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1. INTRODUCTION

In recent years, life testing experiments are less preferred because of being
time consuming and expensive. In many situations, use of complete sample is
neither possible nor desirable. In such cases, the sample needs to be censored.
Censoring is a condition in which the value of observation is partially known and
incomplete. Among different types of censoring schemes, the two basic censoring
schemes are type-I and type-II. In the type-I censoring scheme, the life testing
experiment terminates at a pre-specified time T , whereas, the type-II censoring
scheme terminates when one has m number of failures. For applications and
importance of these schemes, we refer to [17] and [7]. The main drawback of these
censoring schemes is that they do not allow removal of the items in between other
than the termination point. To overcome such drawback, a more general censoring
scheme, known as the progressive censoring was introduced in the literature. It
can be classified into progressive type-I and progressive type-II censoring schemes.
In the progressive type-I censoring scheme, let the number of items used in a life
testing experiment be n. In this scheme, R1, R2, . . . , Rm items are randomly
withdrawn at pre-specified time points T1, T2, . . . , Tm, respectively. The test will
be terminated at prefixed time point Tm in this scheme. Now, we describe the
PT-IICS. Consider n number of total units at initial time on an experiment. We
remove randomly R1 number of survival units when first failure time X1:m:n is
observed. This process continues till the mth failure occurs. We assume that the
mth failure takes place at time Xm:m:n and the remaining number of surviving
units is Rm = n− (m+

∑m−1
i=1 Ri). Henceforth, we denote R = (R1, R2, . . . , Rm)

and X = (X1:m:n, X2:m:n, . . . , Xm:m:n) for the censoring scheme and the PT-IICS,
respectively. Due to several applications, various inferential procedures based on
PT-IICS have been established for many lifetime distributions. For instance, see
[24], [27], [1] and the references contained therein.

A random variable X is said to follow a gamma-mixed Rayleigh distribution
if its probability density and cumulative distribution functions are respectively
given by (α, β > 0)

(1.1) fX(x;α, β) =
αβαx

(x2 + β2)(α/2)+1
and FX(x;α, β) = 1− βα

(x2 + β2)α/2
,

where x > 0. Here, α is known as the shape parameter and β is known as the scale
parameter. The reliability function and the hazard function of this distribution
are respectively obtained as

r(x;α, β) =
βα

(x2 + β2)α/2
and h(x;α, β) =

xα

x2 + β2
,(1.2)

where x > 0 and α, β > 0. Various shapes of the probability density, reliability
and hazard functions of the gamma-mixed Rayleigh distribution are depicted in
Figures 1(a), 1(b) and 1(c), respectively. Differentiating h(x;α, β) with respect
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to x, we obtain

dh(x;α, β)

dx
=
α(β + x)(β − x)

(x2 + β2)2
=


> 0, for x < β
< 0, for x > β
= 0, for x = β.

(1.3)

Thus, the hazard function of the gamma-mixed Rayleigh distribution is increasing
for x < β and decreasing for x > β, for any value of α > 0. Figure 1(c)
shows that the hazard of the gamma-mixed Rayleigh distribution is hump-shaped,
that is, the hazard is increasing early and eventually begins declining. One may
refer to [29] for similar study on the exponentiated generalized linear exponential
distribution. This type of hazard is often used in modeling data related to survival
after successful surgery, where there is an initial increase in risk due to infection
or other complications just after the procedure, followed by a steady decline in
risk as the patient recovers (see [13]).
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Figure 1: The plots of the (a) density (b) reliability and (c) hazard func-
tions based on different values of the parameters.

The Bayesian prediction of the unknown observation is an important prob-
lem. Various authors have studied prediction problems based on the PT-IICS.
[11] obtained the prediction intervals and estimates for future observations in
one-sample and two-sample problems for the Chen distribution. Similar problem
was studied by [2] for the Poisson-exponential distribution when PT-IICS is avail-
able. For flexible Weibull distribution, [4] considered Bayesian prediction prob-
lem based on the progressive type-II censored data. Very recently, [21] obtained
prediction estimates and intervals for future observations in one-sample and two-
sample problems for the generalized Fréchet distribution from Bayesian point of
view. To the best of our knowledge, nobody has considered the gamma-mixed
Rayleigh distribution with distribution function given by (1.1) for the purpose
of statistical inference and Bayesian prediction based on the PT-IICS. In this
paper, we address the problem of inference and prediction when the PT-IICS is
available from gamma-mixed Rayleigh distribution.

The rest of the paper is organized as follows. In the next section, we ob-
tain MLEs for the unknown parameters, reliability and hazard functions. The
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existence and uniqueness of the MLEs have been studied. The EM algorithm is
described to compute the proposed MLEs. Section 3 deals with the construc-
tion of various interval estimates. In Section 4, we derive Bayes estimates with
respect to three loss functions. Two approaches are adopted to compute approx-
imate Bayes estimates. Importance sampling method is used to compute HPD
credible intervals. Further, in Section 5, we derive Bayesian prediction and in-
terval estimates. In Section 6, we carry out a simulation study to compare the
performance of the proposed estimates. A real life dataset is considered for the
illustration purpose. Finally, Section 7 concludes the paper.

2. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we derive MLEs of α and β of the gamma-mixed Rayleigh
distribution based on the PT-IICS. Using invariance property of the MLE, the
MLEs of r(x) and h(x) can be obtained. The likelihood function of α and β is
given by

(2.1) L(α, β | x) = K

m∏
i=1

(
1− FX(xi:m:n;α, β)

)RifX(xi:m:n;α, β),

where the constant K = n(n−(R1+1))(n−(
∑2

j=1Rj+2)) . . . (n−
∑m−1

j=1 (Rj+1))
and x = (x1:m:n, x2:m:n, . . . , xm:m:n). The log-likelihood function of α and β is
obtained as

` = `(α, β | x) ∝ m lnα + mα lnβ +
m∑
i=1

lnxi:m:n + α lnβ
m∑
i=1

Ri(2.2)

−
m∑
i=1

(α
2

(1 +Ri) + 1
)

ln(x2i:m:n + β2).

The likelihood equations of α and β are

m

(
1

α
+ lnβ

)
+ lnβ

m∑
i=1

Ri −
1

2

m∑
i=1

(Ri + 1) ln
(
β2 + x2i:m:n

)
= 0(2.3)

and

α

(
m∑
i=1

Ri +m

)
− 2β2

m∑
i=1

(
α
2 (Ri + 1) + 1

)
β2 + x2i:m:n

= 0,(2.4)

respectively. The MLEs of α and β can be obtained after solving (2.3) and (2.4)
simultaneously. These are difficult to obtain in explicit form. The above system
of nonlinear equations can be solved by solving a two-dimensional optimization
problem. In this case, one may use the Newton-Raphson algorithm. However, the
standard Newton-Raphson method does not converge in some cases. We use EM
algorithm to compute the MLEs of α and β, which is described below. Note that
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the EM algorithm was introduced by [8]. Prior to the computation, we discuss
the condition under which the MLEs exist and are unique.

Theorem 2.1. The MLEs of α and β for (α, β) ∈ (0,∞)× (0,∞) exist
and are unique under the PT-IICS, provided xi:m:n > β holds, for i = 1, . . . ,m.

Proof: We show that the maximum value of the log-likelihood function
`(α, β | x) exists and also unique for (α, β) ∈ (0,∞)× (0,∞). One may refer to
the papers by [5] and [12] for similar study in other estimation problems. The
second order partial derivatives of the log-likelihood function ` with respect to α
and β are given by

∂2`

∂α2
= −m

α2
< 0,(2.5)

∂2`

∂β2
= −

α (
∑m

i=1Ri +m)

β2
−

m∑
i=1

(α (Ri + 1) + 2)
(x2i:m:n − β2)
(x2i:m:n + β2)2

< 0,(2.6)

if xi:m:n > β. Therefore, for fixed α(β), ` is a strictly concave function with
respect to β(α). For fixed β, we get

lim
α→0

`(α, β | x) = −∞ and lim
α→∞

`(α, β | x) = −∞.

Similarly, for fixed α, we have limβ→0 `(α, β | x) = −∞ and limβ→∞ `(α, β | x) =
−∞. So, for fixed α(β), ` is a unimodal function with respect to β(α). Again,

lim
α→0, β→0

`(α, β | x) = −∞, lim
α→∞, β→0

`(α, β | x) = −∞,

lim
α→0, β→∞

`(α, β | x) = −∞, lim
α→∞, β→∞

`(α, β | x) = −∞.

Let (α0, β0) ∈ (0,∞)× (0,∞) and `(α0, β0 | x) = ρ. Further, set

D = {(α, β) : (α, β) ∈ (0,∞)× (0,∞), `(α, β | x) ≥ ρ}.

So, D is a closed and bounded set, hence D is compact set. Note that the
function ` is continuous with respect to (α, β). Thus, ` has a maximum value for
some (α, β) ∈ D. Suppose that at (α1, β1) ∈ (0,∞) × (0,∞), the function ` has
maximum. Now, we have to show that (α1, β1) is unique. We observe that

`(α1, β1 | x) > `(α1, β | x) > `(α, β | x),

for (α, β) ∈ (0,∞)× (0,∞), which ensures the desired uniqueness.

2.1. EM algorithm

The EM algorithm is mainly used to compute the MLEs of the unknown pa-
rameters in cases where the likelihood equations cannot be solved explicitly. EM
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algorithm has two steps: the expectation (E) step and the maximization (M) step.
The E-step involves computation of the pseudo log-likelihood function. The M-
step involves maximization of the pseudo log-likelihood function. Let the observed
sample and censored data be denoted by X = (X1:m:n, X2:m:n, . . . , Xm:m:n) and
Z = (Z1, Z2, . . . , Zm), respectively, where Zj is a 1×Rj vector (Zj1, Zj2, . . . , ZjRj ),
for j = 1, 2, . . . ,m. Note that the complete sample is a combination of the ob-
served sample and the censored data. Denote the complete sample by W =
(X,Z). The likelihood function of the complete sample (see [26]) is given by

LC(W ;α, β) =
m∏
j=1

[
fX(xj:m:n;α, β)

Rj∏
k=1

fZ(zjk;α, β)

]
.(2.7)

Then, the log-likelihood function for the complete sample is

`C(W ;α, β) = n ln(αβα) +
m∑
j=1

[
lnxj:m:n +

Rj∑
k=1

ln zjk −
(α

2
+ 1
)

(2.8)

×

 Rj∑
k=1

ln(z2jk + β2) + ln(x2j:m:n + β2)

].
In the E-step, the conditional expectation of the log-likelihood function `C(W ;α, β)
is obtained. This is known as the pseudo log-likelihood function. This can
be obtained from `C(W ;α, β) by replacing any function of zjk say ψ(zjk) with
E[ψ(Zjk)|Zjk > xj:m:n]. Thus, the pseudo log-likelihood function is obtained as

`s(α, β) = n(lnαβα) +
m∑
j=1

lnxj:m:n +
m∑
j=1

RjA(xj:m:n;α, β)−
(α

2
+ 1
)

(2.9)

×
m∑
j=1

(
RjB(xj:m:n;α, β) + ln(x2j:m:n + β2)

)
,

where

A(xj:m:n;α, β) = E [lnZjk|Zjk > xj:m:n](2.10)

= α(x2j + β2)α/2
∫ ∞
xj:m:n

t ln t

(t2 + β2)(α/2)+1
dt

and

B(xj:m:n;α, β) = E
[
ln(Z2

jk + β2)|Zjk > xj:m:n

]
(2.11)

= ln(x2j:m:n + β2) +
2

α
.

In the M-step, we maximize the pseudo log-likelihood function given by (2.9)
obtained in E-step after substituting the values of (2.10) and (2.11) in (2.9). Let
(α(p), β(p)) be an estimate of (α, β) at pth stage. The corresponding updated
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estimate (α(p+1), β(p+1)) can be obtained by maximizing

`∗s(α, β) = n(lnαβα) +
m∑
j=1

lnxj:m:n +
m∑
j=1

RjA(xj:m:n;α(p), β(p))(2.12)

−
(α

2
+ 1
) m∑
j=1

(
RjB(xj:m:n;α(p), β(p)) + ln(x2j:m:n + β2)

)
with respect to α and β. Now, we compute β(p+1) using fixed point iteration
method (see, [15]). The corresponding estimate is obtained by solving the equa-
tion

exp

 1

2n

m∑
j=1

(BRj + ln(β2 + x2j:m:n))− 1

α̂(β)

 = β,(2.13)

where

α̂(β) =

n− m∑
j=1

β2

β2 + x2j:m:n

−1 m∑
j=1

2β2

β2 + x2j:m:n

(2.14)

with B = B(xj:m:n;α(p), β(p)). We estimate β(p+1). The updated estimate α(p+1)

can be obtained from α(p+1) = α̂(β(p+1)) using (2.14). The algorithm is provided
below.

Step-1 Set p = 0. Based on the starting value (α(0), β(0)), we estimate the param-
eters α and β.

Step-2 Calculate B = B(xj:m:n;α(p), β(p)) from the observed sample X = x and
the parameters α(p), β(p).

Step-3 Update (α, β) as (α(p+1), β(p+1)).

Step-4 If |(α(p+1), β(p+1)) − (α(p), β(p))| ≤ ε (ε > 0 very small tolerance), then we
get the MLEs of the parameters α and β.

Step-5 If |(α(p+1), β(p+1))− (α(p), β(p))| > ε, then set p = p+ 1 and go to the step
1.

Denote the MLEs of α and β by α̂ and β̂. Replacing α and β with α̂ and
β̂, the MLEs of the reliability and hazard functions are respectively obtained as
(x > 0)

r̂(x) =
βα

(x2 + β2)α/2
|(α,β)=(α̂,β̂) and ĥ(x) =

xα

x2 + β2
|(α,β)=(α̂,β̂).(2.15)

Remark 2.1. The main advantage of the EM algorithm is that compu-
tations are straightforward and does not require second and higher order deriva-
tives.
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3. INTERVAL ESTIMATES

In this section, we obtain 100(1−ϕ)% confidence intervals for the parame-
ters, reliability and hazard functions based on PT-IICS. Two techniques are used.
First, we discuss the construction of asymptotic confidence intervals. It is noted
that to apply this procedure, we need the concept of observed Fisher information
matrix. [20] first derived the observed Fisher information matrix using missing
information based on the EM algorithm. The observed Fisher information ma-
trix is used to construct the asymptotic confidence intervals. According to Louis,
the observed information equals to the complete information minus the missing
information. That is, IX(θ) = IW (θ)−IW |X(θ), where IX(θ), IW (θ) and IW |X(θ)
are the observed information, complete information and missing information, re-
spectively. Denote θ = (α, β). The complete information matrix IW (θ) is given
as

IW (θ) = −E
[
∂2`C(W ; θ)

∂θ2

]
=

(
n
α2 − 2n

β(α+2)

− 2n
β(α+2)

4nα
β2(α+4)

)
.(3.1)

Again, the missing information IW |X(θ) at jth failure time xj:m:n is obtained as

Ij:m:n
W |X (θ) =

−b20(xj:m:n;α, β) −b11(xj:m:n;α, β)
−b11(xj:m:n;α, β) −b02(xj:m:n;α, β)

 ,

where

b20(xj:m:n;α, β) = − 1

α2
, b11(xj:m:n;α, β) =

2β

(α+ 2)(x2j:m:n + β2)
,

b02(xj:m:n;α, β) =
α

(x2j:m:n + β2)

[
(x2j:m:n − β2)
(x2j:m:n + β2)

+
2(α+ 2)β2

(α+ 4)(x2j:m:n + β2)
− 1

]
.

Thus, the total missing information IW |X(θ) is given as

IW |X(θ) =

m∑
j=1

RjI
j:m:n
W |X (θ).(3.2)

From the 2× 2 order matrices given by (3.1) and (3.2), we compute the observed
Fisher information matrix of α and β as

IX(θ) =

(
d20 d11
d11 d02

)
,(3.3)

where

d20 =
1

α2

n− m∑
j=1

Rj

 , d11 = − 2

β(α+ 2)

[
n−

β2
∑m

j=1Rj

(x2j:m:n + β2)

]
and

d02 =
4nα

β2(α+ 4)
+

α
∑m

j=1Rj

(x2j:m:n + β2)

[
(x2j:m:n − β2)
(x2j:m:n + β2)

+
2(α+ 2)β2

(α+ 4)(x2j:m:n + β2)
− 1

]
.
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In this part, we obtain asymptotic confidence intervals using (i) normal approx-
imation (NA) of the MLE and (ii) the log-transformed (NL) MLE methods. We
omit the details of this method to maintain brevity. For the formulas for the NA
and NL approaches, see [18] and [22, 23].

3.1. Bootstrap confidence intervals

It is seen in the previous subsection that to obtain the approximate con-
fidence intervals of the unknown model parameters, it is required to derive sec-
ond order derivatives which is cumbersome. So, we consider bootstrap tech-
nique, which is simpler than NA and NL methods. In particular, we adopt
percentile bootstarp (Boot-p) and bootstarp-t (Boot-t) techniques. Here, we de-
scribe the procedure how to obtain confidence intervals using Boot-p method.
First, we obtain the MLEs of η = (α, β, r(x), h(x)). Denote the MLEs of η
by η̂ = (α̂, β̂, r̂(x), ĥ(x)). Now, based on α̂ and β̂, the bootstrap sample x∗ =
(x∗1, x

∗
2, . . . , x

∗
n) has to be generated. We compute η̂∗ = (α̂∗, β̂∗, r̂∗(x), ĥ∗(x))

based on x∗. Repeat this procedure for 1000 times to get η̂∗1, η̂
∗
2 . . . , η̂

∗
1000, where

η̂∗i = (α̂∗i , β̂
∗
i , r̂
∗
i (x), ĥ∗i (x)), i = 1, 2, . . . , 1000. Next, we arrange η̂∗i ’s in ascending

order and denote η̂∗(1) ≤ η̂
∗
(2) ≤ . . . ≤ η̂

∗
(1000). Thus, the 100(1−ϕ)% approximate

bootstrap-p confidence interval for η is obtained as (L,U), where L = η̂∗
( iϕ

2
)

and

U = η̂∗
(i(1−ϕ2 ))

. The percentile bootstrap confidence interval of η at 95% level

of confidence is (η̂∗(25), η̂
∗
(975)). For small sample size, the Boot-p method does

not perform well. In this subsection, we discuss Boot-t method, which is sim-
ple to apply compared to Boot-p method. We obtain η̂∗ = (α̂∗, β̂∗, r̂∗(x), ĥ∗(x))
similar to the procedure as mentioned in Boot-p method. Then, based on the
bootstrap sample x∗ = (x∗1, x

∗
2, . . . , x

∗
n), we compute the variance-covariance ma-

trix I∗−1X (α̂∗, β̂∗). For i = 1, 2, . . . , 1000, calculate the value of the statistic
T ∗ηi = (η̂∗i − η̂i)/

√
v̂ar(η̂∗i ). Then, we arrange in the ascending order and get

T ∗η(1) ≤ T ∗η(2) ≤ . . . ≤ T ∗η(1000) . Now, the 100(1 − ϕ)% approximate bootstrap-t

confidence interval for η is given by (L,U), where L = T ∗η
(
iϕ
2 )

and U = T ∗η(i(1−ϕ
2 ))

.

The approximate Boot-t confidence interval of η at 95% level of confidence is
(T ∗η(25) , T

∗
η(975)

).

4. BAYESIAN ESTIMATION

In this section, we obtain Bayes estimates of the unknown parameters α, β
and the reliability characteristics r(t), h(t) of the gamma-mixed Rayleigh distri-
bution based on PT-IICS. Three loss functions have been considered: (i) squared
error loss (SEL) function, (ii) LINEX loss function and (iii) entropy loss function.
The SEL function is a balance type loss function. That is, when this loss func-
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tion is used, the overestimation as well as underestimation do not have any effect
on the estimation problem. However, there are situations, where the squared
error loss function is not suitable. For example, when we estimate reliability of
a rocket, the underestimation is dangerous than the overestimation. Further,
the overestimation is severe than the underestimation when estimating the water
level of bank of river in a flood-prone area. We also consider two asymmetric
loss functions (LINEX and entropy) which are useful to deal with this type of
situations. Let δ be an estimator of the unknown parameter φ. Then, Table 1
represents Bayes estimates of φ under the squared error, LINEX and entropy loss
functions. In Table 1, ω and κ are both non-zero real numbers. For κ = −1, the

Name of the Form of the Form of the
loss functions loss functions Bayes estimates

SEL ls(φ, δ) = (δ − φ)2 Eφ (φ| x)
LINEX l`(φ, δ) = exp{ω(δ − φ)} − 1

ω ln (Eφ (exp{−ωφ}| x))
− ω(δ − φ)− 1

Entropy le(φ, δ) = (δ/φ)κ − κ ln (δ/φ)− 1 [Eφ (φ−κ| x)]
− 1
κ

Table 1: Loss functions and the corresponding form of the Bayes esti-
mates.

Bayes estimate with respect to the entropy loss function reduces to that under
the squared error function. To obtain the Bayes estimates, one needs to consider
prior distributions for the unknown model parameters. It is well known that the
joint conjugate prior is not available when both the parameters are not known.
Further, there is no clear methodology to choose an appropriate prior (see [3])
for a Bayesian estimation problem. Note that the gamma distribution is versatile
for adjusting different shapes of the density function. It has a log-concave den-
sity function in the interval (0,∞). Jeffery’s prior can be obtained as a special
case of the gamma prior. Due to these facts, various authors have considered
independent gamma distributions as the priors for different Bayesian estimation
problems. See, for instance, [14], [10] and [22]. Here, we assume independent
gamma priors for α and β. Let α ∼ Gamma(a1, a2) and β ∼ Gamma(a3, a4),
when Gamma(a1, a2) and Gamma(a3, a4) represent gamma distributions with
scale and shape parameters 1/a2, a1 and 1/a4, a3, respectively. The probability
density functions of Gamma(a1, a2) and Gamma(a3, a4) are given by

g1(α; a1, a2) ∝ αa1−1 exp{−αa2} and g2(β; a3, a4) ∝ βa3−1 exp{−βa4},

respectively, where α, β > 0 and a1, a2, a3, a4 > 0. The hyper-parameters in
the prior distributions are assumed to be known. After some simplification, the
posterior distribution of α, β given X = x is obtained as

Π(α, β|x) ∝ Π1(α, β, x)∫∞
0

∫∞
0 Π1(α, β, x)dαdβ

,(4.1)
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where the joint distribution of α, β and X is given by

Π1(α, β, x) ∝ αm+a1−1βmα+a3−1 exp{−(αa2 + βa4)}(4.2)

×
m∏
i=1

xi:m:nβ
αRi

(x2i:m:n + β2)
α
2
(1+Ri)+1

.

Thus, for any arbitrary estimand g(α, β), the Bayes estimates with respect to the
LINEX and entropy loss functions are respectively obtained as

ĝbl = − 1

ω
ln

[∫∞
0

∫∞
0 exp{−ωg(α, β)}Π1(α, β, x)dαdβ∫∞

0

∫∞
0 Π1(α, β, x)dαdβ

]
and(4.3)

ĝbe =

[∫∞
0

∫∞
0 g−κ(α, β)Π1(α, β, x)dαdβ∫∞
0

∫∞
0 Π1(α, β, x)dαdβ

]− 1
κ

.(4.4)

As mentioned before, the Bayes estimate with respect to the SEL function can
be obtained from (4.4) when κ = −1. Note that the required Bayes estimates of
α, β, r(x) and h(x) with respect to the LINEX and entropy loss functions can be
computed after substituting α, β, r(x) and h(x) in the place of g(α, β) in (4.3)
and (4.4), respectively. Choosing values of the hyper-parameters is always an
important task from Bayesian point of view. Below, we propose a method in this
purpose.

Remark 4.1. We generate m samples from a gamma-mixed Rayleigh
distribution with distribution function given by (1.1). For each of this m samples,
we obtain the MLEs of the model parameters, which are denoted by α̂j and β̂j ,
j = 1, 2, . . . ,m. The mean and variance of the gamma prior distribution with
density function g1(α; a1, a2) are a1

a2
and a1

a22
, respectively. Further, the mean and

variance of the MLEs of α for m samples are 1
m

∑m
j=1 α̂

j and 1
m−1

∑m
j=1(α̂

j −
1
m

∑m
j=1 α̂

j)2, respectively. Therefore, the mean and variance of the MLEs are
equal to a1

a2
and a1

a22
, respectively. That is,

a1
a2

=
1

m

m∑
j=1

α̂j and
a1
a22

=
1

m− 1

m∑
j=1

α̂j − 1

m

m∑
j=1

α̂j

2

.

Solving these equations, we get

a1 =

(
1
m

∑m
j=1 α̂

j
)2

1
m−1

∑m
j=1

(
α̂j − 1

m

∑m
j=1 α̂

j
)2 and a2 =

1
m

∑m
j=1 α̂

j

1
m−1

∑m
j=1

(
α̂j − 1

m

∑m
j=1 α̂

j
)2 .

In a similar manner, the hyper-parameters a3 and a4 can be obtained from the
above equations by replacing α̂j with β̂j .
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4.1. Computational methods

In the above section, we see that the proposed Bayes estimates are in the
form of the ratio of two integrals. These integrals can not be evaluated in terms
of some closed-form expressions. So, we use two approaches in order to get
approximate values of the Bayes estimates. One of these is proposed by [19].
Other is due to [6].

4.1.1. Lindley’s approximation method

In this subsection, we discuss the Bayes estimates of α, β, r(x) and h(x)
using Lindley’s approximation technique. The detailed derivations are omitted
to maintain brevity. We refer to [18] and [23] for detailed derivation of the Bayes
estimates using this method. First, we consider LINEX loss function. With
respect to this loss function, the Bayes estimate of α is given by

α̂bl = − 1

ω
ln
[

exp{−ωα}+ (1/2)ω exp{−ωα}(4.5)

×
[
ωτ11 −A(α, β)

]]∣∣∣
(α,β)=(α̂,β̂)

,

where A(α, β) = {l30τ211 + l03τ21τ22 + 3l21τ11τ12 + l12(τ11τ22 + 2τ221) + 2p1τ11 +

2p2τ12}, lij = ∂i+j l
∂αi∂βj

; i, j = 0, 1, 2, 3; i+ j = 3, p1 = ∂p
∂α , p2 = ∂p

∂β and p is equal
to the logarithm of joint prior distribution of α and β. The Bayes estimate of α
with respect to the entropy loss function is

α̂be =
[
α−κ + (1/2)κα−(κ+1)[(κ+ 1)α−1τ11 −A(α, β)]]−

1
κ

∣∣∣
(α,β)=(α̂,β̂)

.(4.6)

The Bayes estimate of α with respect to the squared error loss function can be
obtained from (4.6) substituting κ = −1. Further, the Bayes estimates of β, r(x)
and h(x) with respect to the squared error, LINEX and entropy loss functions
can be derived similarly.

4.1.2. Importance sampling method

In the previous subsection, we obtain the Bayes estimates using Lindley’s
approximation method. One disadvantage of this method is that it requires
higher order partial derivatives of the log-likelihood function. Further, the Lind-
ley’s approximation can not be used to construct highest posterior density (HPD)
credible intervals. In this subsection, we describe importance sampling method
which is free from the higher order partial derivatives. It is also used to com-
pute HPD credible intervals. To apply importance sampling method, we need to
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rewrite the joint posterior distribution of α, β given X = x in (4.1) as

Π(α, β|X = x) ∝ Gammaα(m+ a1, a2)Gammaβ|α(mα+ a3, a4)h(α, β)(4.7)

where

h(α, β) = a
−(mα+a3)
4

m∏
i=1

βαRixi:m:n(x2i:m:n + β2)−(
α
2
(1+Ri)+1).

At first, we generate α from gamma distribution Gammaα(m + a1, a2). Next,
β is generated from the Gammaβ|α(mα + a3, a4) distribution. We repeat this
procedure 1000 times to obtain (α1, β1), (α2, β2), . . . , (α1000, β1000). Thus, the
Bayes estimates of a parametric function g(α, β) under LINEX and entropy loss
functions are respectively given by

ĝbl = − 1

ω
ln

[∑1000
i=1 exp{−ωg(αi, βi)}h(αi, βi)∑1000

i=1 h(αi, βi)

]
(4.8)

and

ĝbe =

[∑1000
i=1 g(αi, βi)

−κh(αi, βi)∑1000
i=1 h(αi, βi)

]− 1
κ

.(4.9)

We compute the Bayes estimates of α, β, r(x) and h(x) substituting α, β, r(x)
and h(x) in place of g(α, β), respectively in (4.8) and (4.9) under LINEX and en-
tropy loss functions. Using the concept of importance sampling method, one
can derive HPD credible intervals for the unknown parameters α, β and reliabil-
ity characteristics r(x), h(x). The derivation of the credible intervals have been
skipped from this paper due to sake of conciseness. One may refer to [16] and
[28] for elaborate discussion on the derivation of the HPD credible interval for
some lifetime distributions.

5. BAYESIAN PREDICTION AND INTERVAL ESTIMATION

In the previous section, we study the Bayesian estimation for the unknown
parameters, reliability and the hazard functions. Here, we discuss Bayesian pre-
diction for the future observations based on the PT-IICS taken from the gamma-
mixed Rayleigh distribution. We compute the corresponding prediction intervals.
There have been a lot of efforts from various authors in prediction problems. For
some recent references, please refer to [9] and [4]. This section is divided into two
subsections. The following subsection deals with one-sample prediction problem.

5.1. One-sample prediction and Bayesian prediction interval (BPI)

Suppose n number of total independent life testing units are subjected to
an experiment. Let x = (x1:m:n, x2:m:n, . . . , xm:m:n) be the observed progressively
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type-II censored sample. The censoring scheme is taken as R = (R1, R2, . . . , Rm).
Let yi = (yi1, yi2, . . . , yiRi) represent the ordered lifetimes of the units which are
censored at the ith failure xi:m:n. The future observations to be predicted based
on x are y = (yip; i = 1, 2, . . . ,m; p = 1, 2, . . . , Ri). The conditional density y
under the given information can be obtained as

f1(y|x, α, β) = p

(
Ri
p

) p−1∑
k=0

(−1)p−k−1
(
p− 1

k

)
f(y)(1− F (y))Ri−k−1(5.1)

×(1− F (xi))
k−Ri , y > xi:m:n.

The distribution function is

F1(y|x, α, β) = p

(
Ri
p

) p−1∑
k=0

(−1)p−k−1

Ri − k

(
p− 1

k

)[
1− (1− F (xi))

k−Ri(5.2)

×(1− F (y))Ri−k
]
.

Notice that the posterior predictive density and distribution functions are respec-
tively given by

f∗1 (y|x) =

∫ ∞
0

∫ ∞
0

f1(y|x, α, β)Π(α, β|x)dαdβ(5.3)

and

F ∗1 (y|x) =

∫ ∞
0

∫ ∞
0

F1(y|x, α, β)Π(α, β|x)dαdβ.(5.4)

The Bayesian predictive estimate of y under LINEX and entropy loss functions
are respectively given by

ŷl = − 1

ω
ln

[∫ ∞
xi

exp{−ωy}f∗1 (y|x)dy

]
= − 1

ω
ln [E(P1(α, β)|x)](5.5)

and

ŷe =

[∫ ∞
xi

y−κf∗1 (y|x)dz

]− 1
κ

= [E(P2(α, β)|x)]−
1
κ ,(5.6)

where

P1(α, β) =

∫ ∞
xi

exp{−ωy}f1(y|x, α, β)dy and P2(α, β) =

∫ ∞
xi

y−κf1(y|x, α, β)dy.

Note that above integrals can not be computed analytically. Thus, one
needs to use numerical technique in order to compute the predictive estimates. In
this purpose, we use importance sampling methods as mentioned in Subsection
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4.1.2. Equations (5.5) and (5.6) can be evaluated using importance sampling
method as

ŷl = −
(

1

ω

)
ln

[∑1000
i=1 P1(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]
(5.7)

and ŷe =

[∑1000
i=1 P2(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]−1/κ
,

respectively. Next, Bayesian prediction interval is obtained. The prior predictive
survival function S1(t|x, α, β) is obtained as

S1(t|x, α, β) =
P (y > t|x, α, β)

P (y > xi:m:n|x, α, β)
=

∫∞
t f1(u|x, α, β)du∫∞

xi:m:n
f1(u|x, α, β)du

.

The posterior survival function is given by

S∗1(t|x) =

∫ ∞
0

∫ ∞
0

S1(t|x, α, β)Π(α, β|x)dαdβ.(5.8)

Equation (5.8) can be evaluated using importance sampling method under SEL
function as

S∗1(t|x) =

∑1000
i=1 S1(t|x, αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)
.(5.9)

We obtain two sided 100(1−ϕ)% equal-tail symmetric predictive interval (L,U)
by solving the following non-linear equations

S∗1(L|x) = 1− ϕ

2
and S∗1(U |x) =

ϕ

2
.(5.10)

The algorithm to obtain the lower bound L and the upper bound U from S∗1(t|x) =
η, where t is L or U and η = (1− ϕ

2 ) or ϕ
2 is described below.

Step-1 Set initial value t = t0.

Step-2 Calculate S∗1(t|x) =
∑1000
i=1 S1(t|x,αi,βi)h(αi,βi)∑1000

i=1 h(αi,βi)
.

Step-3 If S∗1(t|x) < η, then increase t value otherwise decrease the value of t.

Step-4 Repeat steps 2 and 3 until S∗1(t|x) ' η.

5.2. Two-sample prediction and BPI

In this section, we derive Bayesian two-sample prediction estimate for future
observation based on the PT-IICS. It is noted that the two-sample plan is applied
in which the observed sample is the PT-IICS and Z1 < Z2 < . . . < ZT be the
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unobserved future observations from the same sample, yet to be observed. The
predictive density function of Zj can be written as

f(zj |α, β) = j

(
T

j

) j−1∑
p=0

(−1)j−1−p
(
j − 1

p

)
[1− F (zj)]

T−1−p f(zj).(5.1)

Again, the posterior prediction density function is obtained as

f∗(zj |x) =

∫ ∞
0

∫ ∞
0

f(zj |α, β)Π(α, β|x)dαdβ.

Further, the Bayesian predictive estimate of Zj under LINEX and entropy loss
functions are respectively obtained as

ẑjl = −
(

1

ω

)
ln

[∑1000
i=1 T1(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]
and

ẑje =

[∑1000
i=1 T2(αi, βi)h(αi, βi)∑1000

i=1 h(αi, βi)

]−1/κ
,

where

T1(α, β) =

∫ ∞
0

exp{−ωzj}f(zj |α, β)dzj and T2(α, β) =

∫ ∞
0

z−κj f(zj |α, β)dzj .

Next, Bayesian prediction interval is obtained. The predictive posterior survival
function is given by

S∗1(zj |x) =

∫ ∞
0

∫ ∞
0

S1(zj |x, α, β)Π(α, β|x)dαdβ,

where

S1(zj |x, α, β) =

∫∞
zj
f1(u|x, α, β)du∫∞

xi:m:n
f1(u|x, α, β)du

.

The above integration can be approximated using importance sampling method.
Further, to obtain the two-sided 100(1 − ϕ)% equal-tail symmetric prediction
interval (L,U) for Zj , we have to solve the non-linear equations given by

S∗1(L|x) = 1− ϕ

2
and S∗1(U |x) =

ϕ

2
.(5.2)

6. SIMULATION RESULTS AND REAL DATA ANALYSIS

In this section, we first carry out simulation study to observe the perfor-
mance of the proposed estimates. Next, we consider a real dataset for illustrative
purpose.
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6.1. Simulation results

This subsection is devoted to the comparative study of the proposed esti-
mates. For this purpose, we generate 1000 progressive type-II censored samples
from gamma-mixed Rayleigh distribution. We consider various combinations of
(n,m) as (35, 20), (35, 35), (50, 45) and (50, 50). The actual values of α and β
are taken as 0.5 and 0.25, respectively. The actual values of r(x) and h(x) are
0.405461 and 0.324324, respectively for x = 1.5. There is no reason of taking the
value of x as 1.5. One may consider other values of x too. The simulation study
has been carried out for other values of x, but not presented here for brevity. For
other values of x, similar behaviour of the proposed methods have been observed.
The simulation is carried out using the statistical software R (Vienna, Austria;
https : //www.r − project.org/), version 4.1.0. In Table 2, the estimated values
of the hyper-parameters are presented for different values of m. For the purpose
of the Bayesian estimates, we take ω = −0.25, 0.001 and κ = −0.5, 0.5 for LINEX
and entropy loss functions, respectively. Further, for each n, three different cen-
soring schemes such as progressive type-II, type-II and complete sample have
been used for simulation study. These schemes are presented in Table 3. It is
known that the type-II censoring scheme is a special case of the progressive type-
II censoring scheme. Tables 4 and 5 present the average and mean squared error
(MSE) values of the MLEs and the Bayes estimates for (α, β) and (r(x), h(x)),
respectively. The 1st column is for (n,m), the 2nd column is for various censoring
schemes (CS), 3rd column is for the estimands. Here, estimands are the unknown
parameters α, β and the reliability characteristics r(x), h(x). The average values
and the MSEs of the MLEs are presented in 4th column. Note that the MLEs
are computed based on EM algorithm. We present two methods Lindley’s ap-
proximation (Lin) and importance sampling (Imp) in fifth column. In 6 − 10th
columns, the average and MSE values of the Bayes estimates with respect to the
squared error, LINEX and entropy loss functions are presented. The MSE values
of each estimates are placed inside the parenthesis. Table 6 represents average
lengths of 95% confidence intervals and the HPD credible intervals for α, β, r(x)
and h(x). We have tabulated one-sample and two-sample Bayesian prediction
estimates and 95% prediction intervals for future observation in Tables 7 and 8,
respectively. In the both sample prediction problems, the values of the parame-
ters, hyper-parameters, ω and κ are taken same. Here, we consider p = 1, 2, 3 for
1st and 7th failure stages in one-sample prediction, and j = 1, 2, 3 for T = m in
two-sample prediction. From the numerical values, the following discussions can
be drawn.

1. From Table 2, it is observed that with increasing values of m, values of the
hyper-parameters a1, a2, a3 and a4 increase.

2. From the tabulated values in Table 4, we notice that the Bayes estimates
perform better than the MLE in terms of the MSE. Further, the Bayes
estimates for positive values of ω and κ are better than that for negative
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values of ω and κ in terms of the average values and MSEs. The simu-
lated average values of the estimates approach towards the true value when
(n,m) increases. Further, MSE decreases when (n,m) increases. Similar
observation is noticed for the case of complete sample. As expected, the
behavior of the Bayes estimates under SEL function and the LINEX loss
function is approximately same for small values of ω (here ω = 0.001). It
is seen that in general, the progressive type-II censoring schemes produces
better result than type-II censoring scheme in terms of the average (Avg)
and MSE values. Similar behavior of the estimates of r(x) and h(x) (pre-
sented in Table 5) can be pointed out. The abbreviation EL is used for
entropy loss function.

3. In Table 6, it is observed that for asymptotic confidence intervals, the
NA method provides better estimates than NL method. For the case of
bootstrap confidence intervals, Boot-t method performs better than Boot-p
method. However, among the computed five intervals, HPD credible inter-
vals give the best performance. Also, it is noticed that the average length
decreases when effective sample size increases. When comparing progres-
sive type-II censoring and type-II censoring plans, the progressive type-II
plan provides better result.

4. From Table 7, we observe that the values of the predictive estimates based
on progressive type-II censoring scheme are larger than that for type-II cen-
soring scheme. The values of the predictive estimates and prediction lengths
increase as i, p increase. When the effective sample size (m) increases, the
predictive estimate values and predictive interval lengths decrease. Similar
observation can be noticed from Table 8 for two-sample prediction problem.

(α, β) m a1 a2 a3 a4
(0.5, 0.25) 20 0.29516 0.10370 0.29308 0.19850

35 0.79587 0.50618 0.78481 0.98676
45 1.41808 1.18262 1.38071 2.30699
50 1.88165 1.75665 1.84799 3.42774

Table 2: Values of the hyper-parameters for different m.

Scheme Category m (R1, R2, . . . , Rm)

Progressive type-II Pr-IIc Odd
(
Rm+1

2
= n−m, Ri = 0; i 6= m+1

2

)
censoring Even

(
Rm/2 = n−m, Ri = 0; i 6= m

2

)
Type-II censoring Ty-IIc (Rm = n−m, Ri = 0; i 6= m)
Complete case Cc (Ri = 0; i = 1 ∼ m)

Table 3: Different censoring schemes (CS).
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LINEX EL
(n,m) CS Parameter EM Method SEL ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg
(MSE) (MSE) (MSE) (MSE) (MSE) (MSE)

(35,20) Pr-IIc α 0.577322 Lin 0.604350 0.609516 0.604329 0.586034 0.550292
(0.045870) (0.010889) (0.011994) (0.010884) (0.007402) (0.002529)

Imp 0.615036 0.617727 0.615021 0.608165 0.601033
(0.012560) (0.012989) (0.012558) (0.010962) (0.008704)

β 0.294180 Lin 0.305454 0.306914 0.305448 0.295391 0.276136
(0.018021) (0.003075) (0.003239) (0.003074) (0.002060) (0.000683)

Imp 0.320065 0.323106 0.320040 0.305264 0.303128
(0.003605) (0.004121) (0.003603) (0.003116) (0.001605)

Ty-IIc α 0.650948 Lin 0.739859 0.748100 0.739825 0.712266 0.652946
(0.166828) (0.057532) (0.061553) (0.057516) (0.045057) (0.023393)

Imp 0.742216 0.748506 0.742177 0.0.73152 0.730816
(0.064523) (0.067051) (0.064507) (0.060087) (0.053506)

β 0.322548 Lin 0.356579 0.358578 0.356571 0.343506 0.316460
(0.041284) (0.011359) (0.011789) (0.011357) (0.008743) (0.004417)

Imp 0.358136 0.360861 0.358132 0.351134 0.342618
(0.018642) (0.021394) (0.018637) (0.016752) (0.011306)

( ,35) Cc α 0.517253 Lin 0.537146 0.538660 0.537140 0.531160 0.518915
(0.015562) (0.001380) (0.001495) (0.001379) (0.000971) (0.000358)

Imp 0.541207 0.546251 0.541206 0.537645 0.524005
(0.002163) (0.002237) (0.002162) (0.002088) (0.001463)

β 0.259399 Lin 0.277225 0.278008 0.277222 0.270984 0.258125
(0.006465) (0.000741) (0.000784) (0.000741) (0.000440) (0.000066)

Imp 0.284130 0.287056 0.284087 0.282670 0.278009
(0.001053) (0.001134) (0.001051) (0.001041) (0.000915)

(50,45) Pr-IIc α 0.527374 Lin 0.561924 0.563149 0.561918 0.557074 0.546668
(0.014947) (0.003834) (0.003988) (0.003834) (0.003257) (0.002178)

Imp 0.564010 0.567732 0.564008 0.558507 0.556072
(0.003952) (0.004139) (0.003948) (0.003760) (0.003427)

β 0.276102 Lin 0.309227 0.309901 0.309224 0.303973 0.292121
( 0.008370) (0.003508) (0.003588) (0.003507) (0.002913) (0.001774)

Imp 0.312564 0.318007 0.312561 0.307715 0.296405
(0.003567) (0.003644) (0.003565) (0.003340) (0.003197)

Ty-IIc α 0.528481 Lin 0.564288 0.565528 0.564284 0.559387 0.548837
( 0.015516) (0.004133) (0.004294) (0.004132) (0.003527) (0.002385)

Imp 0.570806 0.577130 0.570806 0.561010 0.560377
(0.004215) (0.004362) (0.004210) (0.004100) (0.003761)

β 0.276786 Lin 0.310822 0.311502 0.310819 0.305526 0.293530
( 0.008606) (0.003699) (0.003782) (0.003699) (0.003083) (0.001895)

Imp 0.315542 0.320566 0.315537 0.312147 0.307081
(0.003720) (0.003935) (0.003720) (0.003565) (0.003416)

( ,50) Cc α 0.527521 Lin 0.573868 0.574784 0.573864 0.570163 0.561857
( 0.011298) (0.005456) (0.005592) (0.005456) (0.004923) (0.003826)

Imp 0.579013 0.581451 0.579011 0.560891 0.560071
(0.005521) (0.005640) (0.005520) (0.005314) (0.005281)

β 0.279152 Lin 0.339271 0.339828 0.339268 0.334464 0.3216673
( 0.008391) (0.007969) (0.008069) (0.007969) (0.007134) (0.005136)

Imp 0.341553 0.346086 0.341550 0.338880 0.320799
(0.007974) (0.008213) (0.007971) (0.007718) (0.007428)

Table 4: Average and MSE values of estimates for the parameters α and
β.

6.2. REAL DATA ANALYSIS

In this subsection, we consider real life dataset representing the times to
breakdown of an insulating fluid between electrodes recorded at the voltage of 34
kV (minutes) in a life test. The dataset is introduced by [25] and used by [30].
The dataset is presented below.

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67
4.85 6.50 7.3 8.01 8.27 12.06 31.75 32.52
33.91 36.71 72.89

For the purpose of goodness of fit test, we consider various methods such as



20 Kousik Maiti and Suchandan Kayal

LINEX EL
(n,m) CS EM Method SEL ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg
(MSE) (MSE) (MSE) (MSE) (MSE) (MSE)

(35,20) Pr-IIc r(x) 0.398127 Lin 0.392919 0.393820 0.392916 0.388221 0.378922
(0.006980) (0.001572) (0.001364) (0.001571) (0.002977) (0.007040)

Imp 0.421631 0.425102 0.421630 0.405181 0.402219
(0.002423) (0.002608) (0.002416) (0.002335) (0.002286)

h(x) 0.365147 Lin 0.382504 0.384415 0.382496 0.372067 0.351927
(0.014572) (0.003385) (0.003611) (0.003384) (0.002279) (0.000762)

Imp 0.386712 0.405312 0.386710 0.381207 0.364315
(0.003461) (0.003516) (0.003460) (0.003070) (0.001004)

Ty-IIc r(x) 0.390138 Lin 0.359881 0.360923 0.359876 0.354171 0.343389
(0.008294) (0.002078) (0.001984) (0.002078) (0.002631) (0.001853)

Imp 0.361864 0.367701 0.361861 0.346105 0.331611
(0.003105) (0.002281) (0.003104) (0.002845) (0.002506)

h(x) 0.396838 Lin 0.459716 0.462730 0.459704 0.444301 0.411965
(0.034886) (0.018331) (0.019156) (0.018328) (0.014394) (0.007681)

Imp 0.466071 0.463102 0.466070 0.446265 0.413509
(0.02160) (0.02377) (0.02159) (0.016492) (0.015423)

( ,35) Cc r(x) 0.405129 Lin 0.403232 0.403732 0.40323 0.400726 0.395755
( 0.003941) (0.000497) (0.000299) (0.000495) (0.000224) (0.000142)

Imp 0.414506 0.418187 0.414501 0.409461 0.407196
(0.000534) (0.000436) (0.000530) (0.000303) (0.000287)

h(x) 0.332928 Lin 0.344692 0.345272 0.344689 0.341173 0.334047
( 0.005467) (0.000415) (0.000439) (0.000415) (0.000284) (0.000145)

Imp 0.347236 0.356043 0.347230 0.347991 0.340564
(0.000521) (0.000540) (0.000518) (0.000477) (0.000420)

(50,45) Pr-IIc r(x) 0.409594 Lin 0.409331 0.409721 0.409331 0.407411 0.403577
( 0.003151) (0.000150) (0.000181) (0.000150) (0.000138) (0.000113)

Imp 0.416460 0.418805 0.416456 0.415643 0.408037
(0.000213) (0.000227) (0.000212) (0.000186) (0.000172)

h(x) 0.337868 Lin 0.357965 0.358433 0.357965 0.355143 0.349185
(0.005060) (0.001132) (0.001163) (0.001132) (0.000950) (0.000618)

Imp 0.371653 0.366203 0.371652 0.364966 0.361500
(0.001276) (0.001315) (0.001276) (0.001219) (0.001207)

Ty-IIc r(x) 0.409480 Lin 0.408961 0.409349 0.408960 0.407044 0.403218
( 0.003157) (0.000224) (0.000251) (0.000222) (0.000202) (0.000150)

Imp 0.415008 0.417648 0.415000 0.410651 0.409472
(0.000415) (0.000430) (0.000415) (0.000407) (0.000389)

h(x) 0.338443 Lin 0.359309 0.359779 0.359307 0.356457 0.350424
( 0.005220) (0.001224) (0.001257) (0.001224) (0.001033) (0.000681)

Imp 0.376511 0.385205 0.376510 0.364006 0.362380
(0.001672) (0.001842) (0.001670) (0.001258) (0.001029)

( ,50) Cc r(x) 0.409277 Lin 0.421297 0.421678 0.421296 0.419397 0.415464
( 0.003093) (0.000251) (0.000263) (0.000251) (0.000194) (0.000100)

Imp 0.425031 0.428014 0.425030 0.423330 0.421643
(0.000271) (0.000284) (0.000269) (0.000253) (0.000234)

h(x) 0.337988 Lin 0.362957 0.363316 0.362956 0.360747 0.355944
( 0.003660) (0.001492) (0.001520) (0.001492) (0.001327) (0.000910)

Imp 0.366172 0.368008 0.366171 0.364031 0.358813
(0.001781) (0.001845) (0.001780) (0.001542) (0.001325)

Table 5: Average and MSE values of the estimates for r(x) and h(x).

log-likelihood criterion, Kolmogorov-Smirnov (KS) statistic, Akaike’s-information
criterion (AIC), the associated second-order information criterion (AICc) and
Bayesian information criterion (BIC). The values of the MLEs and the five good-
ness of fit test statistics are presented in Table 9. The numerical values in Ta-
ble 9 suggest that the gamma-mixed Rayleigh (G-MR) distribution fits the data
well compared to the half-logistic (HL), inverted exponentiated half-logistic (IEx-
pHL), inverse Weibull (IW) and generalized Fréchet (GF) distributions. Now,
we compute the proposed estimates for the unknown parameters, reliability and
hazard functions. In Table 10, we consider progressive type-II censored sample
with total sample size n = 19, the failure sample size m = 14. We adopt var-
ious schemes for the purpose of computation. Here, we consider three schemes
say Pr-IIc, Ty-IIc and Cc, that is (R1, R2, . . . , Rm) =(0*6,5,0*7), (0*13,5) and
(0*19), respectively. Note that (0*3,2) denotes the censoring scheme (0, 0, 0, 2).
We take all the hyperparameter values as zero. We present the average values
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Asymptotic Bootstrap
(n,m) CS NA NL Boot-p Boot-t HPD
(35,20) Pr-IIc α 0.648062 0.682627 0.576212 0.543509 0.267133

β 0.329015 0.346433 0.311642 0.300701 0.186809
r(x) 0.322288 0.331721 0.277547 0.246013 0.167990
h(x) 0.418470 0.441055 0.378052 0.320005 0.210808

Ty-IIc α 0.858970 0.922660 0.761805 0.721656 0.531964
β 0.400653 0.426912 0.346010 0.300891 0.222437
r(x) 0.338097 0.350497 0.294644 0.260079 0.190059
h(x) 0.580588 0.629159 0.510660 0.493112 0.301243

( ,35) Cc α 0.420716 0.432409 0.375604 0.310064 0.176117
β 0.301196 0.318404 0.265203 0.228561 0.133991
r(x) 0.252868 0.257088 0.210705 0.189620 0.117867
h(x) 0.276372 0.284284 0.236081 0.194051 0.140660

(50,45) Pr-IIc α 0.427858 0.439689 0.346033 0.310446 0.188656
β 0.360034 0.386089 0.306770 0.264126 0.160533
r(x) 0.220637 0.223362 0.176136 0.143088 0.100362
h(x) 0.246997 0.252462 0.184461 0.136504 0.086420

Ty-IIc α 0.433796 0.446078 0.379100 0.341444 0.213064
β 0.364740 0.391709 0.310788 0.306171 0.175757
r(x) 0.220169 0.222880 0.150991 0.123404 0.068944
h(x) 0.250175 0.255833 0.197005 0.158817 0.100888

( ,50) Cc α 0.374461 0.382373 0.334671 0.280062 0.133785
β 0.292170 0.305690 0.245508 0.224999 0.145871
r(x) 0.211673 0.214052 0.131106 0.108841 0.043649
h(x) 0.230374 0.234809 0.169507 0.120889 0.056643

Table 6: Average lengths of 95% interval estimates of α, β, r(x) and h(x).

(n,m) CS i p SEL LINEX EL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5 L U Width

(35,20) Pr-IIc 1 1 0.108452 0.117826 0.108417 0.104236 0.102013 0.033642 0.30036 0.266718
2 0.124011 0.152041 0.124010 0.110628 0.109972 0.080750 0.421644 0.340894
3 0.177314 0.182622 0.177306 0.154082 0.147880 0.019462 0.430405 0.410943

7 1 0.240586 0.285261 0.240585 0.231178 0.200864 0.108235 0.671046 0.562811
2 0.293324 0.374406 0.293319 0.274152 0.261997 0.152083 0.782603 0.630520
3 0.315852 0.418077 0.315847 0.300919 0.281485 0.072634 0.766852 0.694218

Ty-IIc 1 1 0.075164 0.106172 0.075158 0.052800 0.046281 0.008285 0.394668 0.386383
2 0.108273 0.134867 0.108266 0.095076 0.052997 0.052347 0.460809 0.408462
3 0.152972 0.160723 0.152897 0.123699 0.120758 0.089046 0.501897 0.412851

7 1 0.192640 0.248671 0.192578 0.164284 0.128670 0.097825 0.840869 0.743044
2 0.228068 0.278526 0.227972 0.196099 0.180907 0.130884 0.956252 0.825368
3 0.276291 0.286070 0.276188 0.241046 0.211220 0.172691 1.068736 0.896045

( ,35) Cc 1 1 0.059483 0.080963 0.059476 0.024317 0.018605 0.016180 0.156838 0.140658
2 0.089255 0.118047 0.089250 0.070965 0.059672 0.019941 0.192223 0.172282
3 0.136974 0.145052 0.136970 0.114441 0.118064 0.056427 0.279560 0.223133

7 1 0.149753 0.215093 0.149748 0.137570 0.119329 0.082594 0.275598 0.193004
2 0.191426 0.255305 0.191422 0.158973 0.152834 0.113426 0.339898 0.226472
3 0.248593 0.276009 0.248497 0.216852 0.208440 0.064285 0.324402 0.260117

(50,45) Pr-IIc 1 1 0.087745 0.102351 0.087742 0.061882 0.026954 0.007920 0.183156 0.175236
2 0.116562 0.139095 0.116558 0.098726 0.072609 0.025834 0.235675 0.209841
3 0.150768 0.164964 0.150760 0.130999 0.109556 0.072440 0.366447 0.294007

7 1 0.174109 0.245108 0.173981 0.167168 0.150699 0.100826 0.583458 0.482632
2 0.228347 0.264052 0.228337 0.184623 0.159082 0.119950 0.650769 0.530819
3 0.298067 0.345223 0.298060 0.265214 0.221704 0.075301 0.685883 0.610582

Ty-IIc 1 1 0.067653 0.899425 0.067647 0.050715 0.041532 0.006715 0.249486 0.242771
2 0.075989 0.125008 0.075988 0.071324 0.068227 0.028600 0.423756 0.395156
3 0.126706 0.140764 0.123803 0.093587 0.074553 0.053428 0.464197 0.410769

7 1 0.176572 0.207206 0.176568 0.120975 0.096408 0.031407 0.584353 0.552946
2 0.205034 0.235607 0.205027 0.185209 0.172136 0.125855 0.758676 0.632821
3 0.246174 0.264084 0.246172 0.208461 0.174507 0.131252 0.797154 0.665902

( ,50) Cc 1 1 0.038965 0.064027 0.038957 0.034208 0.028497 0.006783 0.116741 0.109958
2 0.061794 0.097659 0.061788 0.058993 0.037806 0.009397 0.192057 0.182660
3 0.106455 0.128709 0.106449 0.097808 0.070845 0.053129 0.296908 0.243779

7 1 0.130846 0.198432 0.130840 0.100975 0.074588 0.034628 0.16496 0.130332
2 0.174050 0.226741 0.174043 0.164317 0.130894 0.093459 0.234368 0.140909
3 0.215686 0.231606 0.215679 0.196309 0.164320 0.116237 0.32676 0.210523

Table 7: One-sample prediction values and 95% prediction intervals for
future observations.

of the proposed estimates of α, β in Table 11 and r(x) and h(x) in Table 12.
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(n,m) CS j SEL LINEX EL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5 L U Width

(35,20) Pr-IIc 1 0.035652 0.084621 0.035649 0.029411 0.016425 0.004351 0.562487 0.558136
2 0.118036 0.140993 0.118030 0.084403 0.042692 0.009422 0.700663 0.691241
3 0.156008 0.162308 0.155792 0.110699 0.097183 0.013140 0.733492 0.720352

Ty-IIc 1 0.010546 0.043119 0.010537 0.007234 0.004977 0.000782 0.712836 0.712054
2 0.061582 0.075408 0.061561 0.038947 0.029425 0.005279 0.84835 0.843071
3 0.109776 0.158223 0.109770 0.102432 0.092564 0.006233 0.889221 0.882988

( ,35) Cc 1 0.007642 0.009751 0.007636 0.004318 0.003707 0.000824 0.388925 0.388101
2 0.021274 0.048030 0.021259 0.016799 0.012973 0.005348 0.441291 0.435943
3 0.057293 0.132947 0.057288 0.033741 0.030912 0.009425 0.497781 0.488356

(50,45) Pr-IIc 1 0.026423 0.053190 0.026418 0.024083 0.014654 0.000693 0.36197 0.361277
2 0.080145 0.117522 0.080140 0.055920 0.046728 0.008432 0.448753 0.440321
3 0.129506 0.127001 0.129489 0.107418 0.086947 0.026488 0.540278 0.513790

Ty-IIc 1 0.008824 0.015283 0.008819 0.005271 0.004725 0.000707 0.484861 0.484154
2 0.041672 0.049382 0.041672 0.028526 0.021310 0.008262 0.559655 0.551393
3 0.010243 0.129743 0.010240 0.091253 0.058291 0.003714 0.616722 0.613008

( ,50) Cc 1 0.005281 0.006994 0.005274 0.002867 0.002173 0.000848 0.302409 0.301561
2 0.017126 0.024907 0.017121 0.004892 0.003282 0.000437 0.361289 0.360852
3 0.022809 0.037615 0.022800 0.019264 0.014066 0.002640 0.424486 0.421846

Table 8: Two-sample prediction values and 95% prediction intervals for
future observations.

Distribution MLEs KS lnL BIC AICc AIC

Shape Scale

G-MR(α, β) α̂ = 0.795210 β̂ = 2.392015 0.135509 -70.34277 146.5744 145.4355 144.6855

HL(λ) λ̂ = 0.088745 0.332880 -71.97299 146.8904 146.1813 145.946

IExpHL(α, θ) α̂ = 0.426676 θ̂ = 0.801178 0.264552 -74.03980 153.9685 152.8296 152.0796
IW(α, λ) α̂ = 2.038295 λ = 1.119888 0.329144 -75.25765 156.4042 155.2653 154.5153

GF (α, λ, σ) α̂ = 7.465586 σ̂ = 7.260802 0.667178 -95.1172 199.0677 197.8344 196.2344

λ̂ = 0.354321

Table 9: The MLEs, KS, log-likelihood, AIC, AICc and BIC values for
the real dataset.

i 1 2 3 4 5 6 7
xi:m:n 0.19 0.78 1.31 2.78 4.15 4.67 4.85

i 8 9 10 11 12 13 14
xi:m:n 8.01 8.27 12.06 31.75 33.91 36.71 72.89

Table 10: Progressive type-II censored data for the real dataset.

Table 13 represents 95% interval estimates of α, β, r(x) and h(x). Further, we
have tabulated one-sample and two-sample predicted values and 95% prediction
intervals in Tables 14 and 15, respectively. Here, we obtain one-sample prediction
estimates of the lifetime of first three units at ith failure and two-sample predic-
tion estimates of the lifetime of first three units and size of sample T = 10. The
plots of the probability density functions of five different models and histogram
for real dataset are presented in Figure 2. In Figures 3 and 4, the plots of the
density, distribution, reliability and hazard functions of gamma-mixed Rayleigh
distribution under Pr-IIc, Ty-IIc and Cc schemes are depicted.
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LINEX EL
(n,m) CS EM Method SEL ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg
(19,14) Pr-IIc α 0.776441 Lin 0.399239 0.399847 0.399239 0.411029 0.437988

Imp 0.367051 0.376001 0.367050 0.381976 0.387007
β 3.356965 Lin 1.362572 1.455717 1.362637 1.463404 1.652837

Imp 1.335429 1.389600 1.335427 1.412632 1.486753
Ty-IIc α 0.294786 Lin 0.206869 0.207328 0.206867 0.205371 0.205485

Imp 0.176532 0.193725 0.176530 0.162305 0.167035
β 1.12691 Lin 0.502474 0.537084 0.502364 0.495457 0.531081

Imp 0.464582 0.499007 0.464578 0.446396 0.468757

( ,19) Cc α 0.795210 Lin 0.570614 0.575673 0.570595 0.563006 0.558460
Imp 0.523781 0.568766 0.523780 0.512525 0.504817

β 2.392015 Lin 1.465001 1.477988 1.464669 1.429069 1.429344
Imp 1.400864 1.459764 1.400860 1.387562 1.385258

Table 11: Estimates of α and β for the real dataset.

LINEX EL
(n,m) CS EM Method SEL ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5

Avg Avg Avg Avg Avg Avg
(19,14) Pr-IIc r(x) 0.931769 Lin 0.867124 0.868877 0.867125 0.867672 0.868731

Imp 0.846209 0.847669 0.846207 0.847008 0.847460
h(x) 0.086149 Lin 0.152817 0.152628 0.152818 0.151136 0.148734

Imp 0.186422 0.187994 0.186421 0.177537 0.153480
Ty-IIc r(x) 0.860480 Lin 0.773932 0.773973 0.773932 0.773969 0.774245

Imp 0.748209 0.748867 0.748208 0.748452 0.748666
h(x) 0.125622 Lin 0.132865 0.133130 0.132864 0.128547 0.120052

Imp 0.164263 0.168117 0.164261 0.123786 0.119007

( ,19) Cc r(x) 0.876466 Lin 0.801888 0.801855 0.801888 0.802035 0.802425
Imp 0.774826 0.780074 0.774824 0.775314 0.776174

h(x) 0.149630 Lin 0.211578 0.211800 0.211577 0.206734 0.189875
Imp 0.230761 0.236482 0.230760 0.214776 0.206782

Table 12: Estimates of r(x) and h(x) for the real dataset.

Asymptotic Bootstrap
(n,m) CS NA NL Boot-p Boot-t HPD
(19,14) Pr-IIc α (0.03697, 1.5159) (0.29957, 2.01244) (0.11275, 1.32586) (0.08563, 1.16478) (0.00794, 0.86115)

β (0.00000, 7.20239) (1.06772, 10.5544) (2.86452, 9.98328) (3.05617, 9.06852) (0.09908, 4.43365)
r(x) (0.83953, 1.02401) (0.84394, 1.02873) (0.80581, 0.95486) (0.82068, 0.96246) (0.84105, 0.94857)
h(x) (0.00000, 0.19222) (0.02515, 0.29512) (0.05946, 0.24653) (0.07563, 0.23213) (0.07884, 0.18947)

Ty-IIc α (0.08674, 0.50284) (0.14554, 0.59706) (0.10466, 0.47148) (0.09462, 0.41656) (0.12035, 0.2984)
β (0.00000, 2.65557) (0.29025, 4.37535) (0.12630, 2.24429) (0.21364, 2.06421) (0.41286, 1.51018)
r(x) (0.68785, 1.03311) (0.70406, 1.05165) (0.62482, 0.90287) (0.66946, 0.88035) (0.72451, 0.87172)
h(x) (0.03414, 0.21710) (0.06065, 0.26020) (0.07567, 0.22233) (0.08745, 0.19816) (0.10526, 0.1824)

( ,19) Cc α (0.21443, 1.37599) (0.38309, 1.65070) (0.33456, 1.43563) (0.27664, 1.35645) (0.42784, 1.31559)
β (0.00000, 4.81147) (0.86994, 6.57719) (1.01503, 4.92624) (1.21536, 4.02611) (1.36485, 2.53242)
r(x) (0.73417, 1.01876) (0.74512, 1.03096) (0.68356, 0.90118) (0.70599, 0.88412) (0.75086, 0.88837)
h(x) (0.00223, 0.29703) (0.05587, 0.40071) (0.04312, 0.25221) (0.10537, 0.26529) (0.13458, 0.25346)

Table 13: 95% interval estimates of α, β, r(x) and h(x) based on the real
dataset.

7. CONCLUDING REMARKS

In industrial life tests, reliability analysis and clinical trials, the type-II
progressive censoring methodology has become quite popular for analyzing life-
time data. It allows for random removals of the remaining survival units at each
failure time. In this article, we considered inference and prediction problems
for the gamma-mixed Rayleigh distribution when progressive type-II censored
sample is available. We obtained conditions under which the MLEs exist and
are unique, then derived the MLEs using EM algorithm. The Bayes estimates
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(n,m) CS i p SEL LINEX EL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5 BPI

(19,14) Pr-IIc 1 1 4.864253 5.283172 4.864247 4.064281 3.642513 (3.410321, 5.572681)
2 5.123467 6.017240 5.123460 4.618267 4.042580 (3.843775, 6.333201)
3 5.507412 6.724315 5.507403 4.970824 4.386421 (4.210341, 7.262675)

5 1 7.129901 9.058243 7.129882 6.527802 6.201358 (5.462305, 10.305467)
2 8.105347 11.25680 8.105339 7.201634 7.053412 (6.76250, 11.738928)
3 8.753105 12.88402 8.753087 7.836405 7.643187 (7.335213, 12.599454)

Ty-IIc 1 1 2.560428 3.526411 2.557964 2.134526 2.074091 (1.761855, 3.837296)
2 4.068825 4.672553 4.068822 2.760048 2.496253 (2.142392, 5.058906)
3 4.748263 4.958240 4.748257 3.209992 2.897385 (2.437218, 5.321908)

5 1 3.580742 5.272538 3.580739 3.336142 2.582773 (2.161007, 5.509298)
2 5.23189 6.856842 5.231817 4.219138 4.000876 (3.496125, 7.196189)
3 7.100923 7.594625 7.100916 6.735364 5.436582 (4.430564, 8.493101)

( ,19) Cc 1 1 2.182731 2.382467 2.182726 1.766528 1.623407 (0.942521, 2.676136)
2 3.067269 3.631854 3.067261 2.578532 2.247716 (1.432610, 4.259329)
3 3.854727 5.582428 3.854718 2.891759 2.374685 (1.796821, 6.011103)

5 1 2.978550 4.297582 2.978544 2.432080 2.178441 (1.800672, 4.810808)
2 3.352725 5.317162 3.352716 2.70553 2.484336 (2.134255, 5.565777)
3 5.034900 5.924856 5.033875 3.885664 3.100858 (2.704073, 7.589788)

Table 14: One-sample prediction values and 95% prediction intervals for
future observations.

(n,m) CS j SEL LINEX EL
ω = −0.25 ω = 0.001 κ = −0.5 κ = 0.5 BPI

(19,14) Pr-IIc 1 1.724826 2.074824 1.724813 1.376145 1.265064 (1.077346, 2.385841)
2 2.064354 2.467026 2.064348 1.750517 1.305119 (1.213075, 2.826527)
3 4.846177 3.794121 4.846169 3.526443 3.344056 (2.19428, 4.92259)

Ty-IIc 1 1.255674 1.699764 1.255670 1.096628 0.946491 (0.631672, 1.886354)
2 1.462812 2.152316 1.462805 1.224056 1.064583 (0.816055, 2.28461)
3 2.803286 3.45821 2.803179 2.437182 2.175564 (1.430592, 3.802253)

( ,19) Cc 1 0.860765 1.180676 0.860761 0.681231 0.620711 (0.462854, 1.257712)
2 1.113446 1.445251 1.113437 0.846616 0.726489 (0.371066, 1.623857)
3 2.045084 2.152647 2.045076 1.615233 1.086961 (0.794823, 2.343845)

Table 15: Two-sample prediction values and 95% prediction intervals for
future observations.

Figure 2: The histogram of the real dataset and the plots of the probability
density functions of the fitted G-MR, HL, IExpHL, IW, GF
models.

have been computed with respect to three loss functions, such as squared error,
LINEX and entropy loss functions. Two approximations say Lindley approxima-
tion and importance sampling method have been used for the computation of the
Bayes estimates. We also derived confidence and credible intervals using various
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Figure 3: The plots of the (a) density and (b) distribution functions of the
gamma-mixed Rayleigh distribution based on different censoring
schemes.
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Figure 4: The plots of the (a) reliability and (b) hazard functions based
on different censoring schemes.

methods. Specifically, we have obtained asymptotic, bootstrap-p and bootstrap-t
confidence intervals and highest posterior density credible interval. Further, we
discussed Bayesian prediction problems. One-sample and two-sample prediction
problems have been considered. An elaborate simulation study was conducted
for the comparison of the proposed estimates. From the simulation study, it has
been observed that the Bayes estimates perform better than the MLEs in terms
of the MSE values. Further, the Bayes estimates for positive values of ω and κ are
better than that for negative values of ω and κ in terms of the average values and
MSEs. For the present problem, we recommend the Bayes estimates to use for
the case of point estimation. It has been observed that for asymptotic confidence
intervals, the NA method provides better estimates than NL method in the sense
of the average lengths. For the case of bootstrap confidence intervals, Boot-t
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method performs better than Boot-p method. However, among the computed
five intervals, HPD credible intervals give the best performance. Among all the
interval estimates, we recommend HPD credible interval estimate. In addition
to these, we have also computed predictive estimates. It has been noticed that
when the effective sample size increases, the predictive estimates and predictive
interval lengths decrease. Finally, we considered a real life dataset representing
the times to breakdown of an insulating fluid between electrodes recorded at the
voltage of 34 kV (minutes) in a life test for illustrative purposes.
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