmental sciences, engineering,
finance, insurance, and many other disciplines. Especially in finance, extreme price movement
of a financial asset or a market index can be defined as the lowest and highest costs in
an observed period (see Gilli, 2006 [19]). EVT shows that the asymptotic minimum and
maximum returns have a definite shape that is independent of the return process itself.
The EVT deals with the probabilistic description of the extremes of a stochastic sequence.
The fundamental results of Fisher and Tippett (1928) [17] constitute the backbone of the
classical EVT. The fundamental theorem states that maxima of independent and identically
distributed random variables have one of the three extreme value distributions: Fréchet
distribution, with infinite upper and heavy tail, Gumbel distribution, whose upper tail is also
infinite, but lighter than the Fréchet distribution, and inverse Weibull distribution with finite
upper tail. The three previous models can be gathered in the following family

(1.1) Gξ(x;µ, σ, ξ) =

 exp {−(1 + ξ(x−µ
σ ))

−1
ξ }; ξ 6= 0,

exp {− exp(−x−µ
σ )}; ξ → 0,

and

(1.2) gξ(x;µ, σ, ξ) =


1
σ exp {−(1 + ξ(x−µ

σ ))
−1
ξ }(1 + ξ(x−µ

σ ))
−1
ξ
−1; ξ 6= 0,

1
σ exp {− exp(−(x−µ

σ ))} exp(−(x−µ
σ )); ξ → 0,

where µ is a location parameter, σ is a positive scale parameter, and ξ is the shape parameter,
for more detail (see De Haan and Ferreira, 2007 [14]). The cumulative distribution function
(CDF) and probability density function (PDF) in Equations (1.1) and (1.2), respectively,
are known as the generalized extreme value distribution under linear normalization (GEVL).
Another reason for using the power normalization in EVT is concerning the possibility of
getting a better rate of convergence in EVT (see Barakat et al., 2010 [2]). The CDF F is said
to belong to the max stable model under power normalization or simply p-max domain of
attraction of a non-degenerate CDF H, denote by F ∈ Dp(H), if for some norming constants
αn > 0 and βn > 0, we have

(1.3) P (|Xn:n

αn
|1/βn sign(Xn:n) ≤ x) = Fn(αn|x|βn sign(x)) w−→n H(x),

where sign(x) = −1, or 0, or 1, according as x < 0, or x = 0, or x > 0. Pantcheva (1985)
[22] proved that H(x) belongs to one p-type of the following six classes of extreme value
distributions

Type-I : H1,β(x) =

{
0; x ≤ 1,

exp {−(log x)−β}; x > 1, β > 0,

Type-II : H2,β(x) =


0; x ≤ 0,

exp {−(− log x)β}; −1 ≤ x ≤ 1,

1; x > 1,
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Type-III : H3,β(x) =


0; x ≤ −1,

exp {−(− log(−x)−β}; −1 ≤ x ≤ 0,

1; x > 0,

Type-IV : H4,β(x) =

{
exp {−(log(−x))β}; x ≤ −1,

1; x > −1,

Type-V : H5(x) =

{
0; x ≤ 0,

exp {−x−1}; x > 0,

and

(1.4) Type-VI : H6(x) =

{
exp {x}; x ≤ 0,

1; x > 0.

Nasri-Roudsari (1999) [28] demonstrated that the six p-max stable laws in can be represented
as two families. We call them log-GEVL distribution in positive support, and negative log-
GEVL distribution in negative support, i.e.:

(1) For x0 > 0, x > 0 and 1 + ξ
σ log(e−µx) > 0

(1.5) Hξ,1(x;µ, σ) =

 exp {−(1 + ξ
σ log(e−µx))

−1
ξ }; ξ 6= 0,

exp {−(xe−µ)
1
σ }; ξ → 0.

(2) For x0 ≤ 0, x ≤ 0 and 1− ξ
σ log(−e−µx) > 0

(1.6) Hξ,2(x;µ, σ) =

 exp {−(1− ξ
σ log(−e−µx))

−1
ξ }; ξ 6= 0,

exp {−(−xe−µ)
−1
σ }; ξ → 0.

The corresponding density function to Equation (1.5) can be formulated as
(1.7)

hξ(x;µ,σ,ξ)=


1

σx exp{−(1 + ξ
σ log(xe−µ) sign(x))

−1
ξ }((1 + ξ

σ log(xe−µ) sign(x)))
−1
ξ
−1; ξ 6=0,

exp{−(xe−µ sign(x))
−1
σ } e−µ

σ (xe−µ sign(x))
−1
σ
−1; ξ→0.

The results of Gnedenko et al. (1943) [21] and De Haan (1971) [13] concerning linear normal-
ization were extended to p-max stable laws. They showed that every CDF attracted to linear
max stable law is necessarily attracted to some p-max stable, and that p-max stable laws, in
fact attract more. For more information about the extreme under power normalization and
its applications, see Galambos (1987) [18], Nasri-Roudsari (1999) [28], Barakat et al. (2010 [2],
2013 [3], 2014a [4], 2014b [5], 2015 [6], 2019 [7]), among others.

In mathematical physics and probability, the q-distribution is more general than classi-
cal distribution. It was introduced by Diaz and Pariguan (2009) [12] and Diaz et al. (2010) [11]
in the continuous case, and by Charalambides (2010) [9] in the discrete version. The construc-
tion of a q-distribution is the construction of a q-analogue of ordinary distribution. Mathai
and Provost (2006) [27] introduced the q-analogue of the gamma distribution with respect
to Lebesgue measure. Recently, several q-type super statistical distributions such as the
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q-exponential, q-Weibull, and q-logistic were developed in the context of statistical mechanics,
information theory and reliability modelling, as discussed for instance in Chung et al. (1994)
[10], Picoli et al. (2003) [24], Gauchman (2004) [20], De Sole and Kac (2003) [31], Mathai
(2005) [26], Srivastava and Choi (2012) [30], among others. Provost et al. (2018) [23] intro-
duced the CDF and PDF of q-generalized extreme value under linear normalization (q-GEVL)
and q-Gumbel distributions as

(1.8) F (x;µ, σ, ξ, q) =

 [1 + q(ξ(sx−m) + 1)−
1
ξ ]−

1
q ; ξ 6= 0, q 6= 0,

(1 + qe−(sx−m))−
1
q ; ξ → 0, q 6= 0,

and
(1.9)

f(x;µ, σ, ξ, q) =

 s(1 + ξ(sx−m))
−1
ξ
−1[1 + q(ξ(sx−m) + 1)−

1
ξ ]−

1
q
−1; ξ 6= 0, q 6= 0,

(1 + qe−(sx−m))−
1
q
−1

se−(sx−m); ξ → 0, q 6= 0,

where s = 1
σ and m = µ

σ . In this paper, we propose the q-analogues of the generalized extreme
value under power normalization (q-GEVP) to construct heavy-tailed distributions for mod-
eling real data; to propose various types of the hazard rate function; and to generate flexible
distributions with left-skewed and right-skewed shape, which can be utilized effectively in
modeling extreme observations.

The paper is organized as follows. In Section 2, the q-GEVP model is reported. Some
mathematical properties such as quantile function, moments, moment generating function
and Shanon entropy are derived in Section 3. Section 4, explains how to determine the
maximum likelihood, Cramer-von Mises minimum distance, ordinary and weighted least-
square estimators of the model parameters. A Monte Carlo simulation study is carried out
in Section 5, to compare the behavior of the different estimation techniques which used in
the estimation of the unknown parameters of the model. In Section 6, we fit some models to
COVID-19 in three countries, Japan, Saudi Arabia and Romania. Also, some statistics are
employed in order to assess goodness of fit. Finally, some concluding remarks are introduced
in the last section.

2. ON q-GENERALIZED EXTREME DISTRIBUTION UNDER POWER
NORMALIZATION

The CDF and PDF of the q-GEVP model and q-distribution “ξ → 0” are, respectively,
given by:

(1) For x0 > 0, x > 0 and 1 + ξ
σ log(e−µx) > 0

(2.1) Hq,ξ,1(x;µ, σ) =

 (1 + q(1 + ξ
σ log(e−µx))

−1
ξ )

−1
q ; ξ 6= 0, q 6= 0,

(1 + q(xe−µ)
−1
σ )

−1
q ; ξ → 0, q 6= 0,
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and
(2.2)

hq,ξ,1(x;µ, σ, ξ) =

 (1 + q(1 + ξ
σ log(e−µx))

−1
ξ )

−1
q
−1 1

σx(1 + ξ
σ log(e−µx))

−1
ξ
−1; ξ 6= 0, q 6= 0,

(1 + q(xe−µ)
−1
σ )

−1
q
−1 e−µ

σ (xe−µ)
−1
σ
−1; ξ → 0, q 6= 0.

(2) For x0 ≤ 0, x ≤ 0 and 1− ξ
σ log(−e−µx) > 0

(2.3) Hq,ξ,2(x;µ, σ) =

 (1 + q(1− ξ
σ log(−xe−µ))

−1
ξ )

−1
q ; ξ 6= 0, q 6= 0,

(1 + q(−xe−µ)
1
σ )

−1
q ; ξ → 0, q 6= 0,

and
(2.4)

hq,ξ,2(x;µ,σ,ξ)=

(1+ q(1− ξ
σ log(−xe−µ))

−1
ξ )

−1
q
−1 1

σx(1− ξ
σ log(−xe−µ))

−1
ξ
−1; ξ 6=0, q 6=0,

(1 + q(−xe−µ)
1
σ )

−1
q
−1 e−µ

σ (−xe−µ)
1
σ
−1; ξ→0, q 6=0,

where x0 = sup{x : F (x) < 1}. Figures 1 and 2 show the PDF of the q-GEVP model in case
of ξ 6= 0 and ξ → 0, respectively, for various values of the parameters.
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Figure 1. The PDF plots of the q-GEVP distribution in case of ξ 6= 0.
Figure 1: The PDF plots of the q-GEVP distribution in case of ξ 6= 0.
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Figure 2. The PDF plots of the q-GEVP distribution in case of ξ → 0.

According to Figures 1 and 2, it is noted that the proposed distribution can be
used to model left and right skewed data. Moreover, the shape of the PDF can
be unimodal and bimodal, which makes the proposed model can be utilized for
modeling various data in different fields.

The hazard function (also called the force of mortality, instantaneous failure
rate, instantaneous death rate, or age-specific failure rate) is a way to model data
distribution in survival analysis. The most common use of the function is to model
a participant’s chance of death as a function of their age. However, it can be used
to model any other time-dependent event of interest. The hazard function (HF)

is defined as h(x)
1−H(x) . Figures 3 and 4 display the HF for the proposed model for

ξ 6= 0 and ξ → 0, respectively, and it is noted that the HF has various shapes
including increasing, decreasing, unimodal, or bathtub.

Figure 2: The PDF plots of the q-GEVP distribution in case of ξ → 0.

According to Figures 1 and 2, it is noted that the proposed distribution can be used
to model left and right skewed data. Moreover, the shape of the PDF can be unimodal
and bimodal, which makes the proposed model can be utilized for modeling various data in
different fields.

The hazard function (also called the force of mortality, instantaneous failure rate, in-
stantaneous death rate, or age-specific failure rate) is a way to model data distribution in
survival analysis. The most common use of the function is to model a participant’s chance of
death as a function of their age. However, it can be used to model any other time-dependent
event of interest. The hazard function (HF) is defined as h(x)

1−H(x) . Figures 3 and 4 display the
HF for the proposed model for ξ 6= 0 and ξ → 0, respectively, and it is noted that the HF has
various shapes including increasing, decreasing, unimodal, or bathtub.

In several cases, lifetimes need to be recorded on a discrete scale rather than on a
continuous analogue. Due to the previous reason, discretizing continuous distributions has
received much attention in the statistical literature. See for example, Bebbington et al.

(2012) [8], Nekoukhou and Bidram (2015) [29], El-Morshedy et al. (2020) [15], Eliwa et al.

(2020) [16], Altun et al. (2020) [1], and references cited therein. Based on discretization
survival approach, the CDF and probability mass function (PMF) of the discrete q-GEVP
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Figure 3. The HRF plots of the q-GEVP distribution in case of ξ 6= 0.Figure 3: The HRF plots of the q-GEVP distribution in case of ξ 6= 0.
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Figure 4. The HRF plots of the q-GEVP distribution in case of ξ → 0.

In several cases, lifetimes need to be recorded on a discrete scale rather than
on a continuous analogue. Due to the previous reason, discretizing continuous
distributions has received much attention in the statistical literature. See for
example, Bebbington et al. (2012), Nekoukhou and Bidram (2015), El-Morshedy
et al. (2020), Eliwa et al. (2020), Altun et al. (2020), and references cited therein.
Based on discretization survival approach, the CDF and probability mass function
(PMF) of the discrete q-GEVP (Dq-GEVP) model can be formulated as

(2.5) Hq,ξ,1(x;µ, σ) =

{
(1 + q(1 + ξ

σ log(e−µ(x+ 1)))
−1
ξ )

−1
q ; ξ 6= 0, q 6= 0

(1 + q((x+ 1)e−µ)
−1
σ )

−1
q ; ξ → 0, q 6= 0

and

(2.6)

f(x;µ, σ, ξ, q) =

{
(1 + q(1 + ξ

σ log(e−µ(x+ 1)))
−1
ξ )

−1
q − (1 + q(1 + ξ

σ log(e−µx))
−1
ξ )

−1
q ; ξ 6= 0, q 6= 0

(1 + qe−(sx−m))
− 1
q
−1
se−(sx−m) − (1 + q(xe−µ)

−1
σ )

−1
q ; ξ → 0, q 6= 0,

respectively. Figure A1 shows the PMF and HRF of the Dq-GEVP models for
various values of the model parameters, and it is found that the PMF can be
used to model asymmetric data which have extreme observations. Further, the
HRF can be utilized to model data with have decreasing failure shape.

Figure 4: The HRF plots of the q-GEVP distribution in case of ξ → 0.
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(Dq-GEVP) model can be formulated as

(2.5) Hq,ξ,1(x;µ, σ) =

 (1 + q(1 + ξ
σ log(e−µ(x + 1)))

−1
ξ )

−1
q ; ξ 6= 0, q 6= 0,

(1 + q((x + 1)e−µ)
−1
σ )

−1
q ; ξ → 0, q 6= 0,

and
(2.6)

f(x;µ, σ, ξ, q) =


(1 + q(1 + ξ

σ log(e−µ(x + 1)))
−1
ξ )

−1
q − (1 + q(1 + ξ

σ log(e−µx))
−1
ξ )

−1
q ;

ξ 6= 0, q 6= 0,

(1 + qe−(sx−m))−
1
q
−1

se−(sx−m) − (1 + q(xe−µ)
−1
σ )

−1
q ;

ξ → 0, q 6= 0,

respectively. Figure 18 shows the PMF and HRF of the Dq-GEVP models for various values
of the model parameters, and it is found that the PMF can be used to model asymmetric
data which have extreme observations. Further, the HRF can be utilized to model data with
have decreasing failure shape.

3. STATISTICAL PROPERTIES

3.1. Quantile function and moments

The quantile function (QF) is frequently utilized for determining confidence intervals
or eliciting certain properties of a distribution. In order to obtain the QF of a random
variable (RV) X, that is, one has to solve the equation F (x) = p with respect to x for some
fixed p ∈ (0, 1), where F (x) denotes the CDF of X. The QFs of the q-GEVP (ξ 6= 0) and
q-distribution (ξ → 0) can be listed as

(3.1) xp = H−1(q, ξ, 1) =

 e
σ
ξ
(qξ(p−q−1)−ξ−1)+µ; ξ 6= 0, q 6= 0,

qσ(p−q − 1)−σeµ; ξ → 0, q 6= 0,

and

(3.2) xp = H−1(q, ξ, 2) =

−e
σ
ξ
(1−qξ(p−q−1)−ξ)+µ; ξ 6= 0, q 6= 0,

−q−σ(p−q − 1)σeµ; ξ → 0, q 6= 0,

respectively. Assume non-negative RV have a q-GEVP model, then the n-th moment, and
moment generating function of X, are given, respectively, as follows:

E(Xn) =
∫ ∞

0
xnh(x;µ, σ, ξ) dx

= Υ(σ,ξ,q)
(n,µ)

∞∑
j=0

(
nσqξ

ξ

)j Γ(1− ξj)Γ
(

1
q + ξj

)
j!Γ

(
1
q + 1

)
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and

MX(t) =
∫ ∞

0
exp(tx)h(x;µ, σ, ξ) dx

= Θ(σ,ξ)
(µ)

∞∑
j=0

∞∑
k=0

tj
(

σqξj

ξ

)k Γ(1− ξk)Γ
(

1
q + ξk

)
j!k!Γ

(
1
q + 1

) ,

where Θ(σ,ξ)
(µ) = 1

2 exp
(
t exp

{
µ− σ

ξ

})
, Υ(σ,ξ,q)

(n,µ) = 1
q exp

{
n
(
µ− σ

ξ

)}
, and the terms (1− ξj),(

1
q + ξj

)
,

(
1
q + 1

)
, (1− ξk),

(
1
q + ξk

)
and

(
1
q + 1

)
should be greater than 0. Figure 5

shows the skewness and kurtosis under different values of the model parameters “ξ = −0.5
and σ = 0.2” in the left panel, and “ξ = −1.5 and σ = 1.2” in the right panel, respectively.
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Figure 5. The skewness and kurtosis of the q-GEVP distribution in case of ξ 6= 0.
Figure 5: The skewness and kurtosis of the q-GEVP distribution in case of ξ 6= 0.

Figure 6 shows the skewness and kurtosis in case of ξ → 0 with σ = 0.5 “left panel” and
σ = 2.5 “right panel”, respectively, which support our results.
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Figure 6. The skewness and kurtosis of the q-GEVP distribution in case of ξ → 0.

3.2. Entropy

An entropy of RV X is a measure of variation of the uncertainty. Shannon
entropy (SnEy) is defined by

(3.3) H(X) = −
∫
A
f(x) log f(x)dx,

where A = x : f(x) > 0. The SnEy of the GEVL family can be expressed as

(3.4) H(X) = log σ̂ + (ξ̂ + 1)γ + 1.

The SnEy of six classes of extreme value distributions which mentioned in Section
one, is evaluated by Ravi and Saeb (2012). Herein, the SnEy of GEVP, q-GEVL
and q-GEVP families are listed in the following theorems.

� Theorem 1. If X is a RV with CDF GEVP for ξ < 0, then the SnEy of
X is given by

(3.5) H(X) = µ+ log σ̂ + (ξ̂ + 1)γ +
σ̂

ξ̂
[Γ(1− ξ̂)− 1] + 1.

Figure 6: The skewness and kurtosis of the q-GEVP distribution in case of ξ → 0.

3.2. Entropy

An entropy of RV X is a measure of variation of the uncertainty. Shannon entropy
(SnEy) is defined by

(3.3) H(X) = −
∫

A
f(x) log f(x)dx,

where A = x : f(x) > 0. The SnEy of the GEVL family can be expressed as

(3.4) H(X) = log σ̂ + (ξ̂ + 1)γ + 1.

The SnEy of six classes of extreme value distributions which was mentioned in Section 1, is
evaluated by Ravi and Saeb (2012) [25]. Herein, the SnEy of GEVP, q-GEVL and q-GEVP
families are listed in the following theorems.
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Theorem 3.1. If X is a RV with CDF GEVP for ξ < 0, then the SnEy of X is given by

(3.5) H(X) = µ + log σ̂ + (ξ̂ + 1)γ +
σ̂

ξ̂
[Γ(1− ξ̂)− 1] + 1.

Proof: From Equations (1.7) and (3.3), we have

H(X) = −E(log hµ,ξ,σ,q) = log σ + E(log |X|) + ∆(µ,ξ,σ) + ∆
(µ,ξ,σ)

,

where ∆(µ,ξ,σ) = E(1 + ξ
σ log |X|e−µ)

−1
ξ and ∆

(µ,ξ,σ)
= (1 + 1

ξ )E(log(1 + ξ
σ log |X|e−µ)). Let

Y = (1 + ξ
σ log|x|e−µ))

−1
ξ , which have the standard exponential (StEx) distribution, then

(3.6) E(log |X|) =
σ

ξ
E(Y −ξ − 1) + µ =

σ

ξ
[Γ(1− ξ)− 1] + µ,

(3.7) ∆(µ,ξ,σ) = E(Y ) = 1

and

(3.8) ∆
(µ,ξ,σ)

= (1 +
1
ξ
)E(−ξ log Y ) = −(1 + ξ)E(log Y ) = (1 + ξ)γ,

where γ = −
∫∞
0 log ye−ydy. From Equations (3.6)–(3.8), Equation (3.5) can be derived.

Theorem 3.2. If X is a RVwith CDF q-GEVL for ξ<0, then the SnEy of X is given by

(3.9) H(X) = log σ̂ + (ξ̂ + 1)γ + (1 + q)

[
1−

∞∑
n=2

(−1)n+1qn−1Γ(n− 1)

]
.

Proof: Since the PDF of the q-GEVL model can be listed as

fX(x) =
1
σ

(1 +
ξ

σ
(x− µ))−

1
ξ
−1[1 + q(1 +

ξ

σ
(x− µ))−

1
ξ ]−

1
q
−1

.

Then,
H(X) = −E(log fX(X)) = log σ + ∆∗(µ,ξ,σ) + ∆

(µ,ξ,σ)

∗ ,

where ∆∗(µ,ξ,σ)= (1+ 1
ξ )E(log(1+ ξ

σ (X−µ))) and ∆
(µ,ξ,σ)
∗ = (1+ 1

q )E(log(1+ q(1+ ξ
σ (X−µ))

−1
ξ ).

Assume Y = (1 + ξ
σ (x− µ))

−1
ξ , which have the StEx distribution, then Equation (3.9) can be

derived.

Theorem 3.3. If X is a RV with CDF q-GEVP for ξ<0, then the SnEy of X is given by

(3.10)

H(X) = µ+log σ̂+(ξ̂+1)γ+
ξ

σ
E{sign(X)[Γ(1−ξ)−1]}+(1+q)

[
1−

∞∑
n=2

(−1)n+1qn−1Γ(n−1)

]
.
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Proof: Since the RV have the q-GEVP distribution, then

H(X) = log σ + E(log |X|) + E
(

1 +
ξ

σ
log |X|e−µ

)−1
ξ

+
(

1 +
1
ξ

)
Ω(µ,ξ,σ) +

(
1 +

1
q

)
Ω(µ,ξ,σ),

where Ω(µ,ξ,σ) = E
(
log(1 + ξ

σ log |X|e−µ)
)

and Ω(µ,ξ,σ) = E(log(1 + q(1 + ξ
σ log |X|e−µ)

−1
ξ ).

Let Y =
(
1 + ξ

σ log|x|e−µ
)−1

ξ which have the StEx distribution, then

(3.11) E(log |X|) =
σ

ξ
E(Y −ξ − 1) + µ =

σ

ξ
[Γ(1− ξ)− 1] + µ,

(3.12) (1 +
1
ξ
)Ω(µ,ξ,σ) = (1 +

1
ξ
)E(−ξ log Y ) = (1 + ξ)γ

and (
1 +

1
q

)
Ω(µ,ξ,σ) = (1 +

1
q
)
∫ ∞

0
log(1 + qy))e−ydy

= (1 +
1
q
)

[
1−

∞∑
n=2

(−1)n+1qn−1Γ(n− 1)

]
.(3.13)

From Equations (3.11)–(3.13), Equation (3.10) can be derived.

Hint: If q → 0 in Equations (3.9) and (3.10), we get Equations (3.4) and (3.5).

4. VARIOUS ESTIMATION APPROACHES

4.1. Maximum likelihood estimation

In order to estimate the parameters of the q-GEVP model and q-distribution whose den-
sity functions are in (2.2), one has to maximize their respective log-likelihood functions with
respect to the model parameters. Given the observations xi, i = 1, ..., n, the log-likelihood
functions of the q-GEVP model and q-distribution are, respectively, given by

(4.1) `(µ, σ, ξ, q) = −n log σ −
n∑

i=1

log xi − (1 +
1
q
)

n∑
i=1

log[1 + q A
−1
ξ

i ]− (1 +
1
ξ
)

n∑
i=1

log Ai

and

(4.2) `∗(µ, σ, q) = −n log σ +
nµ

σ
− (1 +

1
σ

)
n∑

i=1

log xi − (1 +
1
q
)

n∑
i=1

log[1 + q B
−1
σ

i ],

where Ai = 1 + ξ
σ log Bi and Bi = xie

−µ. The associated log-likelihood system of equations
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are, respectively,

∂`

∂µ
= (

ξ + 1
σ

)
n∑

i=1

A
1
ξ

i − (
q + 1

σ
)

n∑
i=1

A
−1
ξ
−1

i

1 + qA
−1
ξ

i

,

∂`

∂σ
= −n

σ
+ (

ξ + 1
σ2

)
n∑

i=1

log Bi

Ai
− (

q + 1
σ2

)
n∑

i=1

A
−1
ξ
−1

i log Bi

1 + qA
−1
ξ

i

,

∂`

∂ξ
=

1
ξ2

n∑
i=1

log Ai − (
ξ + 1
ξσ

)
n∑

i=1

log Bi

Ai
+ (

q + 1
ξσ

)
n∑

i=1

A
−1
ξ
−1

i log Bi

1 + qA
−1
ξ

i

− (
q + 1
ξ2

)
n∑

i=1

A
−1
ξ

i log Ai

1 + qA
−1
ξ

i

,

(4.3)
∂`

∂q
=

1
q2

n∑
i=1

log[1 + qA
−1
ξ

i ]− (
1
q

+ 1)
n∑

i=1

A
−1
ξ

i

1 + qA
−1
ξ

i

and

∂`∗

∂µ
=

n

σ
− (

1 + q

σ
)

n∑
i=1

B
−1
σ

i

1 + qB
−1
σ

i

,

∂`∗

∂σ
= −n

σ
− nµ

σ2
+

1
σ2

n∑
i=1

log xi − (
q + 1
σ2

)
n∑

i=1

B
−1
σ

i log Bi

1 + qB
−1
σ

i

,

(4.4)
∂`∗

∂q
=

1
q2

n∑
i=1

log[1 + qB
−1
σ

i ]− (
1
q

+ 1)
n∑

i=1

B
−1
σ

i

1 + qB
−1
σ

i

.

Solving the nonlinear systems specified by the sets of equations yields the maximum likeli-
hood estimates (MLE’s) of the parameters of the q-GEVP model and q-distribution. Since
these equations cannot be solved analytically; iterative method such as the Newton–Raphson
technique is required.

4.2. Ordinary and weighted least-square estimators

Let x(1), x(2), ..., x(r) be the order statistics (OS) of the random sample of size r from
F (x; q, ξ, σ, µ). The least square estimators (LSEs) of the q-GEVP parameters, say, q̂LS , ξ̂LS ,
σ̂LS and µ̂LS can be obtained by solving the non-linear equations

r∑
d=1

[
F

(
x(d) | q, ξ, σ, µ

)
− d

r + 1

]
∆%

(
x(d) | q, ξ, σ, µ

)
= 0, % = 1, 2, 3, 4,

where

(4.5)


∆1

(
x(d) | q, ξ, σ, µ

)
=

∂

∂q
F

(
x(d) | q, ξ, σ, µ

)
, ∆2

(
x(d) | q, ξ, σ, µ

)
=

∂

∂ξ
F

(
x(d) | q, ξ, σ, µ

)
,

∆3

(
x(d) | q, ξ, σ, µ

)
=

∂

∂σ
F

(
x(d) | q, ξ, σ, µ

)
, ∆4

(
x(d) | q, ξ, σ, µ

)
=

∂

∂µ
F

(
x(d) | q, ξ, σ, µ

)
.
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Whereas the weighted least squares estimators (WLSEs), say, q̂WLS , ξ̂WLS , σ̂WLS and µ̂WLS

can be reported by solving the non-linear equations

r∑
d=1

(r + 1)2(r + 2)
d(r − d + 1)

[
F

(
x(d) | q, ξ, σ, µ

)
− d

r + 1

]
∆%

(
x(d) | q, ξ, σ, µ

)
= 0, % = 1, 2, 3, 4,

where ∆1(·| q, ξ, σ, µ), ∆2(·| q, ξ, σ, µ), ∆3(·| q, ξ, σ, µ) and ∆4(·| q, ξ, σ, µ) are provided in Equa-
tion (4.5).

4.3. Cramer-von Mises minimum distance estimators

The CVMEs of the q-GEVP parameters are derived by solving the non-linear equations

r∑
d=1

[
F

(
x(d) | q, ξ, σ, µ

)
− 2d− 1

2r

]
∆%

(
x(d) | q, ξ, σ, µ

)
= 0, % = 1, 2, 3,

where ∆1(·| q, ξ, σ, µ), ∆2(·| q, ξ, σ, µ), ∆3(·| q, ξ, σ, µ) and ∆4(·| q, ξ, σ, µ) are defined in
Equation (4.5).

5. THE MONTE CARLO SIMULATION STUDY

Here, we have conducted a Monte Carlo simulation study to compare the behavior of the
different estimation techniques (MLEs, LSEs, WLSEs, and CVMEs) used in the estimation
of the unknown parameters of the q-GEVP model in case of ξ 6= 0, and ξ → 0. We have drawn
1000 samples of size n = 20, 50, 100, 150, 200, 250, 300, 500 from q-GEVP(0.5, 0.5, 0.8, 0.5) and
q-GEVP(0.8, ξ → 0, 0.5, 0.3), respectively, through the R software. We have calculated the
MLEs, LSEs, WLSEs, and CVMEs for each of the 1000 samples, say, q̂k, ξ̂k, σ̂k and µ̂k for
k = 1, 2, ..., 1000. We have calculated the biases and mean-squared errors (MSEs) for Υ =
q, ξ, σ, and µ through the following formulas

Bias =
1

1000

1000∑
k=1

(
Υ̂k −Υ

)
and MSE =

1
1000

1000∑
k=1

(
Υ̂k −Υ

)2
.

The empirical results are given in Figures 7 and 8.

From Figures 7 and 8 the following observations can be made:

1. As the value of n increases, the magnitude of the bias decreases towards zero.

2. The MSEs of all the estimators decrease when we increase the value of the sample
size n. This finding supports the first-order asymptotic theory.

3. In view of MSEs, clearly, MLE, LSE, WLSE, and CVME techniques perform sat-
isfactorily in the estimation of q-GEVP parameters in case of ξ 6= 0, and ξ → 0.
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Figure 7. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.5, 0.5, 0.8, 0.5) model.

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

MLE
LSE
WLSE
CVME

Figure 8. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.8, ξ → 0, 0.5, 0.3) model.
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Figure 7. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.5, 0.5, 0.8, 0.5) model.

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

100 200 300 400 500

−
1
.4

−
1
.0

−
0
.6

−
0
.2

 

n

B
ia

s
(q

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

 

n

B
ia

s
(σ

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

 

n

B
ia

s
(µ

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

 

n

M
S

E
(q

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

100 200 300 400 500

0
.0

0
0
.1

0
0
.2

0

 

n

M
S

E
(σ

)

MLE
LSE
WLSE
CVME

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

 

n

M
S

E
(µ

)

MLE
LSE
WLSE
CVME

Figure 8. The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.8, ξ → 0, 0.5, 0.3) model.

From Figures 7 and 8 the following observations can be made:

1. As the value of n increases, the magnitude of the bias decreases towards

Figure 8: The bias of q̂, ξ̂, σ̂ and µ̂ versus n for the q-GEVP(0.8, ξ → 0, 0.5, 0.3) model.
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6. DATA ANALYSIS

In this section, we discuss the empirical importance of the q-GEVP model in case of
ξ 6= 0, and ξ → 0 for a positive random variable by using three applications to COVID-19 data.
The fitted distributions are compared utilizing some criteria namely, Cramér-von Mises (CM),
Anderson-Darling (AD) statistics, and Kolmogorov-Smirnov (KS) statistic with their p-values.
Moreover, Akaike information criterion (AIC) with its corrected value (CAIC) beside Bayesian
information criterion (BIC) and Hannan-Quinn information criterion (HQIC) have been used
as a part from these criteria. We shall compare the fits of the q-GEVP distribution with
some competitive models like GEVP-type I (GEVP-I), inverse Weibull (IW), Gumbel (Gu),
Weibull (W), generalized inverse Weibull (GIW), Gumbel inverse Weibull (GuIW), and type I
generalized exponential inverse Weibull (T1GEIW) in case of ξ 6= 0 “see data sets I and II”,
and ξ → 0 “see data set III”.

6.1. Data set I: COVID-19 in Japan

This data is listed in (https://www.worldometers.info/coronavirus/country/japan/)
which represents the maximum value of the new deaths per a week due to COVID-19 in
Japan from 7 Mar 2020 up to 20 Feb 2021. Initial density shape is explored using the
nonparametric “Kernel density estimation (KDE)” approach in Figure 9, and it is noted that
the density is asymmetric and multimodal functions. The “normality” condition is checked
via the “quantile-quantile (Q-Q) plot” in Figure 9. The extremes are spotted from the “box
plot” in Figure 9, and it is showed that some extreme observations were founded.
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Figure 9. The KDE, Q-Q, and box plots for data set I.

Tables 1 lists the MLEs with its standard errors (SE) in parentheses, whereas the
goodness-of-fit (GOF) measures have been reported in Table 2 for data sets I.

Table 1. The MLEs with its SE in parentheses for data set I.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.8659(0.5492) −0.9892(0.0236) 3.5633(0.1379) 1.1944(0.2913)
GEVP-I(α, β) −0.6454(0.0632) 1.0229(0.1503) − −
IW(α, β) 9.6646(1.5479) 0.9269(0.0971) − −
Gu(µ, σ) 17.0872(2.8921) 19.9133(2.4818) − −
W(α, β) 30.1519(4.6867) 0.9545(0.1020) − −
GIW(α, β, γ) 1.9247(407.6033) 0.9269(0.0971) 4.4629(876.0921) −
GuIW(γ, δ, α, β) 3.3919(0.5459) 8.9611(0.9268) 2.3058(0.0273) 7.8184(0.0301)
T1GEIW(γ, δ, α, β) 388.4329(2.4× 103) 0.1385(1.5242) 0.1299(1.5230) 0.9254(0.0974)

Table 2. The GOF measures for data set I.

GOF↓ Model→ q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0981 0.3458 0.1079 0.2047 0.1333 0.1079 0.1141 0.1166
p-value 0.7109 ≤ 0.001 0.5929 0.0279 0.3252 0.5929 0.5206 0.4916
A∗ 0.6679 3.1846 0.7298 3.0261 0.8439 0.7298 0.8678 1.5855
p-value 0.5855 0.1510 0.5337 0.0267 0.4498 0.5337 0.4340 0.1574
W∗ 0.0842 0.6189 0.0982 0.4801 0.1421 0.0982 0.1160 0.1846
p-value 0.6701 0.1172 0.5958 0.0444 0.4157 0.5958 0.5134 0.2999
-L 217.4310 252.9968 226.6616 238.7913 225.7776 226.6616 225.3522 229.6592
AIC 442.8620 509.9936 457.3232 481.5826 455.5552 459.3232 458.7045 467.3185
CAIC 443.7316 510.2436 457.5732 481.8326 455.8052 459.8338 459.5741 468.1881
BIC 450.5893 513.8573 461.1868 485.4462 459.4188 465.1186 466.4318 475.0458
HQIC 445.8148 511.4700 458.7996 483.059 457.0316 461.5378 461.6573 470.2713

From Table 2, it is noted that the q-GEVP model provides the best fit among all
competitive distributions because it has the smallest value of CM, AD, KS, AIC,
CAIC, BIC, and HQIC as well as it has the highest p-value. The empirical PDF,
CDF, SF and P-P plots for data set I are displayed in Figure 10, which indicates

Figure 9: The KDE, Q-Q, and box plots for data set I.

Table 1 lists the MLEs with its standard errors (SE) in parentheses, whereas the
goodness-of-fit (GOF) measures have been reported in Table 2 for data sets I.

From Table 2, it is noted that the q-GEVP model provides the best fit among all competi-
tive distributions because it has the smallest value of CM, AD, KS, AIC, CAIC, BIC, and HQIC
as well as it has the highest p-value. The empirical PDF, CDF, SF and P-P plots for data set I
are displayed in Figure10, which indicates that thedata setplausibly came from q-GEVPmodel.

https://www.worldometers.info/coronavirus/country/japan/
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Table 1: The MLEs with its SE in parentheses for data set I.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.8659(0.5492) −0.9892(0.0236) 3.5633(0.1379) 1.1944(0.2913)

GEVP-I(α, β) −0.6454(0.0632) 1.0229(0.1503) − −
IW(α, β) 9.6646(1.5479) 0.9269(0.0971) − −
Gu(µ, σ) 17.0872(2.8921) 19.9133(2.4818) − −
W(α, β) 30.1519(4.6867) 0.9545(0.1020) − −
GIW(α, β, γ) 1.9247(407.6033) 0.9269(0.0971) 4.4629(876.0921) −
GuIW(γ, δ, α, β) 3.3919(0.5459) 8.9611(0.9268) 2.3058(0.0273) 7.8184(0.0301)

T1GEIW(γ, δ, α, β) 388.4329(2.4× 103) 0.1385(1.5242) 0.1299(1.5230) 0.9254(0.0974)

Table 2: The GOF measures for data set I.

GOF
Model

q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0981 0.3458 0.1079 0.2047 0.1333 0.1079 0.1141 0.1166
p-value 0.7109 ≤ 0.001 0.5929 0.0279 0.3252 0.5929 0.5206 0.4916

A∗ 0.6679 3.1846 0.7298 3.0261 0.8439 0.7298 0.8678 1.5855
p-value 0.5855 0.1510 0.5337 0.0267 0.4498 0.5337 0.4340 0.1574

W∗ 0.0842 0.6189 0.0982 0.4801 0.1421 0.0982 0.1160 0.1846
p-value 0.6701 0.1172 0.5958 0.0444 0.4157 0.5958 0.5134 0.2999

-L 217.4310 252.9968 226.6616 238.7913 225.7776 226.6616 225.3522 229.6592
AIC 442.8620 509.9936 457.3232 481.5826 455.5552 459.3232 458.7045 467.3185
CAIC 443.7316 510.2436 457.5732 481.8326 455.8052 459.8338 459.5741 468.1881
BIC 450.5893 513.8573 461.1868 485.4462 459.4188 465.1186 466.4318 475.0458
HQIC 445.8148 511.4700 458.7996 483.059 457.0316 461.5378 461.6573 470.2713
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that the data set plausibly came from q-GEVP model.
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Figure 10. The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set I.

Table 3 lists the estimates of the unknown parameters using three estimation
methods for data set I.

Table 3. Various estimators of the q-GEVP model for data set I.

Parameters and GOF↓ Methods→ MLE LSE WLSE CVME

q −0.8659 0.5785 0.2283 0.5634
ξ −0.9892 −0.0333 −0.3006 −0.0338
σ 3.5633 0.8705 1.1325 0.8480
µ 1.1944 2.6773 2.5464 2.6744

KS 0.0981 0.0744 0.0808 0.0693
p-value 0.7109 0.9405 0.8929 0.9672

A∗ 0.6679 0.3633 0.4353 0.3454
p-value 0.5855 0.8837 0.8124 0.9002

W∗ 0.0842 0.0395 0.0554 0.0381
p-value 0.6701 0.9375 0.8454 0.9444

Figure 10: The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set I.
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Table 3 lists the estimates of the unknown parameters using three estimation methods
for data set I.

Table 3: Various estimators of the q-GEVP model for data set I.

Parameters and GOF
Methods

MLE LSE WLSE CVME

q −0.8659 0.5785 0.2283 0.5634
ξ −0.9892 −0.0333 −0.3006 −0.0338
σ 3.5633 0.8705 1.1325 0.8480
µ 1.1944 2.6773 2.5464 2.6744

KS 0.0981 0.0744 0.0808 0.0693
p-value 0.7109 0.9405 0.8929 0.9672

A∗ 0.6679 0.3633 0.4353 0.3454
p-value 0.5855 0.8837 0.8124 0.9002

W∗ 0.0842 0.0395 0.0554 0.0381
p-value 0.6701 0.9375 0.8454 0.9444

Table 3 illustrates that all estimation methods work quite well beside the MLE method,
but the CVME approach is the best for data set I. Figure 11 shows the fitted PDFs, estimated
CDFs, and empirical SF plots for data set I utilizing the estimators in Table 3, which support
our results.
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Table 3 illustrates that all estimation methods work quite well beside the MLE
method, but the CVME approach is the best for data set I. Figure 11 shows the
fitted PDFs, estimated CDFs, and empirical SF plots for data set I utilizing the
estimators in Table 3, which support our results.
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Figure 11. The fitted PDF, estimated CDF, and empirical SF plots based on various
estimators for data set I.

6.2. Data set II: COVID-19 in Saudi Arabia

This data is reported in (https://www.worldometers.info/coronavirus/country/saudi-
arabia/) which represents the maximum value of the new deaths per a week due
to COVID-19 in Saudi Arabia from 28 Mar 2020 up to 20 Feb 2021. Initial den-
sity shape is explored utilizing the KDE approach in Figure 12, and it is noted
that the density is asymmetric and bimodal functions. Further, the Q-Q and box

Figure 11: The fitted PDF, estimated CDF, and empirical SF plots
based on various estimators for data set I.

6.2. Data set II: COVID-19 in Saudi Arabia

This data is reported in (https://www.worldometers.info/coronavirus/country/saudi-
arabia/) which represents the maximum value of the new deaths per a week due to COVID-19
in Saudi Arabia from 28 Mar 2020 up to 20 Feb 2021. Initial density shape is explored utilizing

https://www.worldometers.info/coronavirus/country/saudi-arabia/
https://www.worldometers.info/coronavirus/country/saudi-arabia/
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the KDE approach in Figure 12, and it is noted that the density is asymmetric and bimodal
functions. Further, the Q-Q and box plots are displayed in the same Figure.
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plots are displayed in same Figure.
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Figure 12. The KDE, Q-Q, and box plots for data set II.

Tables 4 and 5 list the MLEs, SE, and GOF measures for data sets II.

Table 4. The MLEs with its SE in parentheses for data set II.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.7945(0.0231) −0.9354(0.1254) 2.0494(0.2415) 1.8730(0.1478)
GEVP-I(α, β) −1.4687(0.1341) 1.1769(0.2136) − −
IW(α, β) 24.0124(7.9202) 1.3077(0.1431) − −
Gu(µ, σ) 15.3915(1.8026) 11.8673(1.4129) − −
W(α, β) 1.5059(0.1742) 25.0505(2.5344) − −
GIW(α, β, γ) 3.5549(910.6226) 1.3077(0.1431) 4.5719(1531.5631) −
GuIW(γ, δ, α, β) 3.0714(0.4487) 9.4339(0.9552) 4.4974(NaN) 11.7043(NaN)
T1GEIW(γ, δ, α, β) 213.3478(1411.1180) 0.2929(6.3869) 0.4758(8.0940) 1.3044(0.1445)

Table 5. The GOF measures for data set II.

GOF↓ Model→ q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.1049 0.3303 0.1417 0.1218 0.1057 0.1417 0.1398 0.1420
p-value 0.6659 ≤ 0.001 0.2898 0.4751 0.6568 0.2898 0.3053 0.2875
A∗ 0.5464 8.6403 1.383 1.1593 0.8067 1.3830 1.3421 1.3869
p-value 0.6992 ≤ 0.001 0.2070 0.2833 0.4756 0.2070 0.2191 0.2059
W∗ 0.0724 1.7523 0.21031 0.1802 0.1243 0.2103 0.2049 0.2111
p-value 0.7394 ≤ 0.001 0.2487 0.3101 0.4798 0.2487 0.2585 0.2473
-L 184.2950 215.4770 196.8051 195.6623 192.2741 196.8051 195.3561 196.8159
AIC 376.5900 434.9540 397.6103 395.3245 388.5482 399.6103 398.7121 401.6319
CAIC 377.5202 435.2207 397.8769 395.5912 388.8149 400.1557 399.6423 402.5621
BIC 384.0748 438.6964 401.3527 399.0669 392.2906 405.2239 406.1969 409.1167
HQIC 379.4185 436.3683 399.0245 396.7388 389.9625 401.7316 401.5406 404.4604

From Table 5, it is noted that the q-GEVP distribution provides the best fit
among all competitive models. The empirical PDF, CDF, SF and P-P plots for

Figure 12: The KDE, Q-Q, and box plots for data set II.

Tables 4 and 5 list the MLEs, SE, and GOF measures for data sets II.

Table 4: The MLEs with its SE in parentheses for data set II.

Model MLEs(SE)

q-GEVP(q, ξ, σ, µ) −0.7945(0.0231) −0.9354(0.1254) 2.0494(0.2415) 1.8730(0.1478)

GEVP-I(α, β) −1.4687(0.1341) 1.1769(0.2136) − −
IW(α, β) 24.0124(7.9202) 1.3077(0.1431) − −
Gu(µ, σ) 15.3915(1.8026) 11.8673(1.4129) − −
W(α, β) 1.5059(0.1742) 25.0505(2.5344) − −
GIW(α, β, γ) 3.5549(910.6226) 1.3077(0.1431) 4.5719(1531.5631) −
GuIW(γ, δ, α, β) 3.0714(0.4487) 9.4339(0.9552) 4.4974(NaN) 11.7043(NaN)

T1GEIW(γ, δ, α, β) 213.3478(1411.1180) 0.2929(6.3869) 0.4758(8.0940) 1.3044(0.1445)

Table 5: The GOF measures for data set II.

GOF
Model

q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.1049 0.3303 0.1417 0.1218 0.1057 0.1417 0.1398 0.1420
p-value 0.6659 ≤ 0.001 0.2898 0.4751 0.6568 0.2898 0.3053 0.2875

A∗ 0.5464 8.6403 1.383 1.1593 0.8067 1.3830 1.3421 1.3869
p-value 0.6992 ≤ 0.001 0.2070 0.2833 0.4756 0.2070 0.2191 0.2059

W∗ 0.0724 1.7523 0.21031 0.1802 0.1243 0.2103 0.2049 0.2111
p-value 0.7394 ≤ 0.001 0.2487 0.3101 0.4798 0.2487 0.2585 0.2473

-L 184.2950 215.4770 196.8051 195.6623 192.2741 196.8051 195.3561 196.8159
AIC 376.5900 434.9540 397.6103 395.3245 388.5482 399.6103 398.7121 401.6319
CAIC 377.5202 435.2207 397.8769 395.5912 388.8149 400.1557 399.6423 402.5621
BIC 384.0748 438.6964 401.3527 399.0669 392.2906 405.2239 406.1969 409.1167
HQIC 379.4185 436.3683 399.0245 396.7388 389.9625 401.7316 401.5406 404.4604
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From Table 5, it is noted that the q-GEVP distribution provides the best fit among all
competitive models. The empirical PDF, CDF, SF and P-P plots for data set II are displayed
in Figure 13.

ON q-GENERALIZED EXTREME VALUES 23

data set II are displayed in Figure 13.
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Figure 13. The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set II.

Table 6 lists the estimates of the unknown parameters using various estimation
methods for data set II.

Table 6. Various estimators of the q-GEVP model for data set II.

Parameters and GOF↓ Methods→ MLE LSE WLSE CVME

q −0.7945 0.1733 0.1982 0.1614
ξ −0.9354 −0.5311 −0.6364 −0.5547
σ 2.0494 0.9121 0.9321 0.9113
µ 1.8730 2.6956 2.7251 2.6978

KS 0.1049 0.0949 0.1097 0.0939
p-value 0.6659 0.7793 0.6107 0.7911

A∗ 0.5464 0.5914 0.5793 0.5514
p-value 0.6992 0.6552 0.6669 0.6942

W∗ 0.0724 0.0582 0.0616 0.0569
p-value 0.7394 0.8279 0.8060 0.8353

Figure 13: The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set II.

Table 6 lists the estimates of the unknown parameters using various estimation methods
for data set II.

Table 6: Various estimators of the q-GEVP model for data set II.

Parameters and GOF
Methods

MLE LSE WLSE CVME

q −0.7945 0.1733 0.1982 0.1614
ξ −0.9354 −0.5311 −0.6364 −0.5547
σ 2.0494 0.9121 0.9321 0.9113
µ 1.8730 2.6956 2.7251 2.6978

KS 0.1049 0.0949 0.1097 0.0939
p-value 0.6659 0.7793 0.6107 0.7911

A∗ 0.5464 0.5914 0.5793 0.5514
p-value 0.6992 0.6552 0.6669 0.6942

W∗ 0.0724 0.0582 0.0616 0.0569
p-value 0.7394 0.8279 0.8060 0.8353

From Table 6, it is clear that all estimation techniques work quite well beside the MLE
method, but the CVME approach is the best for data set II. Figure 14 shows the fitted PDFs,
estimated CDFs, and empirical SF plots for data set II by using the estimators in Table 6,
which support our results.
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From Table 6, it is clear that all estimation techniques work quite well beside
the MLE method, but the CVME approach is the best for data set II. Figure 14
shows the fitted PDFs, estimated CDFs, and empirical SF plots for data set II
by using the estimators in Table 6, which support our results.
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Figure 14. The fitted PDF, estimated CDF, and empirical SF plots based on various
estimators for data set II.

6.3. Data set III: COVID-19 in Romania

This data is reported in (https://www.worldometers.info/coronavirus/country/romania/)
which represents the maximum value of the new deaths per a week due to COVID-
19 in Romania from 7 Mar 2020 up to 20 Feb 2021. Initial density shape is
explored using the KDE method in Figure 15, and it is clear that the density
is asymmetric and bimodal functions. Moreover, the Q-Q and box plots are
displayed in the same Figure.

Figure 14: The fitted PDF, estimated CDF, and empirical SF plots
based on various estimators for data set II.

6.3. Data set III: COVID-19 in Romania

This data is reported in (https://www.worldometers.info/coronavirus/country/
romania/) which represents the maximum value of the new deaths per a week due to COVID-19
in Romania from 7 Mar 2020 up to 20 Feb 2021. Initial density shape is explored using
the KDE method in Figure 15, and it is clear that the density is asymmetric and bimodal
functions. Moreover, the Q-Q and box plots are displayed in the same Figure.
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Figure 15. The KDE, Q-Q, and box plots for data set III.

Tables 7 and 8 report the MLEs, SE, and the GOF measures for data sets III.

Table 7. The MLEs with its SE in parentheses for data set III.

Model MLEs(SE)

q-GEVP(q, σ, µ) 1.1182(0.7912) 0.4969(0.1408) 4.0881(0.2569) −
GEVP-I(α, β) −1.5821(0.0265) 0.7867(0.1254) − −
IW(α, β) 52.0870(19.6569) 1.1022(0.1117) − −
Gu(µ, σ) 51.7563(6.5298) 43.6582(5.2948) − −
W(α, β) 1.3167(0.1469) 86.5845(9.9331) − −
GIW(α, β, γ) 5.6304(2654.1739) 1.1022(0.1117) 7.7531(4028.5284) −
GuIW(γ, δ, α, β) 9.7866(2.2779) 6.4026(0.6714) 4.5341(0.1529) 7.0421(0.1946)
T1GEIW(γ, δ, α, β) 1115.2175(5733.0614) 0.1679(2.2473) 0.3115(3.9096) 1.1012(0.1116)

Table 8. The GOF measures for data set III.

GOF↓ Model→ q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0900 0.4171 0.1318 0.1438 0.1151 0.1318 0.1322 0.1319
p-value 0.8221 ≤ 0.001 0.3621 0.2627 0.5351 0.3621 0.3584 0.3611
A∗ 0.5499 12.1030 0.9625 1.4830 0.7140 0.9625 0.9693 0.9652
p-value 0.6957 ≤ 0.001 0.3771 0.1806 0.5464 0.3771 0.3733 0.3756
W∗ 0.0821 2.5283 0.1097 0.2313 0.1172 0.1097 0.1106 0.1101
p-value 0.6817 ≤ 0.001 0.5411 0.2145 0.5084 0.5411 0.5372 0.5392
-L 262.1081 311.5210 266.2566 265.1471 260.7146 266.2566 266.2533 266.2694
AIC 530.2162 627.0420 536.5132 534.2943 525.4292 538.5132 540.5066 540.5388
CAIC 530.7495 627.3029 536.7741 534.5551 525.6901 539.0465 541.4157 541.4479
BIC 535.8916 630.8256 540.2968 538.0779 529.2128 544.1886 548.0739 548.1061
HQIC 532.3694 628.4775 537.9487 535.7298 526.8647 540.6664 543.3777 543.4098

From Table 8, it is noted that the q-GEVP model provides the best fit among all
competitive distributions. The empirical PDF, CDF, SF and P-P plots for data
set III are displayed in Figure 16.

Figure 15: The KDE, Q-Q, and box plots for data set III.

Tables 7 and 8 report the MLEs, SE, and the GOF measures for data sets III.

From Table 8, it is noted that the q-GEVP model provides the best fit among all
competitive distributions. The empirical PDF, CDF, SF and P-P plots for data set III are
displayed in Figure 16.

https://www.worldometers.info/coronavirus/country/romania/
https://www.worldometers.info/coronavirus/country/romania/
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Table 7: The MLEs with its SE in parentheses for data set III.

Model MLEs(SE)

q-GEVP(q, σ, µ) 1.1182(0.7912) 0.4969(0.1408) 4.0881(0.2569) −
GEVP-I(α, β) −1.5821(0.0265) 0.7867(0.1254) − −
IW(α, β) 52.0870(19.6569) 1.1022(0.1117) − −
Gu(µ, σ) 51.7563(6.5298) 43.6582(5.2948) − −
W(α, β) 1.3167(0.1469) 86.5845(9.9331) − −
GIW(α, β, γ) 5.6304(2654.1739) 1.1022(0.1117) 7.7531(4028.5284) −
GuIW(γ, δ, α, β) 9.7866(2.2779) 6.4026(0.6714) 4.5341(0.1529) 7.0421(0.1946)

T1GEIW(γ, δ, α, β) 1115.2175(5733.0614) 0.1679(2.2473) 0.3115(3.9096) 1.1012(0.1116)

Table 8: The GOF measures for data set III.

GOF
Model

q-GEVP GEVP-I IW Gu W GIW GuIW T1GEIW

KS 0.0900 0.4171 0.1318 0.1438 0.1151 0.1318 0.1322 0.1319
p-value 0.8221 ≤ 0.001 0.3621 0.2627 0.5351 0.3621 0.3584 0.3611

A∗ 0.5499 12.1030 0.9625 1.4830 0.7140 0.9625 0.9693 0.9652
p-value 0.6957 ≤ 0.001 0.3771 0.1806 0.5464 0.3771 0.3733 0.3756

W∗ 0.0821 2.5283 0.1097 0.2313 0.1172 0.1097 0.1106 0.1101
p-value 0.6817 ≤ 0.001 0.5411 0.2145 0.5084 0.5411 0.5372 0.5392

-L 262.1081 311.5210 266.2566 265.1471 260.7146 266.2566 266.2533 266.2694
AIC 530.2162 627.0420 536.5132 534.2943 525.4292 538.5132 540.5066 540.5388
CAIC 530.7495 627.3029 536.7741 534.5551 525.6901 539.0465 541.4157 541.4479
BIC 535.8916 630.8256 540.2968 538.0779 529.2128 544.1886 548.0739 548.1061
HQIC 532.3694 628.4775 537.9487 535.7298 526.8647 540.6664 543.3777 543.4098
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Figure 16. The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set III.

Table 9 reports the estimates of the unknown parameters using various estimation
approaches for data set III.

Table 9. Various estimators of the q-GEVP model for data set III.

Parameters and GOF↓ Methods→ MLE LSE WLSE CVME

q 1.1182 0.6959 2.2430 0.6642
σ 0.4969 0.6599 0.4102 0.6448
µ 4.0881 3.9588 4.3003 3.9499

KS 0.0900 0.1084 0.0859 0.1024
p-value 0.8221 0.6128 0.8620 0.6827

A∗ 0.5499 0.5272 0.6501 0.4884
p-value 0.6957 0.7184 0.6011 0.7578

W∗ 0.0821 0.0550 0.0793 0.0535
p-value 0.6817 0.8476 0.6979 0.8571

Figure 16: The fitted PDF, P-P, estimated CDF, and empirical SF plots for data set III.
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Table 9 reports the estimates of the unknown parameters using various estimation
approaches for data set III.

Table 9: Various estimators of the q-GEVP model for data set III.

Parameters and GOF
Methods

MLE LSE WLSE CVME

q 1.1182 0.6959 2.2430 0.6642
σ 0.4969 0.6599 0.4102 0.6448
µ 4.0881 3.9588 4.3003 3.9499

KS 0.0900 0.1084 0.0859 0.1024
p-value 0.8221 0.6128 0.8620 0.6827

A∗ 0.5499 0.5272 0.6501 0.4884
p-value 0.6957 0.7184 0.6011 0.7578

W∗ 0.0821 0.0550 0.0793 0.0535
p-value 0.6817 0.8476 0.6979 0.8571

Table 9 illustrates that all estimation methods work quite well besides the MLE method.
Figure 17 shows the fitted PDFs, estimated CDFs empirical SF plots for data set III using
the estimators in Table 9, which support our results.
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Table 9 illustrates that all estimation methods work quite well besides the MLE
method. Figure 17 shows the fitted PDFs, estimated CDFs empirical SF plots
for data set III using the estimators in Table 9, which support our results.
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Figure 17. The fitted PDF, estimated CDF, and empirical SF plots based on various
estimators for data set III.

7. CONCLUSIONS

In this paper, we proposed q-generalized extreme values model and its dis-
crete version under power normalization technique. Its various statistical features
have been derived in detail. It was found that the proposed models are a proper
for modelling skewed data sets, especially which have very extreme observations.
Moreover, the new model provides a wide variation in the shape of the HRF, in-
cluding decreasing, increasing, unimodal, and bathtub shapes, and consequently
the proposed distribution can be utilized in modelling several different kinds of
data. The model parameters have been estimated using four different estimation
approaches, namely, MLE, LSE, WLSE, and CVME. A simulation has been per-
formed based on different sample sizes, and it was found that the four methods
work quit effectively in estimating the model parameters. Three distinctive data
sets ”COVID-19” have been analyzed to illustrate and prove the flexibility of the
proposed model. Finally, the q-generalized extreme values model under power
normalization technique would be a better alternative to other lifetime models
available in existing literature, especially, in extreme values field.

Figure 17: The fitted PDF, estimated CDF, and empirical SF plots
based on various estimators for data set III.
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7. CONCLUSIONS

In this paper, we proposed q-generalized extreme values model and its discrete version
under power normalization technique. Its various statistical features have been derived in
detail. It was found that the proposed models are a proper for modelling skewed data sets,
especially which have very extreme observations. Moreover, the new model provides a wide
variation in the shape of the HRF, including decreasing, increasing, unimodal, and bathtub
shapes, and consequently the proposed distribution can be utilized in modelling several differ-
ent kinds of data. The model parameters have been estimated using four different estimation
approaches, namely, MLE, LSE, WLSE, and CVME. A simulation has been performed based
on different sample sizes, and it was found that the four methods work quit effectively in
estimating the model parameters. Three distinctive data sets “COVID-19” have been ana-
lyzed to illustrate and prove the flexibility of the proposed model. Finally, the q-generalized
extreme values model under power normalization technique would be a better alternative to
other lifetime models available in existing literature, especially, in extreme values field.
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Figure A1. The PMF and HRF plots of the Dq-GEVP
model for some parameter values.
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