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– Faculty of Mathematics and Information Science, Warsaw University of Technology,

Poland
– CEAUL, Faculdade de Ciências, Universidade de Lisboa,

Portugal
N.Sepulveda@mini.pw.edu.pl

Received: December 2020 Revised: March 2022 Accepted: March 2022

Abstract:

• Gaussian mixture models, which assume a Normal distribution for each component, are popular
in antibody (or serological) data analysis to help determining antibody-positive and antibody-
negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal
and Skew-t distributions for serological data analysis. These flexible mixing distributions have
the advantage of describing right and left asymmetry often observed in the distributions of known
antibody-negative and antibody-positive individuals, respectively. We illustrate the application of
these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic
Encephalomyelitis/Chronic Fatigue Syndrome.
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1. INTRODUCTION

Antibodies are proteins produced by B cells upon recognition of an antigen derived from
an infectious agent. In general, they contribute to microbial clearance and, if maintained in the
body over time, they translate into a quicker and more efficient immune response upon repeated
exposure to the same infection. In turn, autoantibodies bind to antigens from the body and they
areusuallypresent inautoimmunitydiseases, suchasmultiple sclerosis andrheumatoid arthritis.

In routine laboratories, antibodies (or autoantibodies) against a specific antigen are
quantified by the enzymatic-linked immunosorbent assays (ELISA) using serum samples. The
readout of these assays is a light intensity, also known as optical density, which is converted
into a concentration or a titre using a calibration curve of known antibody concentrations.
In practice, these assays are easily standardized, widely available, and ideal for high-through-
put analysis of antibodies against a single antigen [1]. Such advantages make them suitable
for large-scale serological surveys where one aims to estimate the prevalence of exposure to a
given pathogen in the population [1, 2, 3].

With the development of high-throughput technologies, antibody quantification is shift-
ing from the ELISA to microarray, luminex, or cytometry bead assays, where many antibodies
can be evaluated in the same serum sample. However, these technologies are still being op-
timized before their wide use.

Antibody (or serological) statistical analysis of antibody (or serological) data often as-
sumes the existence of multiple latent populations each one representing a distinct level of
exposure to a given antigen. This basic assumption calls for the use of finite mixture models.
In general, these models can be more or less complex, depending on the number of mixing
distributions used to describe the data [4]. In routine serological applications, one assumes a
model with only two latent populations: seronegative and seropositive individuals or, equiv-
alently, antibody-negative and antibody-positive individuals [5, 6, 7]. Models comprising
more than two serological populations are also used in practice [8, 9, 10, 11, 12], but their
interpretation is not straightforward [13].

A common choice for the mixing distribution is the Lognormal distribution in the
original scale of the measurements or, equivalently, the Normal distribution after applying
the logarithmic transformation to the data [6, 8]. Gamma and Weibull are other choices
among textbook probability distributions [7, 11].

Less-trivial mixture models can be also used in the analysis. For example, a mixture
of two truncated Normal distributions was used to describe data where observations could
fall below the lower limit of detection or above the upper limit of detection of the assay [9].
Another alternative model was the mixture of a Normal distribution and a combination of
half-Normal distributions for the seronegative and seropositive populations, respectively [5].
The rationale behind this model is that antibody levels decrease over time and, therefore, the
seropositive populations should have left-skewed distributions [8]. Similarly, seronegative pop-
ulations should have right-skewed distribution due to the detection of non-specific antibodies
at lowerconcentrationsof the targetantibodies. Notwithstanding the suitabilityof thesealterna-
tive models to tackle specific characteristics of serological data, none of the above models shows
sufficient flexibility in terms of skewness and flatness of each mixing distribution that could
be used serological data analysis and its automation in the context of high-throughput data.
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We then propose using finite mixture models based on Skew-Normal and Skew-t distri-
butions scale in routine serological data analysis. These alternative families of distributions
are highly flexible due to three parameters that control the location, the scale, and the skew-
ness of the resulting distribution. In the case of the Skew-t distribution, further flexibility
can be achieved by an additional parameter that controls the weight of tails. These distribu-
tions also have the advantage of including the Normal distribution, the Generalized Student’s
t-distribution, and its skewed version as special cases [14]. As an example of application, we
use these models to analyse a data set of 6 antibody responses to herpesviruses in the context
of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) [15].

2. DATA UNDER ANALYSIS

ME/CFS is a multifactorial disease whose patients experience persistent fatigue that
cannot be alleviated by rest, or they suffer from post-exertional malaise upon minimal physical
and mental activity [16]. The cause of the disease remains unknown, but it is often linked to
infections by herpesviruses.

The data set under analysis is part of the United Kingdom ME/CFS biobank, and it
was published in a recent study with the aim of investigating the immunological component
of the disease [15]. In the data set, there is a total of 406 individuals divided into three main
groups: healthy controls (HC, n = 107; 26.4%), patients with ME/CFS (n = 250; 61.8%), and
patients with multiple sclerosis (MS, n = 49; 12.1%). The group of patients with ME/CFS
was subdivided into 196 patients with mild or moderate symptoms (ME-M) and 54 severely
affected patients who are home- or even bed-bound (ME-S).

The data set comprises six serological antibody concentrations measured by commercial
ELISA kits and related to the following common herpesviruses: human cytomegalovirus,
CMV; Epstein-Barr virus, EBV; human herpesvirus-6, HHV-6; types 1 and 2 herpes simplex
viruses, HSV-1 and HSV-2, respectively; and varicella-zoster virus, VZV. Note that the tested
antibodies against EBV were specific to the viral-capsid antigen.

The concentration of the antibodies was expressed in arbitrary units per ml (U/ml).
According to the kit manufacturers, individuals with antibody concentration ≤ 8 U/ml or
≥ 12 U/ml should be classified as seronegative or seropositive, respectively, for all antibod-
ies except for the one against HHV-6. For antibodies against HHV-6, seronegative and
seropositivity should be defined as ≤ 10.5 U/ml or ≥ 12.5 U/ml, respectively. Samples with
concentrations between the above limits were considered equivocal.

3. STATISTICAL ANALYSIS OF SEROLOGICAL DATA

3.1. Finite mixture models

Let G1, ..., Gg be the partition from a superpopulation G (sample space) and π1, ..., πg

the probabilities of sampling an individual belonging to each latent population (with the usual
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restriction of
∑g

k=1 πk = 1 and 0≤ πk ≤ 1). A random variable Z is a finite mixture of indepen-
dent random variables Z1,Z2, ...,Zg if the probability density function (pdf) of Z is given by

(3.1) f(z) =
g∑

k=1

πk fZk
(z;θk) ,

where fZk
(z;θk) is the mixing probability density function (pdf) of Zk associated with the

k-th latent population and parameterized by the vector θk = {θ1, ..., θg}.

A common choice for the mixing distribution in the serological analysis is the Normal
distribution which is symmetric around the mean, and it is a mesokurtic distribution (with
kurtosis of 3 irrespective of the mean and standard deviation). Alternatively, the Generalized
Student’s t can be used as the mixing distribution because it has heavier tails than the
Normal distribution. However, data from malaria seroepidemiological studies show long tails
and marked right asymmetry in each latent population even after applying a logarithmic
transformation [7]. In such cases, one aims to incorporate asymmetry and heavy tails in the
finite mixture modelling. This is the purpose of using the Skew-Normal and Skew-t as mixing
distributions [17, 18]. These alternative distributions are members of the so-called scale
mixtures of Skew-Normal (SMSN) distributions [14]. This class of probability distributions
is defined as follows.

Let Zk be a random variable following a SMSN distribution with µk, σ2
k, and αk as the

location, scale, and skewness parameters, respectively, and Hk( · ;vk) as the mixing distribu-
tion parameterized by θk. Then, it can be written as

(3.2) Zk = µk +
Wk√
Uk

,

where Uk is a random variable with distribution function Hk( · ;vk) and Wk ∼ SN (0, σ2
k, αk),

and Wk and Uk are two independent random variables [14]. See Appendix A in the Supple-
mentary Material for additional theoretical discussion about this class of distributions.

3.1.1. Skew-Normal as a mixing distribution

Let Wk be a random variable with a Skew-Normal distribution with location param-
eter µk, scale parameter σ2

k and skewness parameter αk (denoted as Wk ∼ SN (µk, σ
2
k, αk)).

The corresponding pdf is given by

fWk
(w) = 2

1√
2πσk

e
− (w−µk)2

2σ2
k ×

∫ αk
(w−µk)

σk

−∞

1√
2π

e−
x2

2 dx

= 2φ

(
w − µk

σk

)
Φ
(

αk(w − µk)
σk

)
, w, µk, αk ∈ R , σk ∈ R+,

where φ(·) and Φ(·) denotes the pdf and the cumulative distribution function (cdf) of the
standard Normal distribution, respectively [14, 19, 20].

When αk = 0, the above formula recreates the pdf of the Normal distribution.
In this case, the Fisher information matrix of the Skew-Normal is singular, thus, influenc-
ing the asymptotic properties of the maximum likelihood estimators in the vicinity of zero.
A detailed discussion about this topic can be found elsewhere [21, 22, 23].
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When αk =∞, the limiting distribution is the half-Normal distribution [21]. In this
case, the location parameter µk determines the support of the distribution. This property
makes the Skew-Normal distribution particularly useful to model data with a lower or an
upper bound.

Note that the Skew-Normal distribution can be obtained from (3.2) when H( · ; θk) is
a degenerate mixing distribution. Alternatively, the Skew-Normal distribution is a special
case of the skew Normal-Normal [24] and the skew Student-t-Normal distribution [25]. These
two flexible distributions are members of the so-called skew scale mixtures of Normal distri-
butions [25]. This class of probability distributions differs from the class of SMSN in terms
of the respective stochastic representation and dependence between skewness and kurtosis
coefficients; see Ferreira et al. [25] for more details. In theory, distributions from this class
can be seen as alternative candidates to the SMSN ones for the choice of mixing distributions.
However, in practice, there are no estimation algorithms available for the context of finite
mixture models.

3.1.2. Skew-t as a mixing distribution

Let Zk be a random variable that follows a Skew-t distribution with location parameter
µk, scale parameter σ2

k, skewness parameter αk, and vk degrees of freedom. Then, its pdf is
given by

fZk
(z) =

2
σk

t(d; vk) T

(
A

√
vk + 1
d + vk

; vk + 1

)
,

where d = (z − µk)/σk, A = αk(z − µk)/σk, t( · ; v) and T ( · ; v) are the pdf and cdf of the
standard Student’s t distribution with v degrees of freedom, respectively [14].

When αk = 0, the above distribution converts to the Generalized Student’s t-distribution
with location parameter µk, scale parameter σk and vk degrees of freedom. When vk = 1,
one obtained the Skew-Cauchy distribution. Finally, when the degrees of freedom vk tend to
infinity, one obtains the Skew-Normal as the limiting distribution [14, 19, 20].

Note that the Skew-t distribution can be derived from (3.2) when Uk is a Gamma distri-
bution with parameters α = vk/2 and β = vk/2 [14]. As an additional note, Theodossiou [26]
introduced the skew generalized t distribution with five parameters: location, scale, skew-
ness, and two shape parameters. It can be derived from a ratio between a generalized gamma
distribution and an appropriate transformation of a skew exponential power distribution, but
it cannot be expressed as an SMSN distribution. As such, this alternative distribution has
different skewness and kurtosis when compared to the above Skew-t distribution. See Arslan
and Genç [27] and the references therein for more information.

3.2. Estimation of Skew-Normal and Skew-t mixture models

Let X1, ..., Xn be a random sample that represents the measured antibody levels in
n individuals. In general, it is difficult to determine the maximum likelihood (ML) estimates
of a finite mixture model by direct maximization of the log-likelihood function. To overcome
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this problem, one can use the Expectation-Maximization (EM) algorithm given that the latent
serological status of each individual is unknown and, thus, serological data are incomplete in
that sense.

An EM-type algorithm for estimating SMSN mixture models is fully described else-
where [14]. Briefly, the E-step is the same as in Gaussian mixture models, which has been
largely studied in the literature [14, 17, 28]. Replacing the classical M-step with a sequence
of conditional maximization steps (CM-steps), one obtains closed form expressions for the
parameter estimates and the Fisher’s information matrix [25]. To ensure convergence to the
global maximum of the likelihood function, one should initiate the algorithm with different
values for the parameter estimates. The final parameter estimates should be the ones that
provide the highest value of the log-likelihood among all the different runs of the algorithm.
Note that, for Gaussian mixture models, there are modifications of the classical EM algorithm
that do not require the use of initial conditions and jointly determine the optimal number of
the mixture components [29, 30]. These characteristics of the proposed algorithms reduces
the computational time of analyses including a large number of screened antibodies. However,
similar modifications remain to be done for the context of SMSN mixture models.

To obtain confidence intervals (CIs) for the model parameters, one can simply use the
Wald’s CIs. In the case of skewness parameters αk’s, the respective CIs are given by

α̂k ± Φ−1
(γ+1)/2 se(α̂k) ,

where α̂k is the ML estimate of αk, γ is the confidence level, and Φ−1
(γ+1)/2 is the probit function

evaluated at (γ + 1)/2. However, according to Zeller et al. [40], Wald’s intervals for these
parameters tend to inflate the underlying uncertainty in the case of a single Skew-Normal
distribution. Such inflation can be derived from a poor quadratic approximation of the profile
likelihood (PL) taken as a function of α [41]; see Pawitan for a more general discussion
[42]. In addition, the PL is expected to show an inflexion point at α = 0, which affects the
asymptotic normal approximation for the distribution of the respective ML estimator [21].
Similar argument is expected to hold when estimating the same parameter of a single Skew-t
distribution. In these cases, the PL can be used to determine a more accurate CI for α:

2
{
l(α̂)− l(α)

}
< χ2

γ,1 ,

where α̂ is the ML estimate of α, l(α) is the PL taken as a function of α, and χ2
γ,1 is the

γ quantile of the χ2 distribution with one degree of freedom. See Zeller et al. [40] and
Montenegro et al. [41] for the application of this CI to non-serological data. In the context of
SMSN finite models, the PL approach is not a viable solution due to the presence of different
subpopulations with their own skewness parameter.

3.3. Model selection

Model selection aims to determine the best mixture model for the data in terms of
the number of the constituent components, g, and the respective mixing distributions. With
this purpose, one can use information criteria based on penalized forms of the log-likelihood
function: the Akaike’s Information Criterion (AIC) [31], the Integrated Complete Likelihood
(ICL) [32], the Bayesian Information Criterion (BIC) [33] and its modified versions [34, 35].
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However, AIC tends to overestimate g in Gaussian mixture models even when n is very large
[36]. This overestimation can be explained by a weak penalization of AIC to complex models
with spurious mixing components that can arise from unbounded likelihood functions or from
the presence of multiple local maximizers of the log-likelihood function [37]. In the case of
serological applications, the overestimation of g compromises interpretability of a mixture
model with more than 2 components [13]. In contrast, ICL tends to underestimate g and it is
more adequate when the mixture components are well separated [32]. Finally, In this regard,
BIC offers a higher penalization of models with a higher components when compared to AIC.
However, the regularity conditions for using BIC do not necessarily hold in analysing finite
mixture models [33, 35]. However, simulation studies suggested a satisfactory performance of
this criterion (or its modified versions) in determining the true number of Gaussian mixture
components [29, 35]. Therefore, at this stage, BIC seems the recommended measure when
comparing different mixture models. Simulation studies should be conducted in the future
to confirm this recommendation.

To complement the analysis based on information criteria, one can also carry out the
likelihood ratio test (LRT) for determining the optimal number of mixture components, g [4].
However, the regularity conditions for the asymptotic χ2 approximation of the test statistic
are not met in finite mixture models, because the null hypothesis is specified in the boundary
of the parameter space [4]. To overcome this problem, one can use a parametric Bootstrap
approach to estimate the p-value of this non-standard LRT [38, 39], as described below.

Consider the test for confronting H0 : g = g0 versus H1 : g = g1 where g0 < g1. Let ψ0

and ψ1 be the parameter vectors of the mixture models under H0 and H1, respectively;
x = (x1, ..., xn) the observed data and T (x;ψ0,ψ1) the test statistic of LRT. The bootstrap
approach is given by the following algorithm [39]:

1. Use the EM algorithm to estimate the ψ0 and ψ1 estimates under the H0 and H1

hypotheses, respectively. Calculate T (x; ψ̂0, ψ̂1);

2. Simulate N = 10, 000 independent samples x∗1, ...,x
∗
n using the mixture model under

H0 and parameterized by ψ̂0;

3. For each bootstrap sample i, calculate T (x∗i ; ψ̂0i , ψ̂1i), where ψ̂0i and ψ̂1i are the
estimated parameter vectors for the bootstrap sample i under the H0 and H1 hy-
potheses, respectively;

4. Estimate the p-value as 1
N

∑N
i=1 I

{
T (x∗i ; ψ̂0i , ψ̂1i) > T (x; ψ̂0, ψ̂1)

}
, where I{·} is

the indicator function.

Finally, the estimated models should be assessed in terms of their goodness of fit. For a
matter of simplicity, one can simply used the Pearson’s χ2 test [43, 44]. To apply this test, one
can divide the data into bins defined by the respective 5%-quantiles or deciles. Alternatively, one
can use the Kolmogorov-Smirnov, Anderson-Darling, and Walton’s test among others [45].

3.4. Estimation of seroprevalence

After determining the best finite mixture model for the data, the next step of the anal-
ysis is usually to estimate the seroprevalence, that is, the prevalence of antibody-positive
individuals in the population (or, the probability of an individual being antibody-positive).
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Seropositivity is traditionally defined by a cutoff, denoted by c, in the respective antibody
distribution above which individuals would be considered seropositive. In the context of finite
mixture models, cutoff determination requires the interpretation of each latent population in
terms of seronegativity and seropositivity. To do that, one typically assumes the seronegative
population as the one with lowest average while the remaining components are interpreted as
different levels of seropositivity upon recurrent infections. In this scenario, the seropositivity
of i-th individual can be seen as resulting from a Bernoulli random variable Yi ∼ Ber(p) where
p = P [Xi ≥ c] and Xi (i = 1, ..., n) represents the random variable representing the underly-
ing antibody concentration. The probability p is also called seroprevalence and it embodies
the probability of exposed individuals to a given antigen in the population. According to the
maximum likelihood method, seroprevalence can be estimated as the proportion of seropos-
itive individuals in the sample. Therefore, different estimates for the seroprevalence can be
obtained according to the methods used to determine the cutoff.

In this work, we consider the following three different methods for determining the
seropositivity cutoff:

– Method 1: It is based on the 99.9%-quantile associated with the estimated sero-
negative population. This method is the most popular in sero-epidemiology [13, 46].
It is often called as the 3σ rule, because the 99.9%-quantile is given by the mean plus
3 times the standard deviation of a normally distributed seronegative population;

– Method 2: It relies on the minimum of the density mixture functions. In the case
of two latent populations, the cutoff corresponds to the absolute minimum, and in the
case of three or more latent populations the cutoff corresponds to the lowest relative
minimum. This point can be calculated using the Dekker’s algorithm [47]. It should
be noted that the minimum of the mixing function is not expected to coincide with the
point of intersection of the probability densities of each individual subpopulation;

– Method 3: It imposes a threshold in the the so-called conditional classification curves
[13]. Under the assumption that all components but the first one refer to seropositive
individuals, the conditional classification curve of seropositive individuals given the
antibody level x is defined as

p+|x =
∑g

k=2 πk fk(x;θk)∑g
k=1 πk fk(x;θk)

.

In turn, the classification curve of seronegative individuals is given by

p−|x = 1− p+|x .

After calculating these curves, one can impose a minimum value for the classification of
each individual. In this case, two cut-off values arise in the antibody distribution, one for
the seronegative individuals and another for seropositive individuals. Mathematically,
the classification rule is given as follows

Ci =


seronegative , if xi ≤ c− ,

equivocal , if c− < xi < c+ ,

seropositive , if xi ≥ c+ ,

where c− and c+ are the cutoff values in the antibody distribution that ensure a minimum
classification probability, say 90%. To calculate these cutoff values in practice, one can
use the bisection method providing an initial interval where they might be located [13].
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Note that the cutoff values based on the above methods are dependent on the data under
analysis and, therefore, they should be seen as random realizations of the respective estimator
distributions. In other words, they have some uncertainty associated with them due to
random sampling. However, this uncertainty is typically neglected in serological data analysis.
This topic will be discussed elsewhere in the near future.

3.5. R packages

We used the package mixsmsn to fit different SMSN mixture models [48]. In the EM
algorithm, the tolerance value for the norm of the difference between parameter estimates
from two consecutive iterations was 10−5 with a maximum of 10,000 iterations. For each
model and antibody under analysis, the EM algorithm was started with 100 random initial
guesses for the parameter estimates. The reported estimates were the ones that led to the
maximum of the likelihood function among all the runs of the algorithm. For fitting the
Generalized Student’s t-distribution, we considered the R package extraDistr [49], namely,
the functions dlst and plst to calculate its pdf and cdf, respectively. The estimation of the
Skew-Normal and Skew-t distributions was done in the package sn [50]. See Appendix B in
the Supplementary Material for a detailed discussion about the computational costs of the
proposed methodology.

4. RESULTS

Serological data refer to positive quantities bounded by an upper limit of detection.
In theory, the Skew-Normal or the Skew-t distributions can describe bounded data by setting
the respective skewness parameter close to infinity. However, this situation reduces model
flexibility by forcing the analysis to be done with SMSN mixture models composed of highly
asymmetric mixing distributions. Besides that, it is possible to obtain a good fit of the
Gaussian mixture models to serological data after a data transformation [7]. To avoid reducing
model flexibility while checking the appropriateness of Gaussian normal models, we applied
the logarithmic transformation to the data. For an intuitive interpretation of the resulting
data, we used the base 10 logarithmic transformation.

4.1. Exploratory data analysis

In this preliminary data analysis, we aimed to demonstrate the necessity of using alter-
native mixture models beyond the ones based on the Normal distribution. For this purpose,
we partitioned each data set according to the cutoff values suggested by the manufacturers
of the commercial kits (see Section 2). We assumed that antibody values below and above
these values reflected somehow the distributions of the seronegative and seropositive popula-
tions, respectively. We then calculated the empirical skewness and excess kurtosis coefficients
in each subset of data (Supplementary Table 2). Note that negative and positive estimates
of the excess kurtosis indicated distributions with lighter or heavier tails than the Normal
distribution, respectively.



120 T. Dias Domingues, H. Mouriño and N. Sepúlveda

As expected, the putative seropositive populations tended to have a skewness close to
zero (HHV-6 and HSV-2) or a negative skewness (CMV, EBV, HSV-1, and VZV) of the
respective antibody distribution. Similar evidence could be taken by a visual inspection of
the histograms of the data (Figure 1A and B). The empirical estimates of the excess kurtosis
were in most cases negative, which suggested distributions with lighter tails than the Normal
distribution. However, these negative estimates might have simply resulted from dividing the
data into two parts, and such a division limits the “size” of the tails associated with each
serological population.

With respect to the putative seronegative populations, the skewness estimates were
close to zero in the case of CMV, HSV-1, and HSV-2. For the remaining cases (EBV, HHV-6,
and VZV), the skewness estimates were unexpectedly negative. The estimates of the excess
kurtosis suggested similar weights of the tails for HSV-2 and VZV. For the remaining, the
tails seemed to be lighter or heavier than the Normal distribution.

Finally, there was no evidence based on skewness and excess kurtosis alone for an
antibody distribution in which both the seronegative and seropositive populations were similar
to the Normal distribution. This suggested the necessity of considering finite mixture models
based on families of probability distributions, such as the Skew-Normal or Skew-t, in which
skewness and the weight of tails can be modelled appropriately.

4.2. Serological data analysis using Skew-Normal and Skew-t mixture models

To avoid selecting mixture models with difficult biological interpretation due to a
high number of components g, we restricted our analysis to models with g = 1 (data exclu-
sively composed of a single population, seronegative or seropositive), g = 2 (presence of both
seronegative and seropositive populations), and g = 3. When fitting the Skew-tmixture models,
the package mixsmsn only allowed to estimate models with the same degree of freedom for
all the mixing distributions (i.e., v1 = ··· = vg = v).

Before fitting different SMSN mixture models, we first conducted a preliminary analysis
based on Gaussian mixture models. In this analysis, we applied an alternative EM algorithm
in which there was no need for setting initial values for the parameter estimates while si-
multaneously determining the optimal number of the components, ĝ [30]. The criterion for
determining ĝ was the maximization of the likelihood function penalized by entropy. For the
antibodies against EBV, HSV-2 and VZV viruses, the best Gaussian mixture models were
composed of two serological populations. These populations could be interpreted as putative
seropositive and seronegative populations. For the remaining antibodies, the best models
suggested the presence of three serological populations in the respective data. In this case,
the biological interpretation of the respective serological populations is not straightforward,
as discussed elsewhere [13].

When compared to our preliminary analysis, the best SMSN mixture models according
to BIC tended to require a lesser number of components. In particular, antibodies could be
divided into three major classes:

(i) antibodies against HHV-6 and VZV in which data suggested the presence of a
single serological population (Table 1 and Figure 1A);
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(ii) antibodies against CMV, EBV, and HSV-2 for which there was evidence for two
serological populations (Table 2 and Figure 1B);

(iii) antibodies against HSV-2 in which the optimal mixture model is composed of
three serological populations (Table 2 and Figure 1B).

Table 1: Analysis of antibody data with evidence for a single serological population,
where g represents the number of serological populations, p is the respective
number of model parameters, Lmax is the value of the maximized log-likelihood
function, pgof is the maximum p-value for the goodness-of-fit test when di-
viding data into deciles or 5%-quantiles, and pboot is the Bootstrap p-value
for testing H0 : g = 1 versus H1: g = 2. Best models according to BIC and the
goodness-of-fit tests are written in bold.

Virus SMSN g p Lmax AIC BIC pgof pboot

HHV-6

Normal
1 2 −129.46 263.00 270.94 0.064 0.064
2 5 −116.97 244.13 263.97 0.169
3 8 −110.43 241.51 268.91 0.462

Skew-Normal
1 3 −121.35 248.80 260.71 0.140 0.027
2 7 −117.35 249.03 276.75 0.084
3 11 −109.40 241.22 284.87 0.152

Student’s t
1 3 −124.38 254.86 266.77 0.157 0.042
2 6 −117.14 246.55 270.32 0.122
3 9 −105.36 229.06 264.78 0.254

Skew-t
1 4 −118.81 245.78 261.65 0.148 0.409
2 8 −116.83 253.54 281.71 0.076
3 12 −104.00 234.73 282.36 0.001

VZV

Normal
1 2 −108.76 221.58 229.53 < 0.001 0.000
2 5 −7.28 24.72 44.60 0.159
3 8 −1.70 19.95 51.45 0.153

Skew-Normal
1 3 −23.94 53.99 65.90 < 0.001 0.180
2 7 −0.11 14.69 42.27 0.406
3 11 0.10 16.87 65.87 0.068

Student’s t
1 3 −61.90 129.88 141.80 < 0.001 0.000
2 6 −7.41 26.99 50.86 0.082
3 9 −1.68 21.98 57.42 0.113

Skew-t
1 4 −7.89 24.29 39.81 0.076 0.375
2 8 −0.05 16.76 48.16 0.211
3 12 5.47 25.31 62.14 0.134

Data of antibodies against HHV-6 and VZV were best described by the Skew-Normal
and the Skew-t distributions, respectively. The estimated distributions showed left asymmetry
(Figure 1A) with the respective skewness parameter estimated at −1.87 and −5.14 for HHV-6
and VZV datasets, respectively. Accordingly, the Wald’s and the PL 95%s CIs provided
negative values for this parameter in the case of the HHV6 data: (−2.44; −1.02) and (−2.57;
−1.25), respectively. In this case, the likelihood ratio based on the PL can be roughly
approximated by a quadratic function, and, therefore, these two CIs did not substantially
differ from each other (Figure 2A). According to the theoretical findings of Chiogna [21],
this function showed an inflexion point at α = 0. At the level of 5%, there was evidence for
a single Skew-Normal against a mixture of two Skew-Normal distributions (pboot = 0.027).
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In the case of VZV antibody data, the Wald’s and the PL 95% CIs also agreed in terms of
a negative skew: (−6.94; −2.14) and (−8.00; −3.32), respectively. However, the likelihood
ratio based on the profile likelihood was far from a quadratic function and, therefore, the
Wald’s CI is not expected to produce reliable results for these data. Finally, there was strong
evidence for a single Skew-t distribution compared to a mixture of two Skew-t distributions
(pboot = 0.375).
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Figure 1: Carry forward and percentage change indices.
Both indices tend to approximate in the months with less prices.

In terms of the respective serological interpretation, a single population for antibodies
against HHV-6 and VZV is consistent with a seropositive population, given that HHV-6 and
VZV are usually acquired during childhood, and more than 95% of the adult populations
show the presence of antibodies against these viruses [51]. In addition, the core values of
these distributions are higher than the cutoff for seropositivity suggested by the lab protocol.
Finally, a left skewness is also predicted for a hypothetical seropositive population because
the antibodies should decay over time in the absence of repeated infections [8].
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Table 2: Analysis of antibody data with evidence for more than one serological population.
See Table 1 for further details.

Virus SMSN g p Lmax AIC BIC pgof

CMV

Normal
1 2 −409.11 822.29 830.24 < 0.001
2 5 −245.75 501.66 521.54 0.016
3 8 −233.70 483.64 515.45 0.018

Skew-Normal
1 3 −357.61 721.30 733.23 < 0.001
2 7 −233.82 482.66 509.69 0.038
3 11 −226.64 489.78 519.35 0.146

Student’s t
1 3 −410.14 826.36 838.29 < 0.001
2 6 −238.54 489.27 513.12 0.038
3 9 −231.23 480.81 516.59 0.046

Skew-t
1 4 −357.71 723.55 739.45 < 0.001
2 8 −231.55 479.34 511.45 0.072
3 12 −226.93 478.22 525.93 0.324

EBV

Normal
1 2 −342.30 688.67 696.62 < 0.001
2 5 −152.66 315.48 335.36 < 0.001
3 8 −129.30 274.84 306.65 0.173

Skew-Normal
1 3 −226.42 458.93 470.86 < 0.001
2 7 −130.57 275.34 303.17 0.084
3 11 −128.02 278.51 322.10 0.054

Student’s t
1 3 −240.21 486.50 498.43 < 0.001
2 6 −151.61 315.39 339.26 < 0.001
3 9 −129.41 277.09 312.88 0.117

Skew-t
1 4 −173.14 354.40 370.31 < 0.001
2 8 −125.63 267.65 299.32 0.248
3 12 −126.29 280.61 324.66 0.087

HSV-1

Normal
1 2 −442.27 888.61 896.56 < 0.001
2 5 −291.59 593.34 613.22 < 0.001
3 8 −264.94 546.14 577.94 0.003

Skew-Normal
1 3 −394.55 806.62 807.11 < 0.001
2 7 −260.74 538.10 563.52 0.003
3 11 −252.32 527.39 570.70 0.104

Student’s t
1 3 −443.73 893.55 905.48 < 0.001
2 7 −291.73 595.65 619.51 < 0.001
3 9 −264.98 548.23 584.02 0.002

Skew-t
1 4 −395.43 812.55 814.88 < 0.001
2 8 −260.88 541.64 569.82 0.001
3 12 −251.86 528.84 575.79 < 0.001

HSV-2

Normal
1 2 −427.29 858.63 866.59 < 0.001
2 5 −277.62 565.39 585.27 0.516
3 8 −269.24 565.92 586.54 0.007

Skew-Normal
1 3 −337.36 684.60 692.74 < 0.001
2 7 −264.32 544.79 570.68 0.013
3 11 −257.19 550.71 580.45 0.003

Student’s t
1 3 −428.40 862.88 874.81 < 0.001
2 6 −277.84 567.85 591.71 0.688
3 9 −269.60 557.52 593.26 0.004

Skew-t
1 4 −337.79 687.68 699.60 < 0.001
2 8 −264.52 547.40 577.10 0.007
3 12 −257.38 562.77 586.83 0.001
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Note that most of the SMSN mixture models could also provide a good fitting of the data
of these two antibodies. This is the case of the mixture of two or three Normal distributions
(pgof = 0.169 and 0.462 for antibodies against HHV-6 and pgof = 0.159 and 0.153), which are
typically used in serological data analysis. Therefore, although not being the best models
for HHV-6 and VZV-related antibodies, these models could have been used for subsequent
serological analyses.

For the remaining antibodies, the respective data analysis was not straightforward be-
cause the model with lowest BIC estimate could not fit the data well according to the Pearson’s
goodness-of-fit test at 5% significance level (Table 2). This occurred for the mixtures of two
Skew-Normal distributions for the antibodies against CMV (BIC = 509.69 and pgof = 0.038),
HSV-1 (BIC = 563.52 and pgof = 0.003), and HSV-2 (BIC = 570.68 and pgof = 0.013).
For these antibodies, the best models were considered to be a mixture of two Skew-t dis-
tributions (BIC = 511.45 and pgof = 0.072), a mixture of three Skew-Normal distributions
(BIC = 570.70 and pgof = 0.104), and a mixture of two Normal distributions (BIC = 585.27
and pgof = 0.516), respectively, because they were the first models ranked by BIC with a
good fit for the data (Figure 1B). Interestingly, for the HSV-2-related antibody data, when
the mixture of two Normal distributions was compared to the mixture of two Skew-Normal
distribution by a likelihood ratio test, the first model was strongly rejected (p < 0.0001),
which suggested the asymmetry of at least one of the components. This inconsistency be-
tween this test and the selected model can be explained by the unavailability of fitting
a mixture of a Normal distribution and a Skew-Normal distribution in the package smsn.
For the antibody against EBV, the best model was a mixture of two Skew-t distributions,
which also had a good fit for the data (BIC = 299.32 and pgof = 0.248; Figure 1B).

With respect to the biological interpretation of each component, there was evidence
of putative seronegative and seropositive populations for antibodies against CMV, EBV,
and HSV-2 (Figure 1B). This interpretation was supported by the observation that the cutoff
value suggested by the commercial kits lies between these hypothetical serological populations.
In the case of antibodies against HSV-1, the respective interpretation was not so obvious,
because

(i) the best mixture model was composed of three components and

(ii) the cutoff suggested by the commercial kits lies in the middle of the intermediate
distribution, which shows right asymmetry.

In theory, the distribution of a putative seronegative population is expected to have right
asymmetry [8] and, if so, this intermediate component should be interpreted accordingly.
However, one cannot rule out that there are two seronegative populations resulting from dis-
tinct background signals in the absence of antibodies. Without additional information about
the serological data, this intermediate component was considered to represent a putative
seronegative population.

Finally, we performed a similar model selection using AIC instead. Again, we selected
the best models with the lowest AIC estimates and with a good fit to the data (pgof > 0.05)
at the same time. In contrast with BIC results, this alternative model selection could not
provide evidence for a single serological population in the data of HHV-6 and VZV (Table 1).
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In these two cases of HHV-6, the best models were mixtures of three Generalized Student-t
distributions (AIC = 229.06 and pgof = 0.254) and of two Skew-Normal distributions (AIC =
14.69 and pgof = 0.406), respectively. For antibody against CMV, the best model was a mix-
ture of three Skew-t distributions (AIC = 478.2 and pgof = 0.32), which reflected an increase
in the number of components compared to model selection using BIC (Table 2). For the
remaining antibodies, it was selected the same model (Table 2). In summary, AIC tended to
select models with an increased number of components required to explain the data of each
antibody.
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Figure 2: Likelihood ratio (LR) based on the profile likelihood as a function of the skew parameter α,
when fitting the Skew-Normal and Skew-t distributions to HHV-6 (A) and VZV (B) data,
respectively. The horizontal dashed lines represent the 95% quantile of a χ2 distribution
with one degree of freedom. The grey rectangles represent the 95% CI for α according to
this method.

4.3. Estimation of cutoff for seropositivity

After fitting the mixture models to the data, the following step of the analysis was to
estimate a cutoff value for seropositivity and the subsequent seroprevalence in the different
study groups (Table 3).

For CMV and HSV-2 antibody data, the cutoff values did not vary substantially from
one method to another. Interesting, the cutoff values estimated by method 1 (the 3σ rule)
almost perfectly matched with the ones suggested by the commercial kits (12.6 U/ml and
12.0 U/ml for CMV and HSV-2 respectively versus 12.0). This good matching between es-
timates could be explained by a good approximation of the Normal distribution for the
seronegative population (Figure 1B) and, therefore, we could infer that the cutoff value sug-
gested by the commercial kits was derived from the 3σ rule; this information was absent from
the original study [15]. Since the seronegative and seropositive populations were separated
well in these antibody distributions, the seroprevalence estimates across the different study
groups were almost invariant with respect to the cutoff value used.

With respect to the EBV antibody data, the hypothetical seronegative population is
asymmetric to the right (α1 = 1.74; 95% CI = (−1.30; 4.80); bootstrap 95% CI = (0.04; 7.90);
Figure 1B) with heavy tails (v = 4.52; 95%CI = (0.79; 8.26); bootstrap 95%CI = (3.00; 14.88)).
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Consequently, the cutoff value of 249.5 U/ml derived from method 1 was quite different from
the one suggested by the commercial kit. However, this cutoff value was considered non-
informative because it was well located within the seropositive population and implied sero-
prevalence estimates close to zero for the different study groups. In contrast, the cutoff values
from the remaining methods were in the same order of magnitude of the one suggested by the
commercial kits. Therefore, the subsequent seroprevalence estimates of each study group did
not differ substantially among these methods. Again, the consistency of the resulting sero-
prevalence estimates was due to the fact that the seronegative and seropositive populations
were well separated in these data.

Table 3: Seroprevalence (%) by cutoff method for seropositivity and by study group.
c− and c+ are on the linear scale (U/ml). Seroprevalence was calculated
based on c+. The method denoted by “M” refers to the cutoff suggested by
the protocol of the commercial kit. The confidence intervals (CI) refer to
the Clopper-Pearson exact confidence interval for a proportion.

Seroprevalence (95% CI)
Virus Method c− c+

Global HC ME-M ME-S MS

CMV

M 8.0 12.0
33.5

(28.9–38.4)
37.4

(28.2–47.3)
28.6

(22.4–35.4)
33.3

(21.1–47.5)
36.7

(23.4–51.7)

1 — 12.6
33.5

(28.9–38.4)
37.4

(28.2–47.3)
28.6

(22.4–35.4)
33.3

(21.1–47.5)
36.7

(23.4–51.7)

2 — 13.5
33.2

(28.6–38.1)
37.4

(28.2–47.3)
28.6

(22.4–35.4)
31.5

(19.5–45.6)
36.7

(23.4–51.7)

3 9.4 14.1
32.9

(28.4–37.9)
37.4

(28.2–47.3)
28.1

(21.9–34.9)
31.5

(19.5–45.6)
36.7

(23.4–51.7)

EBV

M 8.0 12.0
87.3

(83.6–90.4)
87.9

(80.1–93.4)
86.2

(80.6–90.7)
81.5

(68.6–90.7)
75.5

(61.1–86.7)

1 — 249.5
2.0

(0.09–3.9)
1.9

(0.02–6.6)
1.5

(0.03–4.4)
0.0

(0.0–6.6)
6.1

(1.3–16.9)

2 — 11.5
87.3

(83.6–90.4)
87.9

(80.1–93.4)
86.2

(80.6–90.7)
81.5

(68.6–90.7)
75.5

(61.1–86.7)

3 5.6 20.4
85.5

(81.7–88.9)
87.9

(80.1–93.4)
82.7

(76.6–87.7)
81.5

(68.6–90.7)
75.5

(61.1–75.5)

HSV-1

M 8.0 12.0
45.2

(40.2–50.2)
42.1

(32.6–51.9)
41.8

(34.8–49.1)
51.9

(37.8–65.6)
46.9

(32.5–61.7)

1 — 271.0
0.0

(0.0–0.1)
0.0

(0.0–3.4)
0.0

(0.0–1.2)
0.0

(0.0–6.6)
0.0

(0.0–7.3)

2 — 46.9
34.5

(29.8–39.4)
28.0

(19.8–37.5)
34.7

(28.1–41.8)
38.9

(25.9–53.1)
34.7

(21.7–49.6)

3 42.7 83.2
30.7

(26.2–35.5)
24.3

(16.5–33.5)
32.1

(25.7–39.2)
33.3

(21.1–47.5)
28.6

(16.6–43.3)

HSV-2

M 8.0 12.0
38.1

(33.3–43.1)
33.6

(24.8–43.4)
38.8

(31.9–45.9)
40.7

(27.6–54.9)
32.7

(19.9–47.5)

1 — 12.0
38.1

(33.3–43.1)
33.6

(24.8–43.4)
38.8

(31.9–45.9)
40.7

(27.6–54.9)
32.7

(19.9–47.5)

2 — 10.7
38.8

(33.9–43.8)
33.6

(24.8–43.4)
39.3

(32.4–46.5)
40.7

(27.6–54.9)
36.7

(23.4–51.7)

3 7.1 12.6
37.8

(33.0–42.8)
33.6

(24.8–43.4)
38.8

(31.9–45.9)
40.7

(27.6–54.9)
30.6

(18.3–45.4)
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The largest differences in the cutoff values for seropositivity were observed for the
HSV-1 antibody data. Coincidentally, this was the data set where the best mixture model
was composed of three components. As discussed earlier in this paper, the intermediate
component was considered a second hypothetical seronegative population, which resulted
in a shift in the calculation of seropositivity towards higher values. As such, the cutoff
seropositive based on the commercial kit led to the highest seroprevalence estimates for all
study groups with a global estimate of 45.2% (95%CI = (40.2%; 50.2%). As an extreme case,
the 3σ rule produced a too-high cutoff value again due to the right asymmetry of both
seronegative populations. Such unrealistic cutoff value led to a zero seroprevalence estimates
and rendered the respective analysis useless.

Finally, although not being the main objective of this study, the comparison of the
four study groups suggested that, given a method for determining seropositivity and anti-
body under analysis, the seroprevalence of patients with ME/CFS did not appear to differ
significantly from the one of healthy controls and patients with multiple sclerosis alike.

5. CONCLUSIONS

This study aimed to review the Skew-Normal and Skew-t mixture models and recom-
mend their routine use in serological data analysis. Such recommendation sets its foundation
in the high flexibility of these models in describing different data patterns, as illustrated
with the data analysis of antibodies against 6 herpesviruses. In particular, high modelling
flexibility is desirable given that right and left asymmetry can emerge from seronegative and
seropositive populations, respectively. In this regard, most popular distributions used in
Statistics are not able to exhibit either left or right asymmetry depending on the parameters
specified. A less-known family of distributions that shows such stochastic property is the
Generalized Tukey’s λ distribution [54, 55]. This distribution offers a great variety of shapes
owing to four parameters controlling the location, the scale, the skewness, and the flatness
of the resulting distribution. However, the Generalized Tukey’s λ distribution is only defined
in terms of its quantile function and, hence, its estimation is cumbersome. This distribution
has already been proposed for mixture modelling, but there are only theoretical and compu-
tational developments for the case of two components [52, 53]. This limits the application of
these alternative models in data sets where there is evidence for more than two serological
populations, such as the case of the antibodies against HSV-1 here analyzed or against the
influenza virus reported elsewhere [11]. Therefore, Skew-Normal and Skew-t mixture models
would appear the most general and flexible approach for analysing serological data.

For data analysis, we recommend using the package mixsmsn for estimating the fi-
nite mixture models [48]. Notwithstanding this recommendation, the package only estimates
SMSN mixture models where all mixing distributions belong to the same family of SMSN
probability distributions. Hence, it can only fit 4 different models per number of compo-
nents. In theory, there are 42 = 16 possible two-component mixture models resulting from
the combination of Normal, Skew-Normal, Generalized Student’s t, and Skew-t distributions
as mixing distributions. Note that these possible models are nested in each other by imposing
parametric restrictions to the most general mixture model based on the Skew-t distribution.
For three-component mixture models, the number of possible models increases to 43 = 64.
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Therefore, the package mixsmsn excludes a vast number of possible models, which ultimately
affects the detection of the most parsimonious model for the data; this model could be a com-
bination of probability distributions from different families. The same limitation could also
explain some inferential inconsistencies in the example of application. For instance, a single
Skew-Normal distribution was considered the best model for the antibodies against HHV-6.
However, the hypothesis of a single Skew-Normal distribution against a mixture of two Skew-
Normal distributions could be rejected by bootstrap at the 5% significance level. A possible ex-
planation for this statistical inconsistency is that the best model for these data could be a mix-
ture of a Normal distribution for the seronegative population and a Skew-Normal distribution
for the seropositive population. Therefore, there is a research opportunity to extend the package
allowing each mixing component to be described by different families of SMSN distributions.

Another limitation of using mixsmsn package is that, for mathematical tractability,
the mixtures of generalized Student t and Skew-t distributions were assumed to have the
same degrees of freedom in all the mixing distributions. In theory, this assumption could
be relaxed so this parameter could vary from one component of the mixture to another.
This modelling option was available in the package EMMIXuskew for the mixture of Skew-t
distributions [56]. However, this package is currently discontinued. In practice, we expect
some degree of numerical instability when estimating different degrees of freedom in data
where the serological populations overlap substantially with each other. In this regard, future
research could be conducted to determine the stochastic and sampling conditions in which
different degrees of freedom could infer from different components.

The problem of determining the optimal cutoff value for seropositivity has been inten-
sively investigated, discussed, and revisited over the years [46, 57, 58, 59]. In this regard, the
most popular cutoffs for seropositivity are simply defined by the mean plus a given number
of times the standard deviation of the hypothetical seronegative population without checking
the Normality assumption of the hypothetical seronegative population. The resulting cutoffs
are associated with high-order quantiles of the Normal distribution, such as 97.7% or 99.9%
for the 2σ and 3σ rules, respectively. In practice, these cutoffs imply a high specificity but
show an arbitrary sensitivity for the respective serological classification. When the hypotheti-
cal seronegative population shows a right-skewed distribution, similar cutoffs can be obtained
by calculating the same high quantiles of the estimated SMSN, as done here. The reverse
argument can be made when analysing antibodies where seropositivity could be considered
the default serological state of an individual, such as the case of antibodies against HHV-6
and VZV here analyzed or vaccine-related antibodies in populations where vaccination is
mandatory. Similar cutoffs can be determined for these antibodies by the mean minus a given
number of times the standard deviation of the hypothetical seropositive population assumed
to be normally distributed. For a left-skewed seropositive population, the cutoff values for
seropositivity are now calculated using the low order quantiles (e.g., 2.3% and 0.1%-quantiles
for the 2σ and 3σ rules, respectively). Inversely, these cutoffs generate a high sensitivity
but an arbitrary specificity for the respective serological classification. It is worth noting
that it is up to the analyst to decide on what she/he wants to control, whether specificity,
sensitivity, or both with respect to the resulting serological classification. A similar decision
problem occurs in analyses based on the Receiver Operating Characteristic curve. Given the
multiplicity of criteria for estimating this cutoff and its uncertainty, several authors advocate
a free-cutoff approach for serological analysis [6, 60]. However, a detailed discussion about
the advantages and disadvantages of free-cutoff approaches was out of the scope of this study.
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In summary, the mixture models based on Skew-Normal and Skew-t distributions show
promise to become a routine tool for serological data analysis. They have the advantage
of including the Gaussian mixture models as special cases. However, given the statistical
complexity of these models and some inferential problems highlighted throughout the paper,
their application should be done in a closer collaboration between biomedical researchers who
generate the serological data and biostatisticians who have in principle the knowledge and
skills to fit and compared these mode properly.
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