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A. APPENDIX – Theoretical details of the Skew-Normal and Skew-t distribu-
tions as members of the SMSN family

A random variable Zk belongs to the SMSN family with location parameter µk, scale
parameter σ2

k and skewness parameter αk (denoted as Zk ∼ SMSN (µk, σ
2
k, αk,H)) if it can

be written in the following way:

(A.1) Zk = µk +
Wk√
Uk

,

where µk is the location parameter; Uk is a random variable with distribution function
Hk(·,vk) and pdf hk(·,vk); vk is either a scalar or a vector of parameters indexing the
distribution of Uk; and Wk ∼ SN (0, σ2

k, αk) which is assumed to be independent of Uk [1, 2].
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Based on expression (A.1), it is worth noting that the conditional distribution Zk|Uk = u

takes the form

FZk|Uk=u(z) = P (Zk ≤ z) = P (µk +
1√
u

Wk ≤ z)(A.2)

= P (Wk ≤
√

u(z − µk)) = FWk
(
√

u(z − µk)), z ∈ R.

Thus,

fZk|Uk=u(z) =
d

dz
FWk

(z) =
√

u× fWk
(
√

u(z − µk))(A.3)

=
√

u
2
σk

φ

(√
u(z − µk)

σk

)
Φ

(
αk
√

u(z − µk)
σk

)
, z ∈ R,

where φ(.) represents the pdf of the standard Normal distribution. Which is equivalent to,

fZk|Uk=u(z) = 2φ

(
z;µk,

σ2
k
u

)
Φ

(
αk(z−µk)

σk/
√

u

)
, z ∈ R, where φ(·;µk,

σ2
k
u ) denotes the pdf of the

N (µk,
σ2

k
u ). Hence, Zk|Uk = u ∼ SN (µk,

σ2
k
u , αk).

The marginal probability density distribution of Zk is given by

fZk
(z) =

∫ +∞

0
2φ

(
z;µk,

σ2
k

u

)
Φ

(
αk(z − µk)

σk/
√

u

)
dH(u;v), z ∈ R.

The name of this class of distributions relies on the fact that the density function of Zk

(A.1) involves an infinite mixture of Skew-Normal distributions.

To model different patterns arising from serological data, we rely on 4 particular cases
of the SMSN family. The first one is the case of the Skew-Normal distribution itself. This
happens when Uk is not a random variable but rather the scalar u = 1. Then, variable Zk in
expression (A.1) simplifies to Zk = µk + Wk. Hence,

FZk
(z) = P (Wk ≤ z − µk) = FWk

(z − µk), z ∈ R,(A.4)

fZk
(z) = fWk

(z − µk) = 2φ(z − µk; 0, σ2
k)Φ

(
αk

(
z−µk

σk

))
.(A.5)

Therefore, Zk ∼ SN (µk, σ
2
k, αk).

The second case is a simplification of the previous one when αk = 0. In this case, the
Skew-Normal distribution reduces to the usual (symmetric) Normal distribution. In fact,
when αk = 0 we get

fZk
(z) = 2φ(z − µk; 0, σ2

k)Φ(0) = φ(z − µk; 0, σ2
k) = φ(z;µk, σ

2
k), z ∈ R,

where φ(·;µk, σ
2
k) represents the pdf of the N (µk, σ

2
k) distribution.

The third and fourth cases are the skew Student’s t-distribution and its symmetric coun-
terpart, hereafter referred to as Skew-t and Student’s t-distributions for short, respectively.
These distributions can be obtained as follows.

Let Uk be a Gamma distribution with shape and rate parameters v
2 and v

2 , respectively,
that is, Uk ∼ Gamma(v

2 , v
2 ). The formulation is such that the mean of Uk is equal to one.
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Note that Zk = µk + Wk√
Uk

, where Wk ∼ SN (0, σ2
k, αk), Uk ∼ Gamma(v

2 , v
2 ) are indepen-

dent random variables, is equivalent to Zk = µk + Wkq
Rk
v

where Rk is a χ2 distribution with v

degrees of freedom.

The conditional cumulative distribution function and the corresponding pdf of Zk|Uk =
u are given by the expressions (A.2) and (A.3), respectively. According to expression (A.4),
the marginal probability density distribution of Zk takes the form

fZk
(z) =

∫ +∞

0
fZk|Uk=u(z)fUk

(u)du(A.6)

=
∫ +∞

0
2
√

uφ(
√

u(z − µk); 0, σ2
k)Φ

(
αk
√

u(z − µk)
σk

)
(vk

2 )
vk
2 u

vk
2
−1e−

vk
2
−u

Γ(vk
2 )

du

=
2v

vk
2

k

σk
√

π2
vk+1

2 Γ(vk
2 )

∫ +∞

0
Φ(
√

uA)u
1
2
(vk−1)e−

1
2
u(d+vk)du,

with A = αk(z−µk)
σk

, d =
(

z−µk
σk

)2

.

Integrating expression (A.6) by substitution of the variable s = 1
2u(d + vk), we obtain

(A.7)

fZk
(z) =

2
σk
√

πvk Γ(vk
2 )

(
1 +

d

vk

)− 1
2
(vk+1) ∫ +∞

0
Φ

(
A

√
2s

d + vk

)
s

1
2
(vk−1)e−sds

=
2 Γ(vk+1

2 )
σk
√

πvk Γ(vk
2 )

(
1 +

d

vk

)− 1
2
(vk+1) ∫ +∞

0
Φ

(
A

√
2

d + vk

√
s

)
1

Γ(vk+1
2 )

s
1
2
(vk−1)e−sds

=
2 Γ(vk+1

2 )
σk
√

πvk Γ(vk
2 )

(
1 +

d

vk

)− 1
2
(vk+1)

×

×
∫ +∞

0
P

(
Z ≤ A

√
2

d + vk

√
s|S = s

)
1

Γ(vk+1
2 )

s
1
2
(vk−1)e−sds.

It is important to notice the following Lemma [3].

Lemma: Suppose that Z ∼ N (0, 1), Y ∼ Gamma(m, 1), R ∼ t2m, m > 0. It can be

proved that

E

(
Φ(c

√
Y )

)
=

∫ +∞

0
P (Z ≤ c

√
y|Y = y)fY (y)dy = P (R ≤ c

√
m), c ∈ R.
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Applying this Lemma to expression (A.7) leads to

fZk
(z) =

2 Γ(vk+1
2 )

σk
√

πvk Γ(vk
2 )

(
1 +

d

vk

)− 1
2
(vk+1)

E

(
Φ

(
A

√
2

d + vk

√
s

))
(A.8)

= 2 t(z;µk, σk, vk + 1) E

(
Φ

(
A

√
2

d + vk

√
s

))
= 2 t(z;µk, σk, vk + 1) P

(
T ≤ A

√
vk + 1
d + vk

; vk + 1
)

= 2 t(z;µk, σk, vk + 1) T

(
A

√
vk + 1
d + vk

; vk + 1
)

,

where t(·;µk, σk, vk + 1) denotes the probability density function of a Generalized Student-t
distribution with location parameter µk, scale parameter σk and vk + 1 degrees of freedom;
T (·; vk + 1) represents the cumulative distribution function of a standard Student-t distribu-
tion with vk + 1 degrees of freedom.

In short, if Zk ∼ ST (µk, σ
2
k, αk, vk), then its pdf is given by

fZk
(z) = 2 t(z;µk, σk, vk + 1) T

(
A

√
vk + 1
d + vk

; vk + 1
)

.

B. APPENDIX – Computational aspects of the proposed models

For the analysis of our data, we used a maximum of 10, 000 iterations for the EM
algorithm. To increase the chance of obtaining the correct ML estimates, we ran the algorithm
with 100 different initial values for model parameters. The tolerance for the error between
two consecutive iterations was set 10−5.

We did not experience any computational cost while analysing our data. This can be
explained by two main reasons. Firstly, we only had a small number of antibodies under
analysis. Secondly, in most of the cases, there was a clear separation of the seropositive
and seronegative populations. As such, the convergence of the EM algorithm was obtained
relatively quickly with an average of less than 500 iterations (see examples in Table 1). The
only exception was the VZV data set where the estimation the Skew-t mixture models required
more than 1500 iterations on average.

In general, we envision some computational cost when analysing the data sets with hun-
dreds or even thousands of screened antibodies, as analysed by Loebel et al. [4], Blomberg
et al. [5], van den Hoogen et al. [6] or Proeitti et al. [7]. On the one hand, larger data sets
are likely to contain different data structures where seropositive and seronegative populations
might overlap with different degrees. In this regard, a high overlap between these populations
is expected to increase the number of iterations until the convergence of the EM algorithm.



Supplementary Material for “Skew-Normal and Skew-t mixture models for serological data” 5

Different data structures might also imply the necessity of estimating models with greater
number of components, thus, increasing the number of estimated models. Another computa-
tional cost comes from the fact that current EM algorithm implemented in mixsmsn requires
careful initialization in order to obtain the correct parameter estimates. In our example of
application, we overcame this problem by running the EM algorithm with different initial
values for the parameter estimates. However, such estimation strategy is time consuming
when there is a large number of antibodies under analysis. For the case of Gaussian mixture
models, there are modifications available of the EM algorithm that do not require careful
initialization [8, 9]. These modified algorithms have also the advantage of estimating the
number of the mixture components simultaneously. For the case of SMSN mixture models,
there are no such modified EM algorithms in terms of their computational efficieny. There
is then a research opportunity to improve current EM algorithm for a wide application of
SMSN finite models in the context of high-throughput serology analysis.

Table 1: Average number of iterations of the EM algorithm for estimating some SMSN finite
models to herpesviruses serological data, where g represents the number of components
in the mixture model, p represents the number of parameters of the mixture model.

Virus SMSN g p Average iterations

CMV Skew-t 1 4 80.6
2 8 193.5
3 12 126.5

EBV Skew-t 1 4 143.4
2 8 128.2
3 12 383.6

HSV-1 Skew-Normal 1 3 38.8
2 7 213.2
3 11 173.2

HSV-2 Normal 1 2 2.0
2 5 11.5
3 8 127.5

HHV-6 Skew-Normal 1 3 60.0
2 7 119.9
3 11 379.5

VZV Skew-t 1 4 279.3
2 8 1675.8
3 12 2416.4
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C. APPENDIX – Exploratory data analysis

Table 2: Empirical skewness and excess kurtosis coefficients for hypothetical seronegative
and seropositive populations using the cutoff poins suggested by the manufacturers
of the commercial kits.

Seronegative Seropositive
Virus Skewness Excess Kurtosis Skewness Excess Kurtosis

CMV -0.695 1.062 -0.889 0.198
EBV -2.599 9.399 -0.326 -0.517
HHV-6 -1.095 2.411 0.231 -0.129
HSV-1 0.011 -1.304 -1.021 -0.352
HSV-2 0.604 -0.181 0.139 -0.639
VZV -1.298 0.444 -1.231 1.087
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