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1. INTRODUCTION

Due to practical limitations such as time and(or) budget constraint, it is not easy to
obtain complete sample in practice; expecially, when the test units feature character of high
reliable and expensive. Therefore, censored data frequently appear during the data collec-
tion, where only a portion of exact failure times are observed under such limitated situations,
and various censoring schemes are implemented in experimental procedures simulataneously.
Common censoring schemes used in experiments include Type-I censoring, Type-II censor-
ing, progressive censoring, as well as hybrid censoring. Interested readers may refer to, for
example, the monographes of Balakrishnan and Cramer [6] and Lawless [21] for a compre-
hensive review. However, besides conventional censored data appeared from aforementioned
data collection schemes, there are many other incomplete data types occurred in field and
experiment situations such as reliability engineering, survival analysis, hydrology, economics,
mining and meteorology among others, and records data is one of popular observation among
them. For example, Guo et al.et al. [14] gave an example regarding a kind of the rock crushing
machine, where the size of the rock being crushed is also obtained when the crush strength
is larger than the previously one appearing as record data. Soliman et al. [24] investigated
a reliability experiment, where the exact measurements of failure under operating stress are
observed sequentially and the record-breaking values are only collected in this case due to the
practical operating mechanism. The initial conception of records is introduced by Chandler
[7] that could be described as follows. Let Tn, n = 1, 2, ... be a series of independent and
identically distributed (i.i.d.) random variables. Then an observation Tj is called an upper
record, if Tj > Ti for every j > i. Due to its wide application in practical fields, records
have received wide attention and are discussed by many authors. See, for example, some
recent contributions of Asgharzadeh et al. [3], Dey et al. [9], Singh et al. [25], Wang and Ye
[30] among others. For more details, one could refer to monographes of Ahsanullah [1] and
Nevzorov [23] for a comprehensive review.

In practical lifetime studies, various distributions like exponential, Weibull, gamma,
normal, etc., have been proposed for data analysis from various perspectives. One of char-
acteristics of these aforementioned traditional models is that these distributions all feature
infinity support (−∞,∞) or (0,∞). However, there are many situations, where observa-
tions collected from practical situation are bounded within a specified range, and in turn
distributions with finite support may provide better modelling performance than those with
infinity support from goodness-of-fitting perspectives. For example, Zhang and Xie [32] used
an upper-truncated Weibull distribution to fit the pit depth data of a water pipe where the
upper bound of pit depths is the thickness of the water pipe. The same model is further imple-
mented to describe the wind speed data by Kantar and Usta [17]. Vicari et al. [27] proposed a
generalized Topp–Leone distribution for fitting the V-I indices data of globular clusters with
bounded support. Under such aforementioned studies, all of the authors mentioned that the
implemented bounded models have better data fitting accuracy than traditional distributions
with infinity support in their practical discussions. Therefore, distributions with bounded
domain have potential theoretical and practical applications where such models may provide
higher weight to the bounded data and give better fitting effect in data analysis, and has
been extensively studied by many authors from various perspectives (e.g., [5], [8], [20], [26]).

Among different bounded models, distributions with unit support have attracted con-
siderable attention in practice, where the associated observation within (0, 1) is an important
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and common occurred data type in reality such as birth rate, mortality data, as well as in-
dices data from fields of energy, reliability and economic among others. There are various
distributions with unit bound like beta, Kumaraswamy, Topp–Lenoe models among others.
Some discussions and applications for such unit models could be found in the works of Genc
[11], Ghitany et al. [13], Makouei et al. [22] and Wang [31]. Recently, Jha et al. [16] pro-
posed another unit generalized Rayleigh distribution (UGRD) as follows. Let T be an UGRD
random variable, the associated cumulative distribution function (CDF), probability density
function (PDF) and hazard rate function (HRF) of T are respectively given by

F (t) = 1 −
(
1 − e−(λ ln t)2

)θ
, 0 < t < 1,(1.1)

f(t) = −2θλ2 ln t
t

e−(λ ln t)2
(
1 − e−(λ ln t)2

)θ−1
,(1.2)

and

H(t) =
−2θλ2 ln t

t e−(λ ln t)2

1 − e−(λ ln t)2
,(1.3)

where θ > 0 and λ > 0 are shape and scale parameters, respectively. It is noted that the
shape parameter θ affects the geometric shape of density curve and the scale parameter λ
not only determines the steepness of density curve but also specifically exhibits the value of
random variable. Hereafter, the UGRD with parameters θ and λ is denoted by UGRD(θ, λ)
for concision. Further, plots of CDF, PDF and HRF of the UGRD are presented in Figure 1
for illustration, and it is noted visually that the UGRD has very flexible fitting ability and may
be used as an alternative bound model to traditional Beta, Kumaraswamy and Topp–Leone
distributions.
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Figure 1: CDF, PDF and HRF of UGRD with different parameters.

In both theoretical and practical studies, point estimation is one of the most used ap-
proach in statistical inference. However, point estimation sometimes could not produce robust
results, especially when estimates heavily depend on sample size. Since sample size appears
frequently as moderate or small due to practical limitations, estimations of confidence sets are
proposed alternatively in consequence, and have been discussed by many authors from differ-
ent perspectives. For instance, Asgharzadeh et al. [2] provided the exact confidence intervals
and regions when a bathtub-shaped distribution is used, and similar results are also obtained
by Kinaci et al. [18] for the parameters of the generalized inverted exponential distribution.
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Wu [28] constructed the confidence sets for the Weibull parameters under progressively cen-
sored data. Based on a modified progressively hybrid censored data, Zhu [33] proposed an
adaptive Newton–Raphson algorithm based exact confidence region for a bathtub-shaped dis-
tribution. Motivated by such reasons as mentioned above and due to the flexibility and wide
applications of the UGRD, the current investigation explores estimations of confidence sets
for the UGRD parameters when records data is available, and various approaches are pre-
sented for constructing confidence intervals and confidence regions for the UGRD parameters
in consequence.

The rest parts of this paper are arranged as follows. In Section 2, various estimates of
confidence sets with equal-tailed and minimum-size are established for the UGRD parameters.
Extensive numerical simulations are carried out in Section 3 to investigate the performance
of different results, and two real life examples are also presented for illustrations. In Section
4, some extended results are further provided for exploring some more potential confidence
sets for UGRD parameters with better performance. Finally, some concluding remarks are
given in Section 5.

2. ESTIMATIONS OF CONFIDENCE SETS

Based on records data, different confidence sets of the UGRD parameters are established
in this section. The equal-tailed confidence intervals and confidence regions are constructed
respectively based on the proposed pivotal quantities, and the associated minimum-size confi-
dence sets are also established in consequence. Moreover, conventional asymptotic confidence
sets are provided for comparison.

2.1. Equal-tailed confidence sets

The equal-tailed confidence sets (ECSs) are discussed here for UGRD parameters λ
and θ including the equal-tailed confidence intervals (ECI) and equal-tailed confidence region
(ECR), respectively.

To construct the ECSs, two useful results are provided as follows.

Lemma 2.1. Let T = {T1, T2, ..., Tn} be upper records from UGRD(λ, θ). Denote

pivotal quantities

Ψ(λ) = (n− 1)
[
ln(1 − exp(−(λ lnTn)2))
ln(1 − exp(−(λ lnT1)2))

− 1
]−1

(2.1)

and

Υ (λ, θ) = −2θ ln(1 − exp(−(λ lnTn)2)).(2.2)

Then Ψ(λ) follows the F distribution with 2 and 2(n− 1) degrees of freedom, Υ (λ, θ) has

a chi-square distribution with 2n degree of freedom, and Ψ(λ) and Υ (λ, θ) are statistically

independent.

Proof: The proof is provided in part A of the Supplementary file.
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Lemma 2.2. For arbitrary numbers a and b with 0 < b < a < 1, let

h(λ) =
ln(1 − exp(−(λ ln a)2))
ln(1 − exp(−(λ ln b)2))

, λ > 0,(2.3)

then function h(λ) increases in λ with lim
λ→0

h(λ) = 1 and lim
λ→∞

h(λ) = ∞.

Proof: The proof is provided in part B of the Supplementary file.

Corollary 2.1. According to Lemma 2.2, function Ψ(λ) decreases in λ with range

(0,∞).

In the following, the ECIs of parameters λ and θ as well as the ECR of parameter
vector (λ, θ) are established, respectively.

Theorem 2.1. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For arbi-

trary 0 < γ < 1, a 100(1 − γ)% ECI of λ is given by[
ψ
(
F

2,2(n−1)
γ/2

)
, ψ
(
F

2,2(n−1)
1−γ/2

)]
,(2.4)

where ψ(x) is the solution of equation Ψ(λ) = x w.r.t. λ, and Fm1,m2
p is the upper 100p%

percentile of F distribution with m1 and m2 degrees of freedom.

Proof: The proof is provided in part C of the Supplementary file.

Theorem 2.2. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For given

λ and arbitrary 0 < γ < 1, a 100(1 − γ)% ECI of θ can be constructed as[
χ2n

1−γ/2

B(λ)
,
χ2n
γ/2

B(λ)

]
with B(λ) = −2 ln(1 − exp(−(λ lnTn)2)),(2.5)

where χmp denotes the upper 100p% percentile of chi-square distirbution with m degrees of

freedom.

Proof: Using the distribution property of the pivotal quantity Υ (λ, θ) given in Lemma
2.1, the result could be be established directly by following similar line as Theorem 2.1, and
the details are omitted here for concision.

Remark 2.1. It is noted from Theorem 2.2 that the ECI of θ is available with known
λ. However, parameter λ is unknown in practical applications. To overcome this drawback,
following alternative way is proposed to establish the ECI of parameter θ when parameter λ
is unknown.

Let ψ(Y ) be the unique solution of λ from equation Ψ(λ) = Y , where Y is a random
sample generating from F distribution with 2 and 2(n− 1) degrees of freedom. Using the
substitution method of Weerahandi [29], a generalized pivotal quantity of θ can be constructed
as

S =
Υ (ψ(Y ), θ)
B(ψ(Y ))

.(2.6)

Correspondingly, an approach termed as Algorithm 1 is provided to obtain the ECI of θ under
unknown λ situation.
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Algorithm 1: ECI of θ with unknown λ |
Step 1. Generate a random sample Y from the F distribution with 2 and

2(n− 1) degrees of freedom, then ψ(Y ) can be solved through equation
Ψ(λ) = Y .

Step 2. Generate a random value of Υ (ψ(Y ), θ) from chi-square distirbution with
2n degrees of freedom and calculate S in (2.6).

Step 3. Repeat Steps 1 and 2 M times and obtain a group values of S arranged
in the ascending order, S1, S2, ..., SM .

Step 4. For 0 < γ < 1, an ECI of θ with unknown λ can be constructed by[
SdM γ

2
e, SdM(1− γ

2 )e
]
,(2.7)

where ‘d·e’ refers to the ceiling function.

Further, an ECR of parameter vector (λ, θ) is established as follows.

Theorem 2.3. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For arbi-

trary 0 < γ < 1, a 100(1 − γ)% ECR of (λ,θ) can be written as(λ, θ)

∣∣∣∣∣∣ψ
(
F

2,2(n−1)
1−

√
1−γ

2

)
< λ < ψ

(
F

2,2(n−1)
1+

√
1−γ

2

)
,

χ2n
1+

√
1−γ

2

B(λ)
< θ <

χ2n
1−

√
1−γ

2

B(λ)

,(2.8)

where associated notations are defined in Theorems 2.1 and 2.2, respectively.

Proof: The proof is provided in part D of the Supplementary file.

2.2. Minimum-size confidence sets

It is noted from Subsection 2.1 that the proposed ECSs are obtained under equal-tailed
approach, and such results someitmes may not have minimum sizes. Alternatively, optimal
confidence sets for parameters λ, θ and (λ, θ) are proposed here. Specifically, the minimum-size
confidence sets (MCSs) including the minimum-length confidence intervals (MCIs) of λ and θ
as well as the minimum-area confidence region (MCR) of (λ, θ) are constructed respectively,
and the associated numercial algorithms are also proposed for optimization computation.

Theorem 2.4. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For arbi-

trary 0 < γ < 1, a 100(1 − γ)% MCI of λ is given by

[ψ(x∗2), ψ(x∗1)],(2.9)

where x∗1 and x∗2 are the solutions of the following non-linear system
ψ′(x1)
ψ′(x2) =

PF
2,2(n−1)

(x1)

PF
2,2(n−1)

(x2)
,

F2,2(n−1)(x2) − F2,2(n−1)(x1) = 1 − γ,



Estimations of confidence sets for UGRD parameters using records data 485

where ψ′(x) is the derivative of ψ(x) with respect to x, Fm1,m2(x) is the CDF of F distribution

with m1 and m2 degrees of freedom and PFm1,m2
(x) is the corresponding density function of

Fm1,m2(x).

Proof: The proof is provided in part E of the Supplementary file.

Clearly, there is no closed form solution (x∗1, x
∗
2) for the MCI of λ in Theorem 2.4,

and a numerical approach entitled Algorithm 2 is provided with pre-fixed accuracy level
σ > 0.

Algorithm 2: MCI of λ in Theorem 2.4 |

Step 1. Let ẋ1 = F
2,2(n−1)
γ be the upper bound of x1 and N = bẋ1/σc,

where ‘b·c’ is the floor function.

Step 2. Obtain a value of ẋ2 by computing the equation
F2,2(n−1)(ẋ2) − F2,2(n−1)(ẋ1) = 1 − γ.

Step 3. Let ẋ1 = ẋ1 − σ.

Step 4. Repeat Step 2 and Step 3 until ẋ1 < 0 and obtain N groups (ẋ[i]
1 , ẋ

[i]
2 ),

i = 1, ..., N .

Step 5. The numerical MCI of λ can be constructed as
[
ψ
(
ẋ

[k]
2

)
, ψ
(
ẋ

[k]
1

)]
,

where k satisfies the equation ψ(ẋ[k]
1 ) − ψ(ẋ[k]

2 ) =
N

min
i=1

[ψ(ẋ[i]
1 ) − ψ(ẋ[i]

2 )].

Theorem 2.5. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For given λ

and arbitrary 0 < γ < 1, a 100(1 − γ)% MCI of θ can be constructed as[
y∗1
B(λ)

,
y∗2
B(λ)

]
,(2.10)

where y∗1 and y∗2 are the solutions of the following non-linear system{
Pχ2n(y2) = Pχ2n(y1),
χ2n(y2) − χ2n(y1) = 1 − γ

and both χm(y) and Pχm(y) are the CDF and PDF of chi-square distribution with m degree

of freedom, respectively.

Proof: For given λ, using pivotal quantity Υ (λ, θ) in Lemma 2.1, the 100(1−γ)% MCI
of θ can be obtained similarly as in Theorem 2.4 and the details are omitted for concision.

In addition, a numerical approach called Algorithm 3 are presented for obtaining the
MCI of θ.
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Remark 2.2. It is noted that the MCI of θ with unknown λ can be still constructed
under the alternative approach as[

Sdj∗e, Sdj∗+M−(Mγ+1)e
]
,(2.11)

where notation Sd·e is defined in Algorithm 1 and j∗ is an integer satisfying

Sdj∗+M−(Mγ+1)e − Sdj∗e =
dMγe
min
j=1

[
Sdj+M−(Mγ+1)e − Sdje

]
.

Algorithm 3: MCI of θ in Theorem 2.5 |
Step 1. Let p = σ be the initial value.

Step 2. Obtain the solutions ẏ1 and ẏ2 from euqation Pχ2n(y) = p,
where 0 < ẏ1 < ẏ2.

Step 3. Calculate C = χ2n(ẏ2) − χ2n(ẏ1), then let σ∗ = C − (1 − γ).

Step 4. If σ∗ > σ, then let p = p+ σ, otherwise if σ∗ < −σ, let p = p− σ.

Step 5. Repeat Steps 2–4 until |σ∗| 6 σ, for known λ, the numerical MCI of θ
can be given by [ẏ1/B(λ), ẏ2/B(λ)].

Similarly, the MCR of (λ, θ) is also established as follows.

Theorem 2.6. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ). For an

arbitrary 0 < γ < 1, the 100(1 − γ)% MCR of (λ, θ) is given by{
(λ, θ)

∣∣∣∣ψ(x∗2) < λ < ψ(x∗1),
y∗1
B(λ)

< θ <
y∗2
B(λ)

}
,(2.12)

where (x∗1, x
∗
2, y

∗
1, y

∗
2) are the solutions of the following non-linear system

Pχ2n(y1) = Pχ2n(y2),[
F2,2(n−1)(x2) − F2,2(n−1)(x1)

]
[χ2n(y2) − χ2n(y1)] = 1 − γ,

ψ′(x2)B(ψ(x1))
ψ′(x1)B(ψ(x2))

= −
PF2,2(n−1)(x2)

PF2,2(n−1)(x1)
,

ψ′(x1)
[
F2,2(n−1)(x2) − F2,2(n−1)(x1)

]
Pχ2n(y1)

[χ2n(y2) − χ2n(y1)]PF2,2(n−1)(x1)
∫ ψ(x1)
ψ(x2)

1
B(λ)dλ

= −B(ψ(x1))
y2 − y1

.

Proof: The proof is provided in part F of the Supplementary file.

For finding solution of MCR, the associated numerical approach termed as Algorithm 4
is provided in consequence.
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Algorithm 4: MCR of (λ, θ) in Theorem 2.6 |

Step 1. Set ẏ1 = σ and obtain ỹ1 and ỹ2 from the following equations{
Pχ2n(ỹ1) = Pχ2n(ỹ2)
χ2n(ỹ2) − χ2n(ỹ1) = (1 − γ)

, 0 < ỹ1 < ỹ2.

Then make M = bỹ1/σc.

Step 2. Obtain a value of ẏ2(> ẏ1) by equation Pχ2n(ẏ1) = Pχ2n(ẏ2),
and calculate γ∗ = 1 − (1 − γ)[χ2n(ẏ2) − χ2n(ẏ1)]−1.

Step 3. For i = 1, 2, ...,M , obtain Ni groups (ẋ[ij ]
1 , ẋ

[ij ]
2 ), j = 1, 2, ..., Ni

by substituting γ∗ for γ in Algorithm 1.

Step 4. Let ẏ1 = ẏ1 + σ.

Step 5. Repeat Step 2 – Step 4 until ẏ1 > ỹ1 and obtain
∑M

i=1Ni groups solutions
(ẋ[ij ]

1 , ẋ
[ij ]
2 , ẏ

[i]
1 , ẏ

[i]
2 ), i = 1, 2, ...,M , j = 1, 2, ..., Ni.

Step 6. The numercial MCR of (λ, θ) can be constructed as{
(λ, θ)

∣∣∣∣∣ψ
(
ẋ

[i∗
j∗ ]

2

)
< λ < ψ

(
ẋ

[i∗
j∗ ]

1

)
,
ẏ

[i∗]
1

B(λ)
< θ <

ẏ
[i∗]
2

B(λ)

}
,

where (ẋ
[i∗

j∗ ]

1 , ẋ
[i∗

j∗ ]

2 , ẏ
[i∗]
1 , ẏ

[i∗]
2 ) conform to the following equation

∫ ψ

�
ẋ
[i∗

j∗ ]

1

�

ψ

�
ẋ
[i∗

j∗ ]

2

� ẏ
[i∗]
2 − ẏ

[i∗]
1

B(λ)
dλ =

(M,Ni)

min
(i,j)=(1,1)

∫ ψ

�
ẋ
[ij ]

1

�

ψ

�
ẋ
[ij ]

2

� ẏ
[i]
2 − ẏ

[i]
1

B(λ)
dλ

.

2.3. Asymptotic confidence sets

For comparison, traditional asymptotic confidence sets (ACSs) of UGRD parameters are
also constructed based on asymptotic theory, where asymptotic confidence intervals (ACIs) of
of λ and θ as well as asymptotic confidence region (ACR) of of (λ, θ) are obtained, respectively.

Let T1, T2, ..., Tn be upper records from UGRD(λ, θ), and t1, t2, ..., tn be the associated
observations. Therefore, log-likelihood function `(λ, θ) of λ and θ can be expressed from
Ahsanullah [1] as

`(λ, θ) = n ln
(
2θλ2

)
+ θ ln

(
1 − e−(λ ln tn)2

)
(2.13)

−
n∑
i=1

ln
[
−
(
1 − e−(λ ln ti)

2
)
t−1
i ln ti

]
+ (λ ln ti)

2.
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By taking derivatives, MLE λ̂ of λ can be obtained from equation

n

λ2
− n(ln tn)

2e−(λ ln tn)2(
1 − e−(λ ln tn)2

)
ln
(
1 − e−(λ ln tn)2

) −
n∑
i=1

(ln ti)
2

1 − e−(λ ln ti)
2 = 0,(2.14)

whereas the MLE θ̂ of θ is given by

θ̂ = − n

ln
(

1 − e−(λ̂ ln tn)2
) .

Remark 2.3. It is worth mentioning that the UGRD MLEs λ̂ and θ̂ uniquely exist
under records situation, and the associated existence and uniqueness are provided in part G
of the Supplementary file. Therefore, altough there is no closed form for MLE λ̂ in equa-
tion (2.14), the associated estimate could be obtained in a simple way by using numerical
approaches like biasection or fixed-point iteration methods.

Further, let β = (λ, θ)′ = (β1, β2)′ with β1 = λ, β2 = θ, the observed information matrix
of β̂ = (β̂1, β̂2)′ is given by

I(β̂) =

(
−∂2`(λ,θ)

∂λ2 −∂2`(λ,θ)
∂λ∂θ

−∂2`(λ,θ)
∂λ∂θ −∂2`(λ,θ)

∂θ2

)∣∣∣∣∣
λ=λ̂,θ=θ̂

,(2.15)

where

∂2`(λ, θ)
∂2λ

= −2n
λ2

− ω(tn) + θ
n∑
i=1

ω(ti),
∂2`(λ, θ)
∂2θ

= − n

θ2
,

∂2`(λ, θ)
∂λ∂θ

=
2λ(ln tn)

2e−(λ ln tn)2

1 − e−(λ ln tn)2

and

ω(t) =
2(ln t)2e−(λ ln t)2

[
1 − 2λ2(ln t)2 − e−(λ ln t)2

]
[
1 − e−(λ ln t)2

]2 .

Therefore, the variance-covariance matrix of (λ̂, θ̂) can be constructed as

I−1(β̂) =
(

Var(λ̂) Cov(λ̂, θ̂)
Cov(λ̂, θ̂) Var(θ̂)

)
.

Consequently, the asymptotic distribution of β̂ can be obtained under some mild regularity
conditions as β̂ − β → N(0, I−1(β̂)).

For arbitrary 0 < γ < 1, the 100(1 − γ)% ACI of βi can be constructed by[
β̂i + u1−γ/2

√
Var(β̂i), β̂i + uγ/2

√
Var(β̂i)

]
, i = 1, 2,(2.16)

where uγ is the upper 100γ% percentile of standard normal distribution. Moreover, the
100(1 − γ)% ACR of (λ, θ) can be obtained as follows{

(λ, θ)
∣∣∣(β̂ − β)′I(β̂)(β̂ − β) < χ2

γ

}
.(2.17)
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Remark 2.4. In some cases, the lower confidence bounds of the ACIs (2.16) some-
times may be negative. To overcome this drawback, one could use logarithmic transforma-
tion and delta method to obtain the asymptotic normality distribution of ln β̂i, i = 1, 2 as
ln β̂i − lnβi → N

(
0,Var

(
ln β̂i

))
, with Var(ln β̂i) = Var(β̂i)/β̂2

i . Therefore, the 100(1 − γ)%
modified ACI of βi can be constructed in this manner as β̂i

exp
(
uγ/2

√
Var
(
ln β̂i

)) , β̂i exp

(
uγ/2

√
Var
(
ln β̂i

)), i = 1, 2.(2.18)

3. NUMERICAL ILLUSTRATION

Extensive simulation studies are carried out to investigate the performance of the pro-
posed results. In addition, two real-life examples are also presented to show the applicability
of our methods.

3.1. Simulation studies

In simulation studies, performance of ECSs, MCSs and ACSs are compared in terms of
criteria quantities including average width (AW) for confidence intervals, average area (AA)
for confidence regions and coverage probability (CP) for all confidence sets.

For generating records data, another sampling approach termed as Algorithm 5 is
provided as follows.

Algorithm 5: Upper record values from UGRD(λ, θ) |
Step 1. Generate n i.i.d. samples u1, u2, ..., un from uniform distribution with

range (0, 1).

Step 2. Calculate vi = − ln(1 − ui), i = 1, 2, ..., n.

Step 3. Take wi = 1 − exp(−
∑i

j=1 vj), then w1, w2, ..., wn are upper records
standard uniform distribution.

Step 4. Implementing inverse transformation

ti = exp[−(− ln(1 − (1 − wi)1/θ))1/2/λ], i = 1, 2, ..., n

then t1, t2, ..., tn are the upper record values from UGRD(λ, θ).

In this simulation, parameter values (λ, θ) are randomly chosen as (0.5, 1), (0.5, 0.5) and
(3, 1), sample sizes n = 3, 4, 5, 6, 7 and 8 are considered and the significance level is γ = 0.05.



490 X. Zuo, L. Wang, Y. Lio and Y.M. Tripathi

For all numerical computation in minimum-size confidence sets, the accuracy level is taken
to be σ = 0.001, and the simulations are conducted based 10,000 times of repetitions, where
the ECI and MCI of θ are obtained under unknown λ cases by using the strategies provided
in Remarks 2.1 and 2.2. The simulated associated criteria quantities AW, AA and CP are
tabulated in Tables 1–3. In addition, for complementary and comparison, performance of
ECI and MCI for θ given in Theorems 2.2 and 2.5 are also investigated with known λ, the
associated criteria quantities are obtained by using the true values of λ in simulation and the
associted results are tabulated in Table 4.

Table 1: AWs, AAs and CPs (within brackets) for UGRD confidence sets with λ = 0.5, θ = 1.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ACI 1.9864 1.7601 1.6818 1.6299 1.6118 1.5961
(0.8226) (0.8835) (0.9043) (0.9244) (0.9370) (0.9434)

λ
ECI 1.8250 1.6381 1.5820 1.5363 1.5169 1.5036

(0.9523) (0.9479) (0.9486) (0.9483) (0.9518) (0.9484)

MCI 1.6773 1.5208 1.4777 1.4434 1.4294 1.4208
(0.9279) (0.9286) (0.9342) (0.9322) (0.9395) (0.9346)

ACI 8.3863 5.0168 3.3495 2.5414 2.0836 1.8349
(0.9791) (0.9748) (0.9765) (0.9773) (0.9728) (0.9753)

θ
ECI 9.0399 5.2259 3.1536 2.3884 1.9646 1.7430

(0.9334) (0.9361) (0.9410) (0.9454) (0.9436) (0.9446)

MCI 5.7770 4.0595 2.7762 2.1864 1.8336 1.6346
(0.9496) (0.9443) (0.9508) (0.9557) (0.9509) (0.9489)

ACR 12.5066 8.0762 5.5025 4.1949 3.4725 3.0587
(0.7982) (0.9010) (0.9369) (0.9559) (0.9629) (0.9626)

(λ,θ)
ECR 14.0787 8.5107 5.2939 4.1231 3.3691 2.9745

(0.9417) (0.9523) (0.9536) (0.9478) (0.9537) (0.9461)

MCR 9.0862 6.3987 4.5192 3.5098 2.9310 2.6252
(0.9451) (0.9469) (0.9527) (0.9523) (0.9531) (0.9475)

Table 2: AWs, AAs and CPs (within brackets) for UGRD confidence sets with λ = 0.5, θ = 0.5.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ACI 5.4513 5.1275 5.2425 4.688 4.5967 4.383
(0.8705) (0.9194) (0.9465) (0.9608) (0.9703) (0.9744)

λ
ECI 4.4116 4.1500 4.3133 3.8481 3.7679 3.6012

(0.9489) (0.9490) (0.9492) (0.9476) (0.9491) (0.9500)

MCI 3.9530 3.7088 3.8517 3.4429 3.3775 3.2236
(0.9404) (0.9426) (0.9388) (0.9412) (0.9456) (0.9465)

ACI 4.9927 2.1162 1.3507 1.1324 0.9712 0.8753
(0.9815) (0.9783) (0.9752) (0.9807) (0.9835) (0.9908)

θ
ECI 4.7218 1.9903 1.2216 1.0477 0.9117 0.8309

(0.9391) (0.9416) (0.9451) (0.9486) (0.9539) (0.9569)

MCI 3.4154 1.6898 1.1217 0.9786 0.8604 0.7893
(0.9449) (0.9535) (0.9584) (0.9624) (0.9615) (0.9568)

ACR 20.0447 7.6137 5.7514 4.4766 3.8706 3.3478
(0.8857) (0.9481) (0.9661) (0.9747) (0.9838) (0.9881)

(λ,θ)
ECR 22.3566 6.6294 4.9081 3.7994 3.2875 2.8493

(0.9517) (0.9519) (0.9524) (0.9514) (0.9622) (0.9587)

MCR 14.3081 5.3074 4.0968 3.2366 2.8335 2.4759
(0.9530) (0.9532) (0.9516) (0.9537) (0.9616) (0.9641)
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Table 3: AWs, AAs and CPs (within brackets) for UGRD confidence sets with λ = 3, θ = 1.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ACI 11.7857 10.6667 10.0701 9.7815 9.5784 9.4684
(0.8416) (0.8856) (0.9086) (0.9252) (0.9352) (0.9422)

λ
ECI 10.9231 9.9324 9.4579 9.179 9.0211 8.9084

(0.9431) (0.9497) (0.9498) (0.9511) (0.9501) (0.953)

MCI 10.0412 9.2208 8.8449 8.6182 8.5062 8.4214
(0.9382) (0.9331) (0.9341) (0.9359) (0.9365) (0.9412)

ACI 11.8480 5.0491 3.3021 2.5118 2.103 1.8341
(0.9799) (0.9799) (0.9748) (0.9734) (0.975) (0.9742)

θ
ECI 12.7022 4.9763 3.0889 2.3403 1.9792 1.7371

(0.9425) (0.947) (0.9391) (0.9411) (0.9434) (0.9447)

MCI 8.2348 4.0257 2.7213 2.1438 1.8473 1.639
(0.9479) (0.9529) (0.9526) (0.9504) (0.9512) (0.9499)

ACR 96.2407 49.7994 32.6615 24.8758 20.9596 18.2307
(0.8087) (0.9003) (0.9376) (0.9530) (0.9606) (0.9645)

(λ,θ)
ECR 98.9104 50.5229 32.5485 24.2006 20.4082 17.6974

(0.9537) (0.9502) (0.9517) (0.9499) (0.95) (0.9505)

MCR 73.1492 38.7621 26.6496 20.6069 17.7536 15.6203
(0.9467) (0.9504) (0.9522) (0.9508) (0.9523) (0.9513)

Table 4: AWs and CPs (within brackets) of ECIs and MCIs of θ with known λ.

λ = 0.5, θ = 1 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ECI 3.3429 2.5739 2.1547 1.8892 1.7095 1.5629
(0.9499) (0.9487) (0.9516) (0.9492) (0.9518) (0.9525)

MCI 3.0857 2.4258 2.0559 1.8173 1.6540 1.5186
(0.9496) (0.9486) (0.9514) (0.9491) (0.9519) (0.9534)

λ = 0.5, θ = 0.5 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ECI 1.6397 1.2780 1.0774 0.9416 0.8589 0.7948
(0.9530) (0.9521) (0.9515) (0.9570) (0.9607) (0.9741)

MCI 1.5136 1.2045 1.0281 0.9058 0.8309 0.7722
(0.9526) (0.9518) (0.9524) (0.9534) (0.9615) (0.9728)

λ = 3, θ = 1 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ECI 3.3284 2.5828 2.1577 1.8856 1.7096 1.5634
(0.9440) (0.9463) (0.9533) (0.9507) (0.9498) (0.9515)

MCI 3.0723 2.4342 2.0589 1.8139 1.6540 1.5190
(0.9461) (0.9476) (0.9522) (0.9484) (0.9480) (0.9521)

From Tables 1–4, it is noted that

• AWs and AAs of all confidence sets decrease with increase of sample size n. Such
phenomenon indicate the consistence property of the proposed results when sample
size increases.

• Under fixed sample size n, MCIs of λ have the best performance than ECIs and
ACIs in terms of AWs, whereas the ACI estimates of λ feature the largest AWs. In
addition, the ACIs for λ have lowest CPs than those of ECIs and MCIs.
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• For parameter θ, MCIs of θ are superior to ECIs and ACIs in terms of AWs, whereas
although the CPs of ACI are highest, AWs of ACIs are larger than the other two
interval estimates in general.

• For confidence region of (λ, θ), MCRs have the smallest AAs, whereas the CPs of all
three confidence regions of (λ, θ) are close to the nominal significance level in most
cases.

• From Table 4, for given parameter λ, AWs of both ECIs and MCIs of θ are smaller
than those of θ with unknown λ shown in Tables 1–3, and the CPs under this case
are still close to the nominal significance level.

To sum up, the simulation results indicate that the ECSs and MCSs of different pa-
rameters λ, θ and (λ, θ) perform better than traditional likelihood based ACRs in general,
and the proposed MCSs are recommended as superior choices in practice.

3.2. Real data illustration

In this subsection, two real life examples are presented to demonstrate the practicality
of the proposed methods. For comparison, another three unit bounded distributions namely
Beta distribution (BeD), Kumaraswamy distribution (KuD) and Topp–Leone distribution
(TLD) are considered as competitors of UGRD in this illustration. The corresponding PDFs
of BeD, KuD and TLD are given respectively by:

BeD : f1(t) = tα−1(1 − x)β−1[B(α, β)]−1, α > 0, β > 0, 0 < t < 1,

KuD : f2(t) = αβtα−1(1 − tα)β−1, α > 0, β > 0, 0 < t < 1,

TLD : f3(t) = 2α(1 − t)tα−1(2 − t)α−1, 0 < α < 1, 0 < t < 1.

It is noted that above three distributions are also common used unit models that are widely
implemented in practical data analysis. (e.g., Arora et al. [4], Gupta and Nadarajah [10] and
Kohansal [19]).

Example 1. (Reservoir capacity ratio data) In this real life example, a data set from
http://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA is considered for illustration. The data
set is about the water capacities of Shasta reservoir in California, USA for the month of
October from 2008 to 2019. Since the maximum capacity of Shasta reservoir is 4552000 acre-
foot, the original data were converted to the (0, 1) interval by dividing 4552000 acre-foot.
The transformed data are shown as follows:

0.28180, 0.37520, 0.71891, 0.70887, 0.54177, 0.38317

0.24360, 0.31113, 0.60748, 0.69789, 0.48134, 0.71859.

To check whether the UGRD could be used to fit the real life data, Kolmogorov–Smirnov (K-S)
test is carried out for UGRD, BeD, KuD and TLD respectively under origin complete data,
the associated results are tabulated in Table 5. It is noted from Table 5 that comparing with
BeD, KuD and TLD, the UGRD seems more proper to fit the reservoir capacity ratio data.

http://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA
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Table 5: MLEs and K-S test of fitted distributions for reservoir capacity ratio data.

MLE of model parameters K-S distance p-value

UGRD (λ̂, θ̂) = (1.2369, 1.1284) 0.1893 0.7166

BeD (α̂, β̂) = (3.9505, 3.8693) 0.1949 0.6834

KuD (α̂, β̂) = (2.9870, 4.7499) 0.1959 0.6777
TLD α̂ = 2.8190 0.2071 0.6111

In addition, the corresponding quantile-quantile (Q-Q) plot, probability-probability (P-P)
plot and empirical cumulative distribution (ECD) plot of UGRD are also provided in Figure 2,
which also indicates that the UGRD is a reasonable model used here.
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Figure 2: Q-Q, P-P and ECD plots of UGRD under the reservoir capacity ratio data.

Based on the reservoir capacity ratio data, a group of records data of size 3 is obtained
as follows:

0.28180, 0.37520, 0.71891.

Then different confidence sets are estimated with γ = 0.05 and σ = 10−4, and the associ-
ated results are listed in Tables 6 and 7 respectively, where the widths of confidence inter-
vals and the areas of confidence regions are provided in parentheses. It is observed that
the MCSs outperform the other competitors according to their criteria widths and areas.
In Table 6, it is also noted that the lower confidence bounds of ACIs are negative. Using the
alternative results in Remark 2.4, the modified ACIs and associated interval widths (within
parentheses) of λ and θ are [0.3264, 2.2162](1.8898) and [0.2652, 5.0985](4.8333) respectively.

Table 6: Confidence intervals for λ and θ under reservoir capacity ratio records data.

Parameter ACI ECI MCI

λ [-0.0326,1.7337] [0.0007,1.5843] [0.0001,1.4140]
(1.7663) (1.5836) ( 1.4139 )

θ [-0.4311,2.7566] [0.1042,3.0771] [0.0279,2.4935]
(3.1877) (2.9729) (2.4656)
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Table 7: Confidence regions for (λ, θ) under reservoir capacity ratio records data.

Confidence regions Areas

ACR

��
0.8506− λ
1.1628− θ

�′�
0.2030 0.2068
0.2068 0.6613

��
0.8506− λ
1.1628− θ

�
< 5.9915

�
(5.6939)

ECR
n

0.0001 < λ < 1.7333, 0.9528
B(λ)

< θ < 16.2120
B(λ)

o
(5.4465)

MCR
n

0.0002 < λ < 1.5389, 0.3790
B(λ)

< θ < 15.1281
B(λ)

o
(4.2208)

Moreover, for further illustration, the confidence regions and contour of log-likelihood function
(2.13) are plotted in Figure 3 to show the superority of MCR and the uniqueness of MLEs in
this real data example.
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Figure 3: Contour of log-likelihood function (left) and confidence regions
(right) under reservoir capacity ratio records data.

Example 2. (Electricity supply rate data) Another real life data set drawn out from
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2018&locations=KE&start=2009 is used
for illustration. The data set is about the electricity supply rate in Kenya from 2009 to 2018.
The original data are shown as follows:

0.23000, 0.19200, 0.38581, 0.40793, 0.43049,

0.36000, 0.41600, 0.65400, 0.63589, 0.75000.

By computation, MLEs and corresponding K-S test results for UGRD, BeD, KuD and TLD
are listed in Table 8 under these data. It is also noted that UGRD have best performance
among these models to fit the electricity supply rate data. Meanwhile, the associated Q-Q,
P-P and ECD plots of UGRD are also shown in Figure 4 for illustration.

Similarly, records from the original observations are given as follows:

0.23000, 0.38581, 0.40793, 0.43049, 0.65400, 0.75000.

https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2018&locations=KE&start=2009
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Table 8: MLEs and K-S test results of fitted distributions for electricity supply rate data.

MLE of model parameters K-S distance p-value

UGRD (λ̂, θ̂) = (1.1002, 1.2703) 0.1971 0.7636

BeD (α̂, β̂) = (3.4950, 4.3081) 0.2277 0.6008

KuD (α̂, β̂) = (2.5636, 5.0465) 0.2391 0.5404
TLD α̂ = 2.2064 0.2790 0.3505
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Figure 4: Q-Q plot, P-P plot and ECD plot for the electricity supply rate data of UGRD.

Different ACSs, ECSs and MCSs are shown in Tables 9 and 10 under same setting as Example 1.
From the results in Tables 9 and 10, the MCSs still perform best among all estimates.

Table 9: Confidence intervals for λ and θ under electricity supply rate records data.

Parameter ACI ECI MCI

λ [0.2086, 1.4980] [0.1165, 1.4757] [0.0700, 1.3917]
(1.2894) (1.3592) (1.3217)

θ [0.1008, 4.1260] [0.5652, 4.5006] [0.3726, 3.9809]
(4.0253) (3.9351) (3.6083)

Table 10: Confidence regions for (λ, θ) under electricity supply rate records data.

Confidence Regions Areas

ACR

��
0.8533− λ
2.1134− θ

�′�
13.0909 −2.2738
−2.2738 1.3433

��
0.8533− λ
2.1134− θ

�
< 5.9915

�
(5.3421)

ECR
n

0.0703 < λ < 1.5907, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(5.8436)

MCR
n

0.0001 < λ < 1.4603, 2.8890
B(λ)

< θ < 24.1103
B(λ)

o
(4.9916)
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In addition, the plots of confidence regions and contour curve of log-likelihood function are
also presented in Figure 5 for illustration and comparison.
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Figure 5: Contour of log-likelihood function (left) and confidence regions (right)
under electricity supply rate records data.

4. EXTENSION WORK

In statistical inference, accuracy of confidence sets is one of main concerns in analysis
which in turn affects the practical performance of applications. Following similar approach of
previous inferential procedure, some extended results are proposed in this section for comple-
mentary, where a series of pivotal quantities is constructed, and then alternative generalized
confidence sets are provided in consequence.

Using notationsW1,W2, ...,Wn and associated distribution properties given in Lemma 2.1,
let ξk =

∑k
i=1Wi and ηk =

∑n
i=k+1Wi, k = 1, 2, ..., n− 1, one has

Ψk(λ) =
2ξk/2k

2ηk/2(n− k)
=

(n− k)
k

[
ln (1 − exp ( − (λ lnTn)2))
ln (1 − exp ( − (λ lnTk)2))

− 1
]−1

(4.1)

and

Υk(λ, θ) = 2(ξk + ηk) = −2θ ln(1 − exp(−(λ lnTn)2)), k = 1, ..., n− 1(4.2)

follow F and chi-square distributions with (2k, 2(n− k)) and 2n degrees of freedom, respec-
tively. Meanwhile, quantities Ψk(λ) and Υk(λ, θ) are statistically independent. Moreover, it
is also noted from Lemma 2.2 that Ψk(λ) decreases in λ with range (0,∞).

Using quantities Ψk(λ), Υk(λ, θ) and following similar way as Theorems 2.1 and 2.3, for
arbitrary 0 < γ < 1, a series of 100(1 − γ)% ECIs of λ can be constructed as[

ψk

(
F

2k,2(n−k)
γ/2

)
, ψk

(
F

2,2(n−k)
1−γ/2k

)]
, k = 1, 2, ..., n− 1,(4.3)
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where ψk(x) refers to the solution of Ψk(λ) = x, and correspondingly a group of 100(1− γ)%
ECRs of (λ, θ) can be written as(λ, θ)

∣∣∣∣∣∣ψk
(
F

2k,2(n−k)
1−

√
1−γ

2

)
< λ < ψk

(
F

2k,2(n−k)
1+

√
1−γ

2

)
,

χ2n
1+

√
1−γ

2

B(λ)
< θ <

χ2n
1−

√
1−γ

2

B(λ)

(4.4)

with k = 1, 2, ..., n− 1.

It is observed that there are n− 1 confidence intervals and regions obtained under this
manner, and their sizes may be different with different k. To find the optimal confidence sets
among the proposed results, the following criterions are provided.

Criterion 1. The best ECI of λ is obtained as k∗-th one among proposed ECIs,
where k∗ satisfies

ψk∗
(
F

2k∗,2(n−k∗)
1−γ/2

)
− ψk∗

(
F

2k∗,2(n−k∗)
γ/2

)
=

n−1
min
k=1

[
ψk

(
F

2k,2(n−k)
1−γ/2

)
− ψk

(
F

2k,2(n−k)
γ/2

)]
.

Criterion 2. The best ECR of (λ,θ) is obtained as k∗-th one among all ECRs,
where k∗ satisfies

∫ ψk∗

 
F

2k∗,2(n−k∗)
1+
√

1−γ
2

!

ψk∗

 
F

2k∗,2(n−k∗)
1−
√

1−γ
2

! χ2n
1−
√

1−γ
2

− χ2n
1+
√

1−γ
2

B(λ)
dλ =

n−1
min
k=1

∫ ψk

 
F

2k,2(n−k)
1+
√

1−γ
2

!

ψk

 
F

2k,2(n−k)
1−
√

1−γ
2

! χ2n
1−
√

1−γ
2

− χ2n
1+
√

1−γ
2

B(λ)
dλ

.

Note from (4.2) that, since Υk(λ, θ) = Υ (λ, θ) does not change with k and the associated
ECI of θ coincides with the results obtained in Theorem 2.2. Further, following the similar
approach of Subsection 2.2, a series of MCSs for parameters λ and (λ, θ) could be also obtained
based on pivotal quantities Ψk(λ) and Υk(λ, θ), k = 1, 2, ..., n− 1, the detailed results are
omitted for concision and saving space. In addition, the optimal confidence sets for such
MCSs could be also selected by using similar method as shown in Criterions 1 and 2.

For illustration, the confidence sets for parameters λ and (λ, θ) are reconstructed by
using the records data in Example 2 with k = 1, 2, 3, 4, 5, where the significance level is
γ = 0.05 as same as previous. The associated results are tabulated in Tables 11 and 12.
From the results, it is seen that for ECSs estimation, the optimal ECI of λ and ECR of
(λ, θ) are obtained at k = 4, whereas the associated optimal MCI of λ and MCR of (λ, θ) are
also obtained at k = 4. In addition, one also note that the MCSs perform better than the
associated ECSs at given k and that all the confidence sets obtained by using the proposed
pivotal quantities Ψk(λ), Υk(λ, θ), k = 4 have smaller sizes than the ACSs in Tables 9 and 10.
Further, plots of extended ECR, MCR of (λ, θ) with k = 4 and traditional ACR are also
presented in Figure 6, which indicate that the proposed extended confidence regions have
better performance in this manner.
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Table 11: ECIs for λ and ECRs for (λ, θ) with different k under electricity
supply rate records data.

k ECIs ECRs

1 [0.1165, 1.4757] (1.3592)
n

0.0703 < λ < 1.5907, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(5.8436)

2 [0.0512, 1.6687] (1.6175)
n

0.0220 < λ < 1.8063, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(7.4175)

3 [0.0015, 1.2970] (1.2955)
n

0.0002 < λ < 1.4326, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(4.9472)

4 [0.0001, 0.9519] (0.9518)
n

0.0001 < λ < 1.0930, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(3.1794)

5 [0.0001, 2.2521] (2.2520)
n

0.0001 < λ < 2.5783, 3.7632
B(λ)

< θ < 25.4910
B(λ)

o
(15.0503)

Note: the interval widths and region areas are listed in the parentheses.

Table 12: MCIs for λ and MCRs for (λ, θ) with different k under electricity
supply rate records data.

k MCIs MCRs

1 [0.0700, 1.3917] (1.3217)
n

0.0001 < λ < 1.4603, 2.8890
B(λ)

< θ < 24.1103
B(λ)

o
(4.9916)

2 [0.0101, 1.5144] (1.5043)
n

0.0001 < λ < 1.6370, 2.8346
B(λ)

< θ < 24.3403
B(λ)

o
(6.1677)

3 [0.0001, 1.1420] (1.1419)
n

0.0002 < λ < 1.2459, 2.7388
B(λ)

< θ < 24.7603
B(λ)

o
(3.9759)

4 [0.0001, 0.7925] (0.7924)
n

0.0001 < λ < 0.8702, 2.5663
B(λ)

< θ < 25.5503
B(λ)

o
(2.3655)

5 [0.0001, 1.8748] (1.8747)
n

0.0001 < λ < 2.0143, 2.4165
B(λ)

< θ < 26.2903
B(λ)

o
(10.0198)

Note: the interval widths and region areas are listed in the parentheses.
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Figure 6: Plots of ECR and MCR with k = 4 and traditional ACR.
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5. CONCLUSION

In this paper, different confidence sets of parameters from the unit generalized Rayleigh
distribution are explored under records data. By constructing pivotal quantities, equal-tailed
confidence sets are established for model parameters. Further, the associated minimum-size
confidence sets are constructed based on optimization techniques, and the algorithms along
with Lagrange multiplier method are also provided for computation. In addition, conventional
likelihood based asymptotic confidence sets are also constructed for comparison. Extensive
simulation studies and two real life examples are carried out to investigate the performance of
different methods, and the results indicate that the proposed pivotal quantities based ECSs
and MCSs perform better than common likelihood based confidence sets. Furthermore, a
series of confidence sets are also proposed as extension based on constructed alternative
pivotal quantities which sometimes may further provide potential better estimates.
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