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1. INTRODUCTION

In recent years, life testing experiments are less preferred because of being time con-
suming and expensive. In many situations, use of complete sample is neither possible nor
desirable. In such cases, the sample needs to be censored. Censoring is a condition in which
the value of observation is partially known and incomplete. Among different types of censor-
ing schemes, the two basic censoring schemes are type-I and type-II. In the type-I censoring
scheme, the life testing experiment terminates at a pre-specified time T , whereas, the type-II
censoring scheme terminates when one has m number of failures. For applications and im-
portance of these schemes, we refer to Lawless (2011) and Cohen (2016). The main drawback
of these censoring schemes is that they do not allow removal of the items in between other
than the termination point. To overcome such drawback, a more general censoring scheme,
known as the progressive censoring was introduced in the literature. It can be classified into
progressive type-I and progressive type-II censoring schemes. In the progressive type-I cen-
soring scheme, let the number of items used in a life testing experiment be n. In this scheme,
R1, R2, ..., Rm items are randomly withdrawn at pre-specified time points T1, T2, ..., Tm, re-
spectively. The test will be terminated at prefixed time point Tm in this scheme. Now, we
describe the PT-IICS. Consider n number of total units at initial time on an experiment. We
remove randomly R1 number of survival units when first failure time X1:m:n is observed. This
process continues till the m-th failure occurs. We assume that the m-th failure takes place
at time Xm:m:n and the remaining number of surviving units is Rm = n− (m+

∑m−1
i=1 Ri).

Henceforth, we denote R = (R1, R2, ..., Rm) and X = (X1:m:n, X2:m:n, ..., Xm:m:n) for the cen-
soring scheme and the PT-IICS, respectively. Due to several applications, various inferential
procedures based on PT-IICS have been established for many lifetime distributions. For in-
stance, see Muhammed and Almetwally (2020), Nik et al. (2021), Albalawi et al. (2022) and
the references contained therein.

A random variable X is said to follow a gamma-mixed Rayleigh distribution if its
probability density and cumulative distribution functions are respectively given by (α, β > 0)

(1.1) fX(x;α, β) =
αβαx

(x2 + β2)(α/2)+1
and FX(x;α, β) = 1− βα

(x2 + β2)α/2
,

where x > 0. Here, α is known as the shape parameter and β is known as the scale parameter.
The reliability function and the hazard function of this distribution are respectively obtained
as

r(x;α, β) =
βα

(x2 + β2)α/2
and h(x;α, β) =

xα

x2 + β2
,(1.2)

where x > 0 and α, β > 0. Various shapes of the probability density, reliability and hazard
functions of the gamma-mixed Rayleigh distribution are depicted in Figures 1(a), 1(b) and
1(c), respectively. Differentiating h(x;α, β) with respect to x, we obtain

dh(x;α, β)
dx

=
α(β + x)(β − x)

(x2 + β2)2
=


> 0, for x < β

< 0, for x > β

= 0, for x = β.

(1.3)

Thus, the hazard function of the gamma-mixed Rayleigh distribution is increasing for x < β

and decreasing for x > β, for any value of α > 0. Figure 1(c) shows that the hazard of the
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gamma-mixed Rayleigh distribution is hump-shaped, that is, the hazard is increasing early
and eventually begins declining. One may refer to Sarhan et al. (2013) for similar study on
the exponentiated generalized linear exponential distribution. This type of hazard is often
used in modeling data related to survival after successful surgery, where there is an initial
increase in risk due to infection or other complications just after the procedure, followed by
a steady decline in risk as the patient recovers (see Klein and Moeschberger, 1997).
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Figure 1: The plots of the (a) density (b) reliability and (c) hazard functions
based on different values of the parameters.

The Bayesian prediction of the unknown observation is an important problem. Various
authors have studied prediction problems based on the PT-IICS. Kayal et al. (2017) obtained
the prediction intervals and estimates for future observations in one-sample and two-sample
problems for the Chen distribution. Similar problem was studied by Arabi et al. (2019) for the
Poisson-exponential distribution when PT-IICS is available. For flexible Weibull distribution,
Bdair et al. (2019) considered Bayesian prediction problem based on the progressive type-
II censored data. Very recently, Maiti and Kayal (2019) obtained prediction estimates and
intervals for future observations in one-sample and two-sample problems for the generalized
Fréchet distribution from Bayesian point of view. To the best of our knowledge, nobody has
considered the gamma-mixed Rayleigh distribution with distribution function given by (1.1)
for the purpose of statistical inference and Bayesian prediction based on the PT-IICS. In this
paper, we address the problem of inference and prediction when the PT-IICS is available
from gamma-mixed Rayleigh distribution.

The rest of the paper is organized as follows. In the next section, we obtain MLEs
for the unknown parameters, reliability and hazard functions. The existence and uniqueness
of the MLEs have been studied. The EM algorithm is described to compute the proposed
MLEs. Section 3 deals with the construction of various interval estimates. In Section 4, we
derive Bayes estimates with respect to three loss functions. Two approaches are adopted
to compute approximate Bayes estimates. Importance sampling method is used to compute
HPD credible intervals. Further, in Section 5, we derive Bayesian prediction and interval
estimates. In Section 6, we carry out a simulation study to compare the performance of the
proposed estimates. A real life dataset is considered for the illustration purpose. Finally,
Section 7 concludes the paper.
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2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive MLEs of α and β of the gamma-mixed Rayleigh distribution
based on the PT-IICS. Using invariance property of the MLE, the MLEs of r(x) and h(x)
can be obtained. The likelihood function of α and β is given by

(2.1) L(α, β | x) = K
m∏

i=1

(
1− FX(xi:m:n;α, β)

)RifX(xi:m:n;α, β),

where the constant K = n(n − (R1 + 1))(n − (
∑2

j=1Rj + 2)) ··· (n −
∑m−1

j=1 (Rj + 1)) and
x = (x1:m:n, x2:m:n, ..., xm:m:n). The log-likelihood function of α and β is obtained as

` = `(α, β | x) ∝ m lnα+mα lnβ +
m∑

i=1

lnxi:m:n + α lnβ
m∑

i=1

Ri(2.2)

−
m∑

i=1

(α
2

(1 +Ri) + 1
)

ln(x2
i:m:n + β2).

The likelihood equations of α and β are

m

(
1
α

+ lnβ
)

+ lnβ
m∑

i=1

Ri −
1
2

m∑
i=1

(Ri + 1) ln
(
β2 + x2

i:m:n

)
= 0(2.3)

and

α

(
m∑

i=1

Ri +m

)
− 2β2

m∑
i=1

(
α
2 (Ri + 1) + 1

)
β2 + x2

i:m:n

= 0,(2.4)

respectively. The MLEs of α and β can be obtained after solving (2.3) and (2.4) simultane-
ously. These are difficult to obtain in explicit form. The above system of nonlinear equations
can be solved by solving a two-dimensional optimization problem. In this case, one may use
the Newton-Raphson algorithm. However, the standard Newton-Raphson method does not
converge in some cases. We use EM algorithm to compute the MLEs of α and β, which is de-
scribed below. Note that the EM algorithm was introduced by Dempster et al. (1977). Prior
to the computation, we discuss the condition under which the MLEs exist and are unique.

Theorem 2.1. The MLEs of α and β for (α, β) ∈ (0,∞)× (0,∞) exist and are unique

under the PT-IICS, provided xi:m:n > β holds, for i = 1, ...,m.

Proof: We show that the maximum value of the log-likelihood function `(α, β | x)
exists and also unique for (α, β) ∈ (0,∞)× (0,∞). One may refer to the papers by Cancho
et al. (2011) and Khan and Mitra (2019) for similar study in other estimation problems. The
second order partial derivatives of the log-likelihood function ` with respect to α and β are
given by

∂2`

∂α2
= −m

α2
< 0,(2.5)

∂2`

∂β2
= −

α(
∑m

i=1Ri +m)
β2

−
m∑

i=1

(α(Ri + 1) + 2)
(x2

i:m:n − β2)
(x2

i:m:n + β2)2
< 0,(2.6)

if xi:m:n > β. Therefore, for fixed α(β), ` is a strictly concave function with respect to β(α).
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For fixed β, we get

lim
α→0

`(α, β | x) = −∞ and lim
α→∞

`(α, β | x) = −∞.

Similarly, for fixed α, we have limβ→0 `(α, β | x) = −∞ and limβ→∞ `(α, β | x) = −∞. So,
for fixed α(β), ` is a unimodal function with respect to β(α). Again,

lim
α→0, β→0

`(α, β | x) = −∞, lim
α→∞, β→0

`(α, β | x) = −∞,

lim
α→0, β→∞

`(α, β | x) = −∞, lim
α→∞, β→∞

`(α, β | x) = −∞.

Let (α0, β0) ∈ (0,∞)× (0,∞) and `(α0, β0 | x) = ρ. Further, set

D =
{

(α, β) : (α, β) ∈ (0,∞)× (0,∞), `(α, β | x) ≥ ρ
}
.

So, D is a closed and bounded set, hence D is compact set. Note that the function ` is
continuous with respect to (α, β). Thus, ` has a maximum value for some (α, β) ∈ D. Suppose
that at (α1, β1) ∈ (0,∞)× (0,∞), the function ` has maximum. Now, we have to show that
(α1, β1) is unique. We observe that

`(α1, β1 | x) > `(α1, β | x) > `(α, β | x),

for (α, β) ∈ (0,∞)× (0,∞), which ensures the desired uniqueness.

2.1. EM algorithm

The EM algorithm is mainly used to compute the MLEs of the unknown parameters
in cases where the likelihood equations cannot be solved explicitly. EM algorithm has two
steps: the expectation (E) step and the maximization (M) step. The E-step involves com-
putation of the pseudo log-likelihood function. The M-step involves maximization of the
pseudo log-likelihood function. Let the observed sample and censored data be denoted by
X = (X1:m:n, X2:m:n, ..., Xm:m:n) and Z = (Z1, Z2, ..., Zm), respectively, where Zj is a 1×Rj

vector (Zj1, Zj2, ..., ZjRj ), for j = 1, 2, ...,m. Note that the complete sample is a combination
of the observed sample and the censored data. Denote the complete sample by W = (X,Z).
The likelihood function of the complete sample (see Ng et al., 2002) is given by

LC(W ;α, β) =
m∏

j=1

[
fX(xj:m:n;α, β)

Rj∏
k=1

fZ(zjk;α, β)

]
.(2.7)

Then, the log-likelihood function for the complete sample is

`C(W ;α, β) = n ln(αβα) +
m∑

j=1

 lnxj:m:n +
Rj∑
k=1

ln zjk(2.8)

−
(α

2
+ 1
) Rj∑

k=1

ln(z2
jk + β2) + ln(x2

j:m:n + β2)


.
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In the E-step, the conditional expectation of the log-likelihood function `C(W ;α, β) is ob-
tained. This is known as the pseudo log-likelihood function. This can be obtained from
`C(W ;α, β) by replacing any function of zjk say ψ(zjk) with E[ψ(Zjk)|Zjk > xj:m:n]. Thus,
the pseudo log-likelihood function is obtained as

`s(α, β) = n(lnαβα) +
m∑

j=1

lnxj:m:n +
m∑

j=1

RjA(xj:m:n;α, β)(2.9)

−
(α

2
+ 1
) m∑

j=1

(
RjB(xj:m:n;α, β) + ln(x2

j:m:n + β2)
)
,

where

A(xj:m:n;α, β) = E[lnZjk|Zjk > xj:m:n](2.10)

= α(x2
j + β2)α/2

∫ ∞

xj:m:n

t ln t
(t2 + β2)(α/2)+1

dt

and

B(xj:m:n;α, β) = E
[
ln(Z2

jk + β2)|Zjk > xj:m:n

]
(2.11)

= ln(x2
j:m:n + β2) +

2
α
.

In the M-step, we maximize the pseudo log-likelihood function given by (2.9) obtained in
E-step after substituting the values of (2.10) and (2.11) in (2.9). Let (α(p), β(p)) be an
estimate of (α, β) at p-th stage. The corresponding updated estimate (α(p+1), β(p+1)) can be
obtained by maximizing

`∗s(α, β) = n(lnαβα) +
m∑

j=1

lnxj:m:n +
m∑

j=1

RjA(xj:m:n;α(p), β(p))(2.12)

−
(α

2
+ 1
) m∑

j=1

(
RjB(xj:m:n;α(p), β(p)) + ln(x2

j:m:n + β2)
)

with respect to α and β. Now, we compute β(p+1) using fixed point iteration method (see
Kundu and Pradhan, 2009). The corresponding estimate is obtained by solving the equation

exp

 1
2n

m∑
j=1

(BRj + ln(β2 + x2
j:m:n))− 1

α̂(β)

 = β,(2.13)

where

α̂(β) =

n− m∑
j=1

β2

β2 + x2
j:m:n

−1
m∑

j=1

2β2

β2 + x2
j:m:n

(2.14)

with B = B(xj:m:n;α(p), β(p)). We estimate β(p+1). The updated estimate α(p+1) can be
obtained from α(p+1) = α̂(β(p+1)) using (2.14). The algorithm is provided below.
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Step-1: Set p = 0. Based on the starting value (α(0), β(0)), we estimate the parameters
α and β.

Step-2: Calculate B = B(xj:m:n;α(p), β(p)) from the observed sample X = x and the
parameters α(p), β(p).

Step-3: Update (α, β) as (α(p+1), β(p+1)).

Step-4: If |(α(p+1), β(p+1))− (α(p), β(p))| ≤ ε (ε > 0 very small tolerance), then we get
the MLEs of the parameters α and β.

Step-5: If |(α(p+1), β(p+1))− (α(p), β(p))| > ε, then set p = p+ 1 and go to the step 1.

Denote the MLEs of α and β by α̂ and β̂. Replacing α and β with α̂ and β̂, the MLEs
of the reliability and hazard functions are respectively obtained as (x > 0)

r̂(x) =
βα

(x2 + β2)α/2
|(α,β)=(α̂,β̂) and ĥ(x) =

xα

x2 + β2
|(α,β)=(α̂,β̂).(2.15)

Remark 2.1. The main advantage of the EM algorithm is that computations are
straightforward and does not require second and higher order derivatives.

3. INTERVAL ESTIMATES

In this section, we obtain 100(1−ϕ)% confidence intervals for the parameters, reliabil-
ity and hazard functions based on PT-IICS. Two techniques are used. First, we discuss the
construction of asymptotic confidence intervals. It is noted that to apply this procedure, we
need the concept of observed Fisher information matrix. Louis (1982) first derived the ob-
served Fisher information matrix using missing information based on the EM algorithm. The
observed Fisher information matrix is used to construct the asymptotic confidence intervals.
According to Louis, the observed information equals to the complete information minus the
missing information. That is, IX(θ) = IW (θ)− IW |X(θ), where IX(θ), IW (θ) and IW |X(θ)
are the observed information, complete information and missing information, respectively.
Denote θ = (α, β). The complete information matrix IW (θ) is given as

IW (θ) = −E
[
∂2`C(W ; θ)

∂θ2

]
=

(
n
α2 − 2n

β(α+2)

− 2n
β(α+2)

4nα
β2(α+4)

)
.(3.1)

Again, the missing information IW |X(θ) at j-th failure time xj:m:n is obtained as

Ij:m:n
W |X (θ) =

−b20(xj:m:n;α, β) −b11(xj:m:n;α, β)
−b11(xj:m:n;α, β) −b02(xj:m:n;α, β)

,
where

b20(xj:m:n;α, β) = − 1
α2
, b11(xj:m:n;α, β) =

2β
(α+ 2)(x2

j:m:n + β2)
,

b02(xj:m:n;α, β) =
α

(x2
j:m:n + β2)

[
(x2

j:m:n − β2)
(x2

j:m:n + β2)
+

2(α+ 2)β2

(α+ 4)(x2
j:m:n + β2)

− 1

]
.
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Thus, the total missing information IW |X(θ) is given as

IW |X(θ) =
m∑

j=1

RjI
j:m:n
W |X (θ).(3.2)

From the 2× 2 order matrices given by (3.1) and (3.2), we compute the observed Fisher
information matrix of α and β as

IX(θ) =
(
d20 d11

d11 d02

)
,(3.3)

where

d20 =
1
α2

n− m∑
j=1

Rj

, d11 = − 2
β(α+ 2)

[
n−

β2
∑m

j=1Rj

(x2
j:m:n + β2)

]
and

d02 =
4nα

β2(α+ 4)
+

α
∑m

j=1Rj

(x2
j:m:n + β2)

[
(x2

j:m:n − β2)
(x2

j:m:n + β2)
+

2(α+ 2)β2

(α+ 4)(x2
j:m:n + β2)

− 1

]
.

In this part, we obtain asymptotic confidence intervals using (i) normal approximation (NA)
of the MLE and (ii) the log-transformed (NL) MLE methods. We omit the details of this
method to maintain brevity. For the formulas for the NA and NL approaches, see Lee and
Cho (2017) and Maiti and Kayal (2020, 2021).

3.1. Bootstrap confidence intervals

It is seen in the previous subsection that to obtain the approximate confidence intervals
of the unknown model parameters, it is required to derive second order derivatives which
is cumbersome. So, we consider bootstrap technique, which is simpler than NA and NL
methods. In particular, we adopt percentile bootstrap (Boot-p) and bootstrap-t (Boot-t)
techniques. Here, we describe the procedure how to obtain confidence intervals using Boot-p
method. First, we obtain the MLEs of η = (α, β, r(x), h(x)). Denote the MLEs of η by η̂ =
(α̂, β̂, r̂(x), ĥ(x)). Now, based on α̂ and β̂, the bootstrap sample x∗ = (x∗1, x

∗
2, ..., x

∗
n) has to

be generated. We compute η̂∗ = (α̂∗, β̂∗, r̂∗(x), ĥ∗(x)) based on x∗. Repeat this procedure for
1000 times to get η̂∗1, η̂

∗
2, ..., η̂

∗
1000, where η̂∗i = (α̂∗i , β̂

∗
i , r̂

∗
i (x), ĥ

∗
i (x)), i = 1, 2, ..., 1000. Next, we

arrange η̂∗i ’s in ascending order and denote η̂∗(1) ≤ η̂∗(2) ≤ ··· ≤ η̂∗(1000). Thus, the 100(1− ϕ)%
approximate bootstrap-p confidence interval for η is obtained as (L,U), where L = η̂∗

( iϕ
2

)
and

U = η̂∗(i(1−ϕ
2 )). The percentile bootstrap confidence interval of η at 95% level of confidence

is (η̂∗(25), η̂
∗
(975)). For small sample size, the Boot-p method does not perform well. In this

subsection, we discuss Boot-t method, which is simple to apply compared to Boot-p method.
We obtain η̂∗ = (α̂∗, β̂∗, r̂∗(x), ĥ∗(x)) similar to the procedure as mentioned in Boot-pmethod.
Then, based on the bootstrap sample x∗ = (x∗1, x

∗
2, ..., x

∗
n), we compute the variance-covariance

matrix I∗−1
X (α̂∗, β̂∗). For i = 1, 2, ..., 1000, calculate the value of the statistic T ∗ηi

= (η̂∗i −
η̂i)/

√
v̂ar(η̂∗i ). Then, we arrange in the ascending order and get T ∗η(1)

≤ T ∗η(2)
≤ ··· ≤ T ∗η(1000)

.
Now, the 100(1− ϕ)% approximate bootstrap-t confidence interval for η is given by (L,U),
where L = T ∗η

(
iϕ
2 )

and U = T ∗η(i(1−ϕ
2 ))

. The approximate Boot-t confidence interval of η at 95%

level of confidence is (T ∗η(25)
, T ∗η(975)

).
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4. BAYESIAN ESTIMATION

In this section, we obtain Bayes estimates of the unknown parameters α, β and the reli-
ability characteristics r(t), h(t) of the gamma-mixed Rayleigh distribution based on PT-IICS.
Three loss functions have been considered: (i) squared error loss (SEL) function, (ii) LINEX
loss function and (iii) entropy loss function. The SEL function is a balance type loss function.
That is, when this loss function is used, the overestimation as well as underestimation do not
have any effect on the estimation problem. However, there are situations, where the squared
error loss function is not suitable. For example, when we estimate reliability of a rocket, the
underestimation is dangerous than the overestimation. Further, the overestimation is severe
than the underestimation when estimating the water level of bank of river in a flood-prone
area. We also consider two asymmetric loss functions (LINEX and entropy) which are useful
to deal with this type of situations. Let δ be an estimator of the unknown parameter φ.
Then, Table 1 represents Bayes estimates of φ under the squared error, LINEX and entropy
loss functions. In Table 1, ω and κ are both non-zero real numbers. For κ = −1, the Bayes
estimate with respect to the entropy loss function reduces to that under the squared error
function. To obtain the Bayes estimates, one needs to consider prior distributions for the
unknown model parameters. It is well known that the joint conjugate prior is not avail-
able when both the parameters are not known. Further, there is no clear methodology to
choose an appropriate prior (see Arnold and Press, 1983) for a Bayesian estimation problem.

Table 1: Loss functions and the corresponding form of the Bayes estimates.

Name of the Form of the Form of the
loss functions loss functions Bayes estimates

SEL ls(φ, δ) = (δ − φ)2 Eφ(φ| x)

LINEX l`(φ, δ) = exp{ω(δ − φ)} − ω(δ − φ)− 1 − 1
ω

ln(Eφ(exp{−ωφ}| x))

Entropy le(φ, δ) = (δ/φ)κ − κ ln(δ/φ)− 1
�
Eφ

�
φ−κ| x

��− 1
κ

Note that the gamma distribution is versatile for adjusting different shapes of the density
function. It has a log-concave density function in the interval (0,∞). Jeffery’s prior can
be obtained as a special case of the gamma prior. Due to these facts, various authors have
considered independent gamma distributions as the priors for different Bayesian estimation
problems. See, for instance, Kundu (2008), Huang and Wu (2012) and Maiti and Kayal
(2020). Here, we assume independent gamma priors for α and β. Let α ∼ Gamma(a1, a2) and
β ∼ Gamma(a3, a4), when Gamma(a1, a2) and Gamma(a3, a4) represent gamma distributions
with scale and shape parameters 1/a2, a1 and 1/a4, a3, respectively. The probability density
functions of Gamma(a1, a2) and Gamma(a3, a4) are given by

g1(α; a1, a2) ∝ αa1−1 exp{−αa2} and g2(β; a3, a4) ∝ βa3−1 exp{−βa4},

respectively, where α, β > 0 and a1, a2, a3, a4 > 0. The hyper-parameters in the prior distri-
butions are assumed to be known. After some simplification, the posterior distribution of
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α, β given X = x is obtained as

Π(α, β|x) ∝ Π1(α, β, x)∫∞
0

∫∞
0 Π1(α, β, x)dαdβ

,(4.1)

where the joint distribution of α, β and X is given by

Π1(α, β, x) ∝ αm+a1−1βmα+a3−1 exp{−(αa2 + βa4)}
m∏

i=1

xi:m:nβ
αRi

(x2
i:m:n + β2)

α
2
(1+Ri)+1

.(4.2)

Thus, for any arbitrary estimand g(α, β), the Bayes estimates with respect to the LINEX
and entropy loss functions are respectively obtained as

ĝbl = − 1
ω

ln
[∫∞

0

∫∞
0 exp{−ωg(α, β)}Π1(α, β, x)dαdβ∫∞

0

∫∞
0 Π1(α, β, x)dαdβ

]
and(4.3)

ĝbe =
[∫∞

0

∫∞
0 g−κ(α, β)Π1(α, β, x)dαdβ∫∞
0

∫∞
0 Π1(α, β, x)dαdβ

]− 1
κ

.(4.4)

As mentioned before, the Bayes estimate with respect to the SEL function can be obtained
from (4.4) when κ = −1. Note that the required Bayes estimates of α, β, r(x) and h(x) with
respect to the LINEX and entropy loss functions can be computed after substituting α, β, r(x)
and h(x) in the place of g(α, β) in (4.3) and (4.4), respectively. Choosing values of the hyper-
parameters is always an important task from Bayesian point of view. Below, we propose a
method in this purpose.

Remark 4.1. We generate m samples from a gamma-mixed Rayleigh distribution
with distribution function given by (1.1). For each of this m samples, we obtain the MLEs
of the model parameters, which are denoted by α̂j and β̂j , j = 1, 2, ...,m. The mean and
variance of the gamma prior distribution with density function g1(α; a1, a2) are a1

a2
and a1

a2
2
,

respectively. Further, the mean and variance of the MLEs of α for m samples are 1
m

∑m
j=1 α̂

j

and 1
m−1

∑m
j=1(α̂

j − 1
m

∑m
j=1 α̂

j)2, respectively. Therefore, the mean and variance of the
MLEs are equal to a1

a2
and a1

a2
2
, respectively. That is,

a1

a2
=

1
m

m∑
j=1

α̂j and
a1

a2
2

=
1

m− 1

m∑
j=1

(
α̂j − 1

m

m∑
j=1

α̂j

)2

.

Solving these equations, we get

a1 =

(
1
m

∑m
j=1 α̂

j
)2

1
m−1

∑m
j=1

(
α̂j − 1

m

∑m
j=1 α̂

j
)2 and a2 =

1
m

∑m
j=1 α̂

j

1
m−1

∑m
j=1

(
α̂j − 1

m

∑m
j=1 α̂

j
)2 .

In a similar manner, the hyper-parameters a3 and a4 can be obtained from the above equations
by replacing α̂j with β̂j .

4.1. Computational methods

In the above section, we see that the proposed Bayes estimates are in the form of the ra-
tio of two integrals. These integrals can not be evaluated in terms of some closed-form expres-
sions. So, we use two approaches in order to get approximate values of the Bayes estimates.
One of these is proposed by Lindley (1980). Other is due to Chen and Shao (1999).
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4.1.1. Lindley’s approximation method

In this subsection, we discuss the Bayes estimates of α, β, r(x) and h(x) using Lindley’s
approximation technique. The detailed derivations are omitted to maintain brevity. We
refer to Lee and Cho (2017) and Maiti and Kayal (2021) for detailed derivation of the Bayes
estimates using this method. First, we consider LINEX loss function. With respect to this
loss function, the Bayes estimate of α is given by

α̂bl = − 1
ω

ln
[
exp{−ωα}+ (1/2)ω exp{−ωα}

[
ωτ11 −A(α, β)

]]∣∣∣∣
(α,β)=(α̂,β̂)

,(4.5)

where A(α, β) = {l30τ
2
11 + l03τ21τ22 + 3l21τ11τ12 + l12(τ11τ22 + 2τ2

21) + 2p1τ11 + 2p2τ12}, lij =
∂i+j l

∂αi∂βj ; i, j = 0, 1, 2, 3; i+ j = 3, p1 = ∂p
∂α , p2 = ∂p

∂β and p is equal to the logarithm of joint
prior distribution of α and β. The Bayes estimate of α with respect to the entropy loss
function is

α̂be =
[
α−κ + (1/2)κα−(κ+1)

[
(κ+ 1)α−1τ11 −A(α, β)

]]− 1
κ

∣∣∣∣
(α,β)=(α̂,β̂)

.(4.6)

The Bayes estimate of α with respect to the squared error loss function can be obtained from
(4.6) substituting κ = −1. Further, the Bayes estimates of β, r(x) and h(x) with respect to
the squared error, LINEX and entropy loss functions can be derived similarly.

4.1.2. Importance sampling method

In the previous subsection, we obtain the Bayes estimates using Lindley’s approximation
method. One disadvantage of this method is that it requires higher order partial derivatives of
the log-likelihood function. Further, the Lindley’s approximation can not be used to construct
highest posterior density (HPD) credible intervals. In this subsection, we describe importance
sampling method which is free from the higher order partial derivatives. It is also used to
compute HPD credible intervals. To apply importance sampling method, we need to rewrite
the joint posterior distribution of α, β given X = x in (4.1) as

Π(α, β|X = x) ∝ Gammaα(m+ a1, a2)Gammaβ|α(mα+ a3, a4)h(α, β)(4.7)

where

h(α, β) = a
−(mα+a3)
4

m∏
i=1

βαRixi:m:n(x2
i:m:n + β2)−(α

2
(1+Ri)+1).

At first, we generate α from gamma distribution Gammaα(m+ a1, a2). Next, β is generated
from the Gammaβ|α(mα+a3, a4) distribution. We repeat this procedure 1000 times to obtain
(α1, β1), (α2, β2), ..., (α1000, β1000). Thus, the Bayes estimates of a parametric function g(α, β)
under LINEX and entropy loss functions are respectively given by

ĝbl = − 1
ω

ln

[∑1000
i=1 exp{−ωg(αi, βi)}h(αi, βi)∑1000

i=1 h(αi, βi)

]
(4.8)
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and

ĝbe =

[∑1000
i=1 g(αi, βi)−κh(αi, βi)∑1000

i=1 h(αi, βi)

]− 1
κ

.(4.9)

We compute the Bayes estimates of α, β, r(x) and h(x) substituting α, β, r(x) and h(x)
in place of g(α, β), respectively in (4.8) and (4.9) under LINEX and entropy loss functions.
Using the concept of importance sampling method, one can derive HPD credible intervals for
the unknown parameters α, β and reliability characteristics r(x), h(x). The derivation of the
credible intervals have been skipped from this paper due to sake of conciseness. One may
refer to Kundu and Raqab (2015) and Rastogi and Tripathi (2014) for elaborate discussion
on the derivation of the HPD credible interval for some lifetime distributions.

5. BAYESIAN PREDICTION AND INTERVAL ESTIMATION

In the previous section, we study the Bayesian estimation for the unknown parameters,
reliability and the hazard functions. Here, we discuss Bayesian prediction for the future
observations based on the PT-IICS taken from the gamma-mixed Rayleigh distribution. We
compute the corresponding prediction intervals. There have been a lot of efforts from various
authors in prediction problems. For some recent references, please refer to Dey et al. (2018)
and Bdair et al. (2019). This section is divided into two subsections. The following subsection
deals with one-sample prediction problem.

5.1. One-sample prediction and Bayesian prediction interval (BPI)

Suppose n number of total independent life testing units are subjected to an experiment.
Let x = (x1:m:n, x2:m:n, ..., xm:m:n) be the observed progressively type-II censored sample. The
censoring scheme is taken as R = (R1, R2, ..., Rm). Let yi = (yi1, yi2, ..., yiRi) represent the
ordered lifetimes of the units which are censored at the i-th failure xi:m:n. The future observa-
tions to be predicted based on x are y = (yip; i = 1, 2, ...,m; p = 1, 2, ..., Ri). The conditional
density y under the given information can be obtained as

f1(y|x, α, β) = p

(
Ri

p

) p−1∑
k=0

(−1)p−k−1

(
p− 1
k

)
f(y)(1− F (y))Ri−k−1(5.1)

×(1− F (xi))k−Ri , y > xi:m:n.

The distribution function is

F1(y|x, α, β) = p

(
Ri

p

) p−1∑
k=0

(−1)p−k−1

Ri − k

(
p− 1
k

)[
1− (1− F (xi))k−Ri (1− F (y))Ri−k

]
.(5.2)
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Notice that the posterior predictive density and distribution functions are respectively given
by

f∗1 (y|x) =
∫ ∞

0

∫ ∞

0
f1(y|x, α, β)Π(α, β|x)dαdβ(5.3)

and

F ∗1 (y|x) =
∫ ∞

0

∫ ∞

0
F1(y|x, α, β)Π(α, β|x)dαdβ.(5.4)

The Bayesian predictive estimate of y under LINEX and entropy loss functions are respec-
tively given by

ŷl = − 1
ω

ln
[∫ ∞

xi

exp{−ωy}f∗1 (y|x)dy
]

= − 1
ω

ln[E(P1(α, β)|x)](5.5)

and

ŷe =
[∫ ∞

xi

y−κf∗1 (y|x)dz
]− 1

κ

= [E(P2(α, β)|x)]−
1
κ ,(5.6)

where

P1(α, β) =
∫ ∞

xi

exp{−ωy}f1(y|x, α, β)dy and P2(α, β) =
∫ ∞

xi

y−κf1(y|x, α, β)dy.

Note that above integrals can not be computed analytically. Thus, one needs to use
numerical technique in order to compute the predictive estimates. In this purpose, we use
importance sampling methods as mentioned in Subsection 4.1.2. Equations (5.5) and (5.6)
can be evaluated using importance sampling method as

ŷl = −
(

1
ω

)
ln

[∑1000
i=1 P1(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]
and(5.7)

ŷe =

[∑1000
i=1 P2(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]−1/κ

,

respectively. Next, Bayesian prediction interval is obtained. The prior predictive survival
function S1(t|x, α, β) is obtained as

S1(t|x, α, β) =
P (y > t|x, α, β)

P (y > xi:m:n|x, α, β)
=

∫∞
t f1(u|x, α, β)du∫∞

xi:m:n
f1(u|x, α, β)du

.

The posterior survival function is given by

S∗1(t|x) =
∫ ∞

0

∫ ∞

0
S1(t|x, α, β)Π(α, β|x)dαdβ.(5.8)

Equation (5.8) can be evaluated using importance sampling method under SEL function as

S∗1(t|x) =
∑1000

i=1 S1(t|x, αi, βi)h(αi, βi)∑1000
i=1 h(αi, βi)

.(5.9)

We obtain two sided 100(1− ϕ)% equal-tail symmetric predictive interval (L,U) by solving
the following non-linear equations

S∗1(L|x) = 1− ϕ

2
and S∗1(U |x) =

ϕ

2
.(5.10)
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The algorithm to obtain the lower bound L and the upper bound U from S∗1(t|x) = η, where
t is L or U and η = (1− ϕ

2 ) or ϕ
2 is described below.

Step-1: Set initial value t = t0.

Step-2: Calculate S∗1(t|x) =
P1000

i=1 S1(t|x,αi,βi)h(αi,βi)
P1000

i=1 h(αi,βi)
.

Step-3: If S∗1(t|x) < η, then increase t value otherwise decrease the value of t.

Step-4: Repeat steps 2 and 3 until S∗1(t|x) ' η.

5.2. Two-sample prediction and BPI

In this section, we derive Bayesian two-sample prediction estimate for future observation
based on the PT-IICS. It is noted that the two-sample plan is applied in which the observed
sample is the PT-IICS and Z1 < Z2 < ··· < ZT be the unobserved future observations from
the same sample, yet to be observed. The predictive density function of Zj can be written as

f(zj |α, β) = j

(
T

j

) j−1∑
p=0

(−1)j−1−p

(
j − 1
p

)
[1− F (zj)]

T−1−pf(zj).(5.11)

Again, the posterior prediction density function is obtained as

f∗(zj |x) =
∫ ∞

0

∫ ∞

0
f(zj |α, β)Π(α, β|x)dαdβ.

Further, the Bayesian predictive estimate of Zj under LINEX and entropy loss functions are
respectively obtained as

ẑjl
= −

(
1
ω

)
ln

[∑1000
i=1 T1(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]
and

ẑje =

[∑1000
i=1 T2(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]−1/κ

,

where

T1(α, β) =
∫ ∞

0
exp{−ωzj}f(zj |α, β)dzj and T2(α, β) =

∫ ∞

0
z−κ
j f(zj |α, β)dzj .

Next, Bayesian prediction interval is obtained. The predictive posterior survival function is
given by

S∗1(zj |x) =
∫ ∞

0

∫ ∞

0
S1(zj |x, α, β)Π(α, β|x)dαdβ,

where

S1(zj |x, α, β) =

∫∞
zj
f1(u|x, α, β)du∫∞

xi:m:n
f1(u|x, α, β)du

.

The above integration can be approximated using importance sampling method. Further, to
obtain the two-sided 100(1− ϕ)% equal-tail symmetric prediction interval (L,U) for Zj , we
have to solve the non-linear equations given by

S∗1(L|x) = 1− ϕ

2
and S∗1(U |x) =

ϕ

2
.(5.12)
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6. SIMULATION RESULTS AND REAL DATA ANALYSIS

In this section, we first carry out simulation study to observe the performance of the
proposed estimates. Next, we consider a real dataset for illustrative purpose.

6.1. Simulation results

This subsection is devoted to the comparative study of the proposed estimates. For this
purpose, we generate 1000 progressive type-II censored samples from gamma-mixed Rayleigh
distribution. We consider various combinations of (n,m) as (35, 20), (35, 35), (50, 45) and
(50, 50). The actual values of α and β are taken as 0.5 and 0.25, respectively. The actual
values of r(x) and h(x) are 0.405461 and 0.324324, respectively for x = 1.5. There is no
reason of taking the value of x as 1.5. One may consider other values of x too. The simulation
study has been carried out for other values of x, but not presented here for brevity. For other
values of x, similar behaviour of the proposed methods have been observed. The simulation is
carried out using the statistical software R (Vienna, Austria; https://www.r-project.org/),
version 4.1.0. In Table 2, the estimated values of the hyper-parameters are presented for
different values of m. For the purpose of the Bayesian estimates, we take ω = −0.25, 0.001
and κ = −0.5, 0.5 for LINEX and entropy loss functions, respectively. Further, for each n,
three different censoring schemes such as progressive type-II, type-II and complete sample
have been used for simulation study. These schemes are presented in Table 3. It is known
that the type-II censoring scheme is a special case of the progressive type-II censoring scheme.

Table 2: Values of the hyper-parameters for different m.

(α, β) m a1 a2 a3 a4

(0.5, 0.25)

20 0.29516 0.10370 0.29308 0.19850
35 0.79587 0.50618 0.78481 0.98676
45 1.41808 1.18262 1.38071 2.30699
50 1.88165 1.75665 1.84799 3.42774

Table 3: Different censoring schemes (CS).

Scheme Category m (R1, R2, ..., Rm)

Progressive type-II censoring Pr-IIc
Odd

�
R m+1

2
= n− m, Ri = 0; i 6= m+1

2

�

Even
�
Rm/2 = n−m, Ri = 0; i 6= m

2

�

Type-II censoring Ty-IIc (Rm = n−m, Ri = 0; i 6= m)

Complete case Cc (Ri = 0; i = 1 ∼ m)

https://www.r-project.org/
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Tables 4 and 5 present the average and mean squared error (MSE) values of the MLEs and
the Bayes estimates for (α, β) and (r(x), h(x)), respectively. The 1st column is for (n,m),
the 2nd column is for various censoring schemes (CS), 3rd column is for the estimands. Here,
estimands are the unknown parameters α, β and the reliability characteristics r(x), h(x).

Table 4: Average and MSE values of estimates for the parameters α and β.

LINEX EL

(n, m) CS Parameter

EM

Method

SEL
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

Avg Avg Avg Avg Avg Avg

(MSE) (MSE) (MSE) (MSE) (MSE) (MSE)

(35,20) Pr-IIc α 0.577322 Lin 0.604350 0.609516 0.604329 0.586034 0.550292
(0.045870) (0.010889) (0.011994) (0.010884) (0.007402) (0.002529)

Imp 0.615036 0.617727 0.615021 0.608165 0.601033
(0.012560) (0.012989) (0.012558) (0.010962) (0.008704)

β 0.294180 Lin 0.305454 0.306914 0.305448 0.295391 0.276136
(0.018021) (0.003075) (0.003239) (0.003074) (0.002060) (0.000683)

Imp 0.320065 0.323106 0.320040 0.305264 0.303128
(0.003605) (0.004121) (0.003603) (0.003116) (0.001605)

Ty-IIc α 0.650948 Lin 0.739859 0.748100 0.739825 0.712266 0.652946
(0.166828) (0.057532) (0.061553) (0.057516) (0.045057) (0.023393)

Imp 0.742216 0.748506 0.742177 0.0.73152 0.730816
(0.064523) (0.067051) (0.064507) (0.060087) (0.053506)

β 0.322548 Lin 0.356579 0.358578 0.356571 0.343506 0.316460
(0.041284) (0.011359) (0.011789) (0.011357) (0.008743) (0.004417)

Imp 0.358136 0.360861 0.358132 0.351134 0.342618
(0.018642) (0.021394) (0.018637) (0.016752) (0.011306)

( ,35) Cc α 0.517253 Lin 0.537146 0.538660 0.537140 0.531160 0.518915
(0.015562) (0.001380) (0.001495) (0.001379) (0.000971) (0.000358)

Imp 0.541207 0.546251 0.541206 0.537645 0.524005
(0.002163) (0.002237) (0.002162) (0.002088) (0.001463)

β 0.259399 Lin 0.277225 0.278008 0.277222 0.270984 0.258125
(0.006465) (0.000741) (0.000784) (0.000741) (0.000440) (0.000066)

Imp 0.284130 0.287056 0.284087 0.282670 0.278009
(0.001053) (0.001134) (0.001051) (0.001041) (0.000915)

(50,45) Pr-IIc α 0.527374 Lin 0.561924 0.563149 0.561918 0.557074 0.546668
(0.014947) (0.003834) (0.003988) (0.003834) (0.003257) (0.002178)

Imp 0.564010 0.567732 0.564008 0.558507 0.556072
(0.003952) (0.004139) (0.003948) (0.003760) (0.003427)

β 0.276102 Lin 0.309227 0.309901 0.309224 0.303973 0.292121
(0.008370) (0.003508) (0.003588) (0.003507) (0.002913) (0.001774)

Imp 0.312564 0.318007 0.312561 0.307715 0.296405
(0.003567) (0.003644) (0.003565) (0.003340) (0.003197)

Ty-IIc α 0.528481 Lin 0.564288 0.565528 0.564284 0.559387 0.548837
(0.015516) (0.004133) (0.004294) (0.004132) (0.003527) (0.002385)

Imp 0.570806 0.577130 0.570806 0.561010 0.560377
(0.004215) (0.004362) (0.004210) (0.004100) (0.003761)

β 0.276786 Lin 0.310822 0.311502 0.310819 0.305526 0.293530
(0.008606) (0.003699) (0.003782) (0.003699) (0.003083) (0.001895)

Imp 0.315542 0.320566 0.315537 0.312147 0.307081
(0.003720) (0.003935) (0.003720) (0.003565) (0.003416)

( ,50) Cc α 0.527521 Lin 0.573868 0.574784 0.573864 0.570163 0.561857
(0.011298) (0.005456) (0.005592) (0.005456) (0.004923) (0.003826)

Imp 0.579013 0.581451 0.579011 0.560891 0.560071
(0.005521) (0.005640) (0.005520) (0.005314) (0.005281)

β 0.279152 Lin 0.339271 0.339828 0.339268 0.334464 0.3216673
(0.008391) (0.007969) (0.008069) (0.007969) (0.007134) (0.005136)

Imp 0.341553 0.346086 0.341550 0.338880 0.320799
(0.007974) (0.008213) (0.007971) (0.007718) (0.007428)
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The average values and the MSEs of the MLEs are presented in 4th column. Note that the
MLEs are computed based on EM algorithm. We present two methods Lindley’s approxima-
tion (Lin) and importance sampling (Imp) in fifth column. In 6–10th columns, the average and
MSE values of the Bayes estimates with respect to the squared error, LINEX and entropy loss
functions are presented. The MSE values of each estimate are placed inside the parenthesis.

Table 5: Average and MSE values of the estimates for r(x) and h(x).

LINEX EL

(n, m) CS Parameter

EM

Method

SEL
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

Avg Avg Avg Avg Avg Avg

(MSE) (MSE) (MSE) (MSE) (MSE) (MSE)

(35,20) Pr-IIc r(x) 0.398127 Lin 0.392919 0.393820 0.392916 0.388221 0.378922
(0.006980) (0.001572) (0.001364) (0.001571) (0.002977) (0.007040)

Imp 0.421631 0.425102 0.421630 0.405181 0.402219
(0.002423) (0.002608) (0.002416) (0.002335) (0.002286)

h(x) 0.365147 Lin 0.382504 0.384415 0.382496 0.372067 0.351927
(0.014572) (0.003385) (0.003611) (0.003384) (0.002279) (0.000762)

Imp 0.386712 0.405312 0.386710 0.381207 0.364315
(0.003461) (0.003516) (0.003460) (0.003070) (0.001004)

Ty-IIc r(x) 0.390138 Lin 0.359881 0.360923 0.359876 0.354171 0.343389
(0.008294) (0.002078) (0.001984) (0.002078) (0.002631) (0.001853)

Imp 0.361864 0.367701 0.361861 0.346105 0.331611
(0.003105) (0.002281) (0.003104) (0.002845) (0.002506)

h(x) 0.396838 Lin 0.459716 0.462730 0.459704 0.444301 0.411965
(0.034886) (0.018331) (0.019156) (0.018328) (0.014394) (0.007681)

Imp 0.466071 0.463102 0.466070 0.446265 0.413509
(0.02160) (0.02377) (0.02159) (0.016492) (0.015423)

( ,35) Cc r(x) 0.405129 Lin 0.403232 0.403732 0.40323 0.400726 0.395755
(0.003941) (0.000497) (0.000299) (0.000495) (0.000224) (0.000142)

Imp 0.414506 0.418187 0.414501 0.409461 0.407196
(0.000534) (0.000436) (0.000530) (0.000303) (0.000287)

h(x) 0.332928 Lin 0.344692 0.345272 0.344689 0.341173 0.334047
(0.005467) (0.000415) (0.000439) (0.000415) (0.000284) (0.000145)

Imp 0.347236 0.356043 0.347230 0.347991 0.340564
(0.000521) (0.000540) (0.000518) (0.000477) (0.000420)

(50,45) Pr-IIc r(x) 0.409594 Lin 0.409331 0.409721 0.409331 0.407411 0.403577
(0.003151) (0.000150) (0.000181) (0.000150) (0.000138) (0.000113)

Imp 0.416460 0.418805 0.416456 0.415643 0.408037
(0.000213) (0.000227) (0.000212) (0.000186) (0.000172)

h(x) 0.337868 Lin 0.357965 0.358433 0.357965 0.355143 0.349185
(0.005060) (0.001132) (0.001163) (0.001132) (0.000950) (0.000618)

Imp 0.371653 0.366203 0.371652 0.364966 0.361500
(0.001276) (0.001315) (0.001276) (0.001219) (0.001207)

Ty-IIc r(x) 0.409480 Lin 0.408961 0.409349 0.408960 0.407044 0.403218
(0.003157) (0.000224) (0.000251) (0.000222) (0.000202) (0.000150)

Imp 0.415008 0.417648 0.415000 0.410651 0.409472
(0.000415) (0.000430) (0.000415) (0.000407) (0.000389)

h(x) 0.338443 Lin 0.359309 0.359779 0.359307 0.356457 0.350424
(0.005220) (0.001224) (0.001257) (0.001224) (0.001033) (0.000681)

Imp 0.376511 0.385205 0.376510 0.364006 0.362380
(0.001672) (0.001842) (0.001670) (0.001258) (0.001029)

( ,50) Cc r(x) 0.409277 Lin 0.421297 0.421678 0.421296 0.419397 0.415464
(0.003093) (0.000251) (0.000263) (0.000251) (0.000194) (0.000100)

Imp 0.425031 0.428014 0.425030 0.423330 0.421643
(0.000271) (0.000284) (0.000269) (0.000253) (0.000234)

h(x) 0.337988 Lin 0.362957 0.363316 0.362956 0.360747 0.355944
(0.003660) (0.001492) (0.001520) (0.001492) (0.001327) (0.000910)

Imp 0.366172 0.368008 0.366171 0.364031 0.358813
(0.001781) (0.001845) (0.001780) (0.001542) (0.001325)
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Table 6 represents average lengths of 95% confidence intervals and the HPD credible intervals
for α, β, r(x) and h(x). We have tabulated one-sample and two-sample Bayesian prediction
estimates and 95% prediction intervals for future observation in Tables 7 and 8, respectively.

Table 6: Average lengths of 95% interval estimates of α, β, r(x) and h(x).

Asymptotic Bootstrap
(n, m) CS

NA NL Boot-p Boot-t
HPD

(35,20) Pr-IIc α 0.648062 0.682627 0.576212 0.543509 0.267133
β 0.329015 0.346433 0.311642 0.300701 0.186809

r(x) 0.322288 0.331721 0.277547 0.246013 0.167990
h(x) 0.418470 0.441055 0.378052 0.320005 0.210808

Ty-IIc α 0.858970 0.922660 0.761805 0.721656 0.531964
β 0.400653 0.426912 0.346010 0.300891 0.222437

r(x) 0.338097 0.350497 0.294644 0.260079 0.190059
h(x) 0.580588 0.629159 0.510660 0.493112 0.301243

( ,35) Cc α 0.420716 0.432409 0.375604 0.310064 0.176117
β 0.301196 0.318404 0.265203 0.228561 0.133991

r(x) 0.252868 0.257088 0.210705 0.189620 0.117867
h(x) 0.276372 0.284284 0.236081 0.194051 0.140660

(50,45) Pr-IIc α 0.427858 0.439689 0.346033 0.310446 0.188656
β 0.360034 0.386089 0.306770 0.264126 0.160533

r(x) 0.220637 0.223362 0.176136 0.143088 0.100362
h(x) 0.246997 0.252462 0.184461 0.136504 0.086420

Ty-IIc α 0.433796 0.446078 0.379100 0.341444 0.213064
β 0.364740 0.391709 0.310788 0.306171 0.175757

r(x) 0.220169 0.222880 0.150991 0.123404 0.068944
h(x) 0.250175 0.255833 0.197005 0.158817 0.100888

( ,50) Cc α 0.374461 0.382373 0.334671 0.280062 0.133785
β 0.292170 0.305690 0.245508 0.224999 0.145871

r(x) 0.211673 0.214052 0.131106 0.108841 0.043649
h(x) 0.230374 0.234809 0.169507 0.120889 0.056643

In the both sample prediction problems, the values of the parameters, hyper-parameters, ω
and κ are taken same. Here, we consider p = 1, 2, 3 for 1st and 7th failure stages in one-sample
prediction, and j = 1, 2, 3 for T = m in two-sample prediction. From the numerical values,
the following discussions can be drawn.

1. From Table 2, it is observed that with increasing values of m, values of the hyper-
parameters a1, a2, a3 and a4 increase.

2. From the tabulated values in Table 4, we notice that the Bayes estimates perform
better than the MLE in terms of the MSE. Further, the Bayes estimates for positive
values of ω and κ are better than that for negative values of ω and κ in terms
of the average values and MSEs. The simulated average values of the estimates
approach towards the true value when (n,m) increases. Further, MSE decreases
when (n,m) increases. Similar observation is noticed for the case of complete
sample. As expected, the behavior of the Bayes estimates under SEL function
and the LINEX loss function is approximately same for small values of ω (here
ω = 0.001). It is seen that in general, the progressive type-II censoring schemes
produces better result than type-II censoring scheme in terms of the average (Avg)
and MSE values. Similar behavior of the estimates of r(x) and h(x) (presented in
Table 5) can be pointed out. The abbreviation EL is used for entropy loss function.
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3. In Table 6, it is observed that for asymptotic confidence intervals, the NA method
provides better estimates than NL method. For the case of bootstrap confidence
intervals, Boot-tmethod performs better than Boot-pmethod. However, among the
computed five intervals, HPD credible intervals give the best performance. Also,
it is noticed that the average length decreases when effective sample size increases.
When comparing progressive type-II censoring and type-II censoring plans, the
progressive type-II plan provides better result.

4. From Table 7, we observe that the values of the predictive estimates based on pro-
gressive type-II censoring scheme are larger than that for type-II censoring scheme.
The values of the predictive estimates and prediction lengths increase as i, p in-
crease. When the effective sample size (m) increases, the predictive estimate values
and predictive interval lengths decrease. Similar observation can be noticed from
Table 8 for two-sample prediction problem.

Table 7: One-sample prediction values and 95% prediction intervals
for future observations.

(n, m) CS i p SEL
LINEX EL

L U Width
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

(35,20) Pr-IIc 1 1 0.108452 0.117826 0.108417 0.104236 0.102013 0.033642 0.30036 0.266718
2 0.124011 0.152041 0.124010 0.110628 0.109972 0.080750 0.421644 0.340894
3 0.177314 0.182622 0.177306 0.154082 0.147880 0.019462 0.430405 0.410943

7 1 0.240586 0.285261 0.240585 0.231178 0.200864 0.108235 0.671046 0.562811
2 0.293324 0.374406 0.293319 0.274152 0.261997 0.152083 0.782603 0.630520
3 0.315852 0.418077 0.315847 0.300919 0.281485 0.072634 0.766852 0.694218

Ty-IIc 1 1 0.075164 0.106172 0.075158 0.052800 0.046281 0.008285 0.394668 0.386383
2 0.108273 0.134867 0.108266 0.095076 0.052997 0.052347 0.460809 0.408462
3 0.152972 0.160723 0.152897 0.123699 0.120758 0.089046 0.501897 0.412851

7 1 0.192640 0.248671 0.192578 0.164284 0.128670 0.097825 0.840869 0.743044
2 0.228068 0.278526 0.227972 0.196099 0.180907 0.130884 0.956252 0.825368
3 0.276291 0.286070 0.276188 0.241046 0.211220 0.172691 1.068736 0.896045

( ,35) Cc 1 1 0.059483 0.080963 0.059476 0.024317 0.018605 0.016180 0.156838 0.140658
2 0.089255 0.118047 0.089250 0.070965 0.059672 0.019941 0.192223 0.172282
3 0.136974 0.145052 0.136970 0.114441 0.118064 0.056427 0.279560 0.223133

7 1 0.149753 0.215093 0.149748 0.137570 0.119329 0.082594 0.275598 0.193004
2 0.191426 0.255305 0.191422 0.158973 0.152834 0.113426 0.339898 0.226472
3 0.248593 0.276009 0.248497 0.216852 0.208440 0.064285 0.324402 0.260117

(50,45) Pr-IIc 1 1 0.087745 0.102351 0.087742 0.061882 0.026954 0.007920 0.183156 0.175236
2 0.116562 0.139095 0.116558 0.098726 0.072609 0.025834 0.235675 0.209841
3 0.150768 0.164964 0.150760 0.130999 0.109556 0.072440 0.366447 0.294007

7 1 0.174109 0.245108 0.173981 0.167168 0.150699 0.100826 0.583458 0.482632
2 0.228347 0.264052 0.228337 0.184623 0.159082 0.119950 0.650769 0.530819
3 0.298067 0.345223 0.298060 0.265214 0.221704 0.075301 0.685883 0.610582

Ty-IIc 1 1 0.067653 0.899425 0.067647 0.050715 0.041532 0.006715 0.249486 0.242771
2 0.075989 0.125008 0.075988 0.071324 0.068227 0.028600 0.423756 0.395156
3 0.126706 0.140764 0.123803 0.093587 0.074553 0.053428 0.464197 0.410769

7 1 0.176572 0.207206 0.176568 0.120975 0.096408 0.031407 0.584353 0.552946
2 0.205034 0.235607 0.205027 0.185209 0.172136 0.125855 0.758676 0.632821
3 0.246174 0.264084 0.246172 0.208461 0.174507 0.131252 0.797154 0.665902

( ,50) Cc 1 1 0.038965 0.064027 0.038957 0.034208 0.028497 0.006783 0.116741 0.109958
2 0.061794 0.097659 0.061788 0.058993 0.037806 0.009397 0.192057 0.182660
3 0.106455 0.128709 0.106449 0.097808 0.070845 0.053129 0.296908 0.243779

7 1 0.130846 0.198432 0.130840 0.100975 0.074588 0.034628 0.16496 0.130332
2 0.174050 0.226741 0.174043 0.164317 0.130894 0.093459 0.234368 0.140909
3 0.215686 0.231606 0.215679 0.196309 0.164320 0.116237 0.32676 0.210523
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Table 8: Two-sample prediction values and 95% prediction intervals for future observations.

(n, m) CS j SEL
LINEX EL

L U Width
ω =−0.25 ω =0.001 κ=−0.5 κ=0.5

(35,20) Pr-IIc 1 0.035652 0.084621 0.035649 0.029411 0.016425 0.004351 0.562487 0.558136
2 0.118036 0.140993 0.118030 0.084403 0.042692 0.009422 0.700663 0.691241
3 0.156008 0.162308 0.155792 0.110699 0.097183 0.013140 0.733492 0.720352

Ty-IIc 1 0.010546 0.043119 0.010537 0.007234 0.004977 0.000782 0.712836 0.712054
2 0.061582 0.075408 0.061561 0.038947 0.029425 0.005279 0.84835 0.843071
3 0.109776 0.158223 0.109770 0.102432 0.092564 0.006233 0.889221 0.882988

( ,35) Cc 1 0.007642 0.009751 0.007636 0.004318 0.003707 0.000824 0.388925 0.388101
2 0.021274 0.048030 0.021259 0.016799 0.012973 0.005348 0.441291 0.435943
3 0.057293 0.132947 0.057288 0.033741 0.030912 0.009425 0.497781 0.488356

(50,45) Pr-IIc 1 0.026423 0.053190 0.026418 0.024083 0.014654 0.000693 0.36197 0.361277
2 0.080145 0.117522 0.080140 0.055920 0.046728 0.008432 0.448753 0.440321
3 0.129506 0.127001 0.129489 0.107418 0.086947 0.026488 0.540278 0.513790

Ty-IIc 1 0.008824 0.015283 0.008819 0.005271 0.004725 0.000707 0.484861 0.484154
2 0.041672 0.049382 0.041672 0.028526 0.021310 0.008262 0.559655 0.551393
3 0.010243 0.129743 0.010240 0.091253 0.058291 0.003714 0.616722 0.613008

( ,50) Cc 1 0.005281 0.006994 0.005274 0.002867 0.002173 0.000848 0.302409 0.301561
2 0.017126 0.024907 0.017121 0.004892 0.003282 0.000437 0.361289 0.360852
3 0.022809 0.037615 0.022800 0.019264 0.014066 0.002640 0.424486 0.421846

6.2. Real data analysis

In this subsection, we consider real life dataset representing the times to breakdown of
an insulating fluid between electrodes recorded at the voltage of 34 kV (minutes) in a life
test. The dataset is introduced by Nelson (2016) and used by Soliman (2005). The dataset
is presented below.

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67
4.85 6.50 7.3 8.01 8.27 12.06 31.75 32.52
33.91 36.71 72.89

For the purpose of goodness of fit test, we consider various methods such as log-likelihood
criterion, Kolmogorov-Smirnov (KS) statistic, Akaike’s-information criterion (AIC), the asso-
ciated second-order information criterion (AICc) and Bayesian information criterion (BIC).
The values of the MLEs and the five goodness of fit test statistics are presented in Table 9.

Table 9: The MLEs, KS, log-likelihood, AIC, AICc and BIC values for the real dataset.

Distribution
MLEs

KS ln L BIC AICc AIC
Shape Scale

G-MR(α, β) α̂ = 0.795210 β̂ = 2.392015 0.135509 −70.34277 146.5744 145.4355 144.6855

HL(λ) λ̂ = 0.088745 0.332880 −71.97299 146.8904 146.1813 145.946

IExpHL(α, θ) α̂ = 0.426676 θ̂ = 0.801178 0.264552 −74.03980 153.9685 152.8296 152.0796
IW(α, λ) α̂ = 2.038295 λ = 1.119888 0.329144 −75.25765 156.4042 155.2653 154.5153

GF (α, λ, σ) α̂ = 7.465586 σ̂ = 7.260802 0.667178 −95.1172 199.0677 197.8344 196.2344

λ̂ = 0.354321
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The numerical values in Table 9 suggest that the gamma-mixed Rayleigh (G-MR)
distribution fits the data well compared to the half-logistic (HL), inverted exponentiated half-
logistic (IExpHL), inverse Weibull (IW) and generalized Fréchet (GF) distributions. Now, we
compute the proposed estimates for the unknown parameters, reliability and hazard functions.
In Table 10, we consider progressive type-II censored sample with total sample size n = 19, the
failure sample size m = 14. We adopt various schemes for the purpose of computation. Here,
we consider three schemes say Pr-IIc, Ty-IIc and Cc, that is (R1, R2, ..., Rm) =(0*6,5,0*7),
(0*13,5) and (0*19), respectively. Note that (0*3,2) denotes the censoring scheme (0, 0, 0, 2).

Table 10: Progressive type-II censored data for the real dataset.

i 1 2 3 4 5 6 7

xi:m:n 0.19 0.78 1.31 2.78 4.15 4.67 4.85

i 8 9 10 11 12 13 14

xi:m:n 8.01 8.27 12.06 31.75 33.91 36.71 72.89

We take all the hyperparameter values as zero. We present the average values of the proposed
estimates of α, β in Table 11 and r(x) and h(x) in Table 12. Table 13 represents 95% interval
estimates of α, β, r(x) and h(x). Further, we have tabulated one-sample and two-sample
predicted values and 95% prediction intervals in Tables 14 and 15, respectively. Here, we
obtain one-sample prediction estimates of the lifetime of first three units at i-th failure and
two-sample prediction estimates of the lifetime of first three units and size of sample T = 10.
The plots of the probability density functions of five different models and histogram for real
dataset are presented in Figure 2. In Figures 3 and 4, the plots of the density, distribution,
reliability and hazard functions of gamma-mixed Rayleigh distribution under Pr-IIc, Ty-IIc
and Cc schemes are depicted.

Table 11: Estimates of α and β for the real dataset.

LINEX EL

(n, m) CS EM Method SEL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg

(19,14) Pr-IIc α 0.776441 Lin 0.399239 0.399847 0.399239 0.411029 0.437988
Imp 0.367051 0.376001 0.367050 0.381976 0.387007

β 3.356965 Lin 1.362572 1.455717 1.362637 1.463404 1.652837
Imp 1.335429 1.389600 1.335427 1.412632 1.486753

Ty-IIc α 0.294786 Lin 0.206869 0.207328 0.206867 0.205371 0.205485
Imp 0.176532 0.193725 0.176530 0.162305 0.167035

β 1.12691 Lin 0.502474 0.537084 0.502364 0.495457 0.531081
Imp 0.464582 0.499007 0.464578 0.446396 0.468757

( ,19) Cc α 0.795210 Lin 0.570614 0.575673 0.570595 0.563006 0.558460
Imp 0.523781 0.568766 0.523780 0.512525 0.504817

β 2.392015 Lin 1.465001 1.477988 1.464669 1.429069 1.429344
Imp 1.400864 1.459764 1.400860 1.387562 1.385258
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Table 12: Estimates of r(x) and h(x) for the real dataset.

LINEX EL

(n, m) CS EM Method SEL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg

(19,14) Pr-IIc r(x) 0.931769 Lin 0.867124 0.868877 0.867125 0.867672 0.868731
Imp 0.846209 0.847669 0.846207 0.847008 0.847460

h(x) 0.086149 Lin 0.152817 0.152628 0.152818 0.151136 0.148734
Imp 0.186422 0.187994 0.186421 0.177537 0.153480

Ty-IIc r(x) 0.860480 Lin 0.773932 0.773973 0.773932 0.773969 0.774245
Imp 0.748209 0.748867 0.748208 0.748452 0.748666

h(x) 0.125622 Lin 0.132865 0.133130 0.132864 0.128547 0.120052
Imp 0.164263 0.168117 0.164261 0.123786 0.119007

( ,19) Cc r(x) 0.876466 Lin 0.801888 0.801855 0.801888 0.802035 0.802425
Imp 0.774826 0.780074 0.774824 0.775314 0.776174

h(x) 0.149630 Lin 0.211578 0.211800 0.211577 0.206734 0.189875
Imp 0.230761 0.236482 0.230760 0.214776 0.206782

Table 13: 95% interval estimates of α, β, r(x) and h(x) based on the real dataset.

Asymptotic Bootstrap
(n, m) CS

NA NL Boot-p Boot-t
HPD

(19,14) Pr-IIc α (0.03697, 1.5159) (0.29957, 2.01244) (0.11275, 1.32586) (0.08563, 1.16478) (0.00794, 0.86115)
β (0.00000, 7.20239) (1.06772, 10.5544) (2.86452, 9.98328) (3.05617, 9.06852) (0.09908, 4.43365)

r(x) (0.83953, 1.02401) (0.84394, 1.02873) (0.80581, 0.95486) (0.82068, 0.96246) (0.84105, 0.94857)
h(x) (0.00000, 0.19222) (0.02515, 0.29512) (0.05946, 0.24653) (0.07563, 0.23213) (0.07884, 0.18947)

Ty-IIc α (0.08674, 0.50284) (0.14554, 0.59706) (0.10466, 0.47148) (0.09462, 0.41656) (0.12035, 0.2984)
β (0.00000, 2.65557) (0.29025, 4.37535) (0.12630, 2.24429) (0.21364, 2.06421) (0.41286, 1.51018)

r(x) (0.68785, 1.03311) (0.70406, 1.05165) (0.62482, 0.90287) (0.66946, 0.88035) (0.72451, 0.87172)
h(x) (0.03414, 0.21710) (0.06065, 0.26020) (0.07567, 0.22233) (0.08745, 0.19816) (0.10526, 0.1824)

( ,19) Cc α (0.21443, 1.37599) (0.38309, 1.65070) (0.33456, 1.43563) (0.27664, 1.35645) (0.42784, 1.31559)
β (0.00000, 4.81147) (0.86994, 6.57719) (1.01503, 4.92624) (1.21536, 4.02611) (1.36485, 2.53242)

r(x) (0.73417, 1.01876) (0.74512, 1.03096) (0.68356, 0.90118) (0.70599, 0.88412) (0.75086, 0.88837)
h(x) (0.00223, 0.29703) (0.05587, 0.40071) (0.04312, 0.25221) (0.10537, 0.26529) (0.13458, 0.25346)
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Table 14: One-sample prediction values and 95% prediction intervals
for future observations.

(n, m) CS i p SEL
LINEX EL

BPI
ω =−0.25 ω = 0.001 κ =−0.5 κ = 0.5

(19,14) Pr-IIc 1 1 4.864253 5.283172 4.864247 4.064281 3.642513 (3.410321, 5.572681)
2 5.123467 6.017240 5.123460 4.618267 4.042580 (3.843775, 6.333201)
3 5.507412 6.724315 5.507403 4.970824 4.386421 (4.210341, 7.262675)

5 1 7.129901 9.058243 7.129882 6.527802 6.201358 (5.462305, 10.305467)
2 8.105347 11.25680 8.105339 7.201634 7.053412 (6.76250, 11.738928)
3 8.753105 12.88402 8.753087 7.836405 7.643187 (7.335213, 12.599454)

Ty-IIc 1 1 2.560428 3.526411 2.557964 2.134526 2.074091 (1.761855, 3.837296)
2 4.068825 4.672553 4.068822 2.760048 2.496253 (2.142392, 5.058906)
3 4.748263 4.958240 4.748257 3.209992 2.897385 (2.437218, 5.321908)

5 1 3.580742 5.272538 3.580739 3.336142 2.582773 (2.161007, 5.509298)
2 5.23189 6.856842 5.231817 4.219138 4.000876 (3.496125, 7.196189)
3 7.100923 7.594625 7.100916 6.735364 5.436582 (4.430564, 8.493101)

( ,19) Cc 1 1 2.182731 2.382467 2.182726 1.766528 1.623407 (0.942521, 2.676136)
2 3.067269 3.631854 3.067261 2.578532 2.247716 (1.432610, 4.259329)
3 3.854727 5.582428 3.854718 2.891759 2.374685 (1.796821, 6.011103)

5 1 2.978550 4.297582 2.978544 2.432080 2.178441 (1.800672, 4.810808)
2 3.352725 5.317162 3.352716 2.70553 2.484336 (2.134255, 5.565777)
3 5.034900 5.924856 5.033875 3.885664 3.100858 (2.704073, 7.589788)

Table 15: Two-sample prediction values and 95% prediction intervals
for future observations.

(n, m) CS j SEL
LINEX EL

BPI
ω =−0.25 ω = 0.001 κ =−0.5 κ = 0.5

(19,14) Pr-IIc 1 1.724826 2.074824 1.724813 1.376145 1.265064 (1.077346, 2.385841)
2 2.064354 2.467026 2.064348 1.750517 1.305119 (1.213075, 2.826527)
3 4.846177 3.794121 4.846169 3.526443 3.344056 (2.19428, 4.92259)

Ty-IIc 1 1.255674 1.699764 1.255670 1.096628 0.946491 (0.631672, 1.886354)
2 1.462812 2.152316 1.462805 1.224056 1.064583 (0.816055, 2.28461)
3 2.803286 3.45821 2.803179 2.437182 2.175564 (1.430592, 3.802253)

( ,19) Cc 1 0.860765 1.180676 0.860761 0.681231 0.620711 (0.462854, 1.257712)
2 1.113446 1.445251 1.113437 0.846616 0.726489 (0.371066, 1.623857)
3 2.045084 2.152647 2.045076 1.615233 1.086961 (0.794823, 2.343845)
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Figure 2: The histogram of the real dataset and the plots of the probability density functions
of the fitted G-MR, HL, IExpHL, IW, GF models.
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Figure 3: The plots of the (a) density and (b) distribution functions of the gamma-mixed
Rayleigh distribution based on different censoring schemes.
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Figure 4: The plots of the (a) reliability and (b) hazard functions based on different censoring schemes.
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7. CONCLUDING REMARKS

In industrial life tests, reliability analysis and clinical trials, the type-II progressive
censoring methodology has become quite popular for analyzing lifetime data. It allows for
random removals of the remaining survival units at each failure time. In this article, we
considered inference and prediction problems for the gamma-mixed Rayleigh distribution
when progressive type-II censored sample is available. We obtained conditions under which
the MLEs exist and are unique, then derived the MLEs using EM algorithm. The Bayes
estimates have been computed with respect to three loss functions, such as squared error,
LINEX and entropy loss functions. Two approximations say Lindley approximation and
importance sampling method have been used for the computation of the Bayes estimates.
We also derived confidence and credible intervals using various methods. Specifically, we have
obtained asymptotic, bootstrap-p and bootstrap-t confidence intervals and highest posterior
density credible interval. Further, we discussed Bayesian prediction problems. One-sample
and two-sample prediction problems have been considered. An elaborate simulation study
was conducted for the comparison of the proposed estimates. From the simulation study,
it has been observed that the Bayes estimates perform better than the MLEs in terms of
the MSE values. Further, the Bayes estimates for positive values of ω and κ are better
than that for negative values of ω and κ in terms of the average values and MSEs. For the
present problem, we recommend the Bayes estimates to use for the case of point estimation.
It has been observed that for asymptotic confidence intervals, the NA method provides better
estimates than NL method in the sense of the average lengths. For the case of bootstrap
confidence intervals, Boot-t method performs better than Boot-p method. However, among
the computed five intervals, HPD credible intervals give the best performance. Among all the
interval estimates, we recommend HPD credible interval estimate. In addition to these, we
have also computed predictive estimates. It has been noticed that when the effective sample
size increases, the predictive estimates and predictive interval lengths decrease. Finally, we
considered a real life dataset representing the times to breakdown of an insulating fluid
between electrodes recorded at the voltage of 34 kV (minutes) in a life test for illustrative
purposes.
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