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A. Proof of Lemma 2.1

Denote Vi = − log(1 − F (Ti)) = −θ log(1 − exp(−(λ log Ti)2)), i = 1, 2, ..., n, then
V1, V2, ..., Vn are upper records from the standard exponential distribution with mean one. Let
W1 = V1, Wi = Vi−Vi−1, i = 2, ..., n, follow the Lemma 1 in Wang and Ye [30], W1,W2, ...,Wn

are the independent random variables of standard exponential distribution. Taking ξ = W1

and η =
∑n

i=2Wi, then 2ξ follows chi-square distribution with 2 degree of freedom,and 2η
follows chi-square distribution with 2(n− 1) degrees of freedom, respectively. Finally, let

Ψ(λ) =
2ξ/2

2η/2 (n− 1)
= (n− 1)

[
log(1− exp(−(λ log Tn)2))
log(1− exp(−(λ log T1)2))

− 1
]−1

and

Υ (λ, θ) = 2(ξ + η) = −2θ log(1− exp(−(λ log Tn)2)),

then it is noted that Ψ(λ) follows F distribution with 2 and 2(n− 1) degrees of freedom,
Υ (λ, θ) follows chi-square distribution with 2n degrees of freedom. Moreover, from Johnson
et al. [15], one also has Ψ(λ) and Υ (λ, θ) are statistically independent.

B. Proof of Lemma 2.2

Denote c (x) = 1− exp
(
− (λ lnx)2

)
and taking drivetive of h(λ), one has

h′ (λ) = − 2
λ

ln (c (a))
ln (c (b))

[
(1− c (a)) ln (1− c (a))

c (a) ln (c (a))
− (1− c (b)) ln (1− c (b))

c (b) ln (c (b))

]
with 0 < c (a) < c (b) < 1. To show h(λ) increases in λ is equavelent to prove that function
g (x) = (1− x) ln (1− x) / (x lnx), 0 < x < 1 increases in x.

Taking derivative of g(x) with respect to x, one has

g′(x) =
−x lnx− (1− x) ln (1− x)− lnx ln (1− x)

(x lnx)2
,

let g1 (x) = ln (1− x), g2 (x) = lnx and using Lagrange’s mean value theorem, there exist two
numbers 0 < ε1 < x < ε2 < 1 satisfying

g1 (x)− g1 (0) = − x

1− ε1
and g2 (1)− g2 (x) =

1− x

ε2
.

Then function g′(x) can be rewritten as g′ (x) =
x(1−x)

h
ε2−ε1
ε2(1−ε1)

i

(x lnx)2
> 0. In addition, the limita-

tion results of h(λ) could be obtained directly. Therefore, the assertion is comleted.

C. Proof of Theorem 2.1

Based on Lemma 2.1 and Corollary 2.1, for arbitrary 0 < γ < 1, it has

P
{
F

2,2(n−1)
1−γ/2 < Ψ(λ) < F

2,2(n−1)
γ/2

}
= P

{
ψ

(
F

2,2(n−1)
γ/2

)
< λ < ψ

(
F

2,2(n−1)
1−γ/2

)}
= 1− γ,

then the result is proved.
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D. Proof of Theorem 2.3

Since that Ψ(λ) and Υ (λ, θ) are statistically independent, using the similar manner
with Theorem 2.1, for arbitrary 0 < γ < 1, one has

P

{
F

2,2(n−1)
1+
√

1−γ
2

< Ψ(λ) < F
2,2(n−1)
1−

√
1−γ

2

, χ2n
1+
√

1−γ
2

< Υ (λ, θ) < χ2n
1−

√
1−γ

2

}
=P

{
ψ

(
F

2,2(n−1)
1−

√
1−γ

2

)
< λ < ψ

(
F

2,2(n−1)
1+
√

1−γ
2

)}
×P

{(
χ2n

1+
√

1−γ
2

/B(λ)
)
< θ <

(
χ2n

1−
√

1−γ
2

/B(λ)
)}

=
√

1− γ ×
√

1− γ = 1− γ.

Therefore, the MCR for (λ, θ) is obtained.

E. Proof of Theorem 2.4

Following similar line of Theorem 2.1, for arbitrary 0 < γ < 1, assume that x1 and x2

are two upper percentiles in F distribution with 2 and 2(n− 1) degrees of freedom satisfying
P{x1 < Ψ(λ) < x2} = 1−γ, then a 100(1−γ)% confidence interval of λ can be constructed as
[ψ (x2) , ψ (x1)], and the associated interval length can be expressed as L (x1, x2) = ψ (x1)−
ψ (x2).

In order to find the MCI of λ, consider following optimization problem

min L (x1, x2) ,

s.t. F2,2(n−1)(x2)− F2,2(n−1)(x1) = 1− γ,

x1 < x2.

implying that the Lagrange function can be constructed as

L (x1, x2, z) = ψ (x1)− ψ (x2) + z
[
F2,2(n−1) (x2)− F2,2(n−1) (x1)− (1− γ)

]
,

with z being the lagrange multiplier.

By taking derivatives of L (x1, x2, z) and equating them to zero, the optimal solutions
(x∗1, x

∗
2) of (x1, x2) can be obtained from following equations


ψ′(x1)
ψ′(x2) =

PF
2,2(n−1)

(x1)

PF
2,2(n−1)

(x2)
,

F2,2(n−1) (x2)− F2,2(n−1) (x1) = 1− γ.

Therefore, the 100(1− γ)% MCI of λ can be constructed as [ψ (x∗2) , ψ (x∗1)].
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F. Proof of Theorem 2.6

Using same notations as in Theorems 2.4 and 2.5, and assume that x1 and x2 are
the two upper percentiles in F distribution with 2 and 2(n− 1) degrees of freedom, and y1

and y2 are the two upper percentiles in chi-square distribution with 2n degrees of freedom,
then one has that

P {x1 < Ψ(λ) < x2, y1 < Υ (λ, θ) < y2} = 1− γ,

implying that a 100(1− γ)% confidence region of (λ,θ) can be obtained as{
(λ, θ)

∣∣∣∣ψ (x2) < λ < ψ (x1) ,
y1

B(λ)
< θ <

y2

B(λ)

}
with area S (x1, x2, y1, y2) =

∫ ψ(x1)
ψ(x2)

y2−y1
B(λ) dλ.

To find MCR of (λ, θ), following optimization problem is considered

min S (x1, x2, y1, y2) ,

s.t.
[
F2,2(n−1) (x2)− F2,2(n−1) (x1)

]
· [χ2n(y2)− χ2n(y1)] = 1− γ,

x1 < x2, y1 < y2.

and the Lagrange function can be obtained as follows

A (x1, x2, y1, y2, z) =
∫ ψ(x1)

ψ(x2)

y2 − y1

B (λ)
dλ+ z

{ [
F 2,2(n−1) (x2)− F 2,2(n−1) (x1)

]
×

[
χ2n(y2)− χ2n(y1)

]
− (1− γ)

}
.

Following similar approach of the proof in Theorem 2.4, the optimal solution
(x∗1, x

∗
2, y

∗
1, y

∗
2) of (x1, x2, y1, y2) minimizing the area of the confidence region could be ob-

tained via the Lagrangian multiplier method which is the solution of following equations

Pχ2n (y1) = Pχ2n (y2) ,[
F2,2(n−1) (x2)− F2,2(n−1) (x1)

]
[χ2n(y2)− χ2n(y1)] = 1− γ,

ψ′(x2)B(ψ(x1))
ψ′(x1)B(ψ(x2)) = −

PF
2,2(n−1)

(x2)

PF
2,2(n−1)

(x1)
,

ψ′(x1)[F2,2(n−1)(x2)−F2,2(n−1)(x1)]Pχ2n(y1)

[χ2n(y2)−χ2n(y1)]PF
2,2(n−1)

(x1)
R ψ(x1)

ψ(x2)
1

B(λ)
dλ

= −B(ψ(x1))
y2−y1 .

Therefore, the 100(1− γ)% MCR of (λ,θ) can be established as{
(λ, θ)

∣∣∣∣ψ (x∗2) < λ < ψ (x∗1) ,
y∗1
B(λ)

< θ <
y∗2
B(λ)

}
,

and the assertion is completed.
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G. Uniqueness and existence of MLEs λ̂ and θ̂

It is noted that the uniqueness and existence of MLEs λ̂ and θ̂ is equivalent to show
that equation (2.14) has an unique solution for λ > 0.

Fon convience, let µ = λ2 and ai = (ln ti)
2 , i = 1, 2, ..., n satisfying a1 > a2 > ··· > an.

Then equation (2.14) could be rewritten as a function of µ as follows

H(µ) =
n

µ
− nane

−µan

(1− e−µan) ln (1− e−µan)
−

n∑
i=1

ai
1− e−µai

= 0.

For showing equaiton H(µ) = 0, some useful results from Ghitany et al. [12] are pro-
vided as follows.

(a). lim
y→0

ye−y

1− e−y
= 1, (b). lim

y→0
y

∣∣ln (
1− e−y

)∣∣ = 0, (c). lim
y→∞

|ln (1− e−y)|
e−y

= 1,

(d). yke−y <
(
1− e−y

)k
, k = 1, 2, y > 0, (e). ln y 6 y − 1, y > 0,

(f). ln
(
1− e−y

)
< −e−y, y > 0.

Using results (a), (b) and (c), one directly has limµ→0+H(µ) =∞> 0 and limµ→∞H(µ)
=

∑n
i=1(an − ai) < 0. Further, based on results (d), (e) and (f), one could also observe that

∂H(µ)
∂µ

< − 2na2
n

[(eµan − 1) ln (1− e−µan)]2
< 0.

Therefore, MLE λ̂ of λ =
√
µ uniquely exists and the assertion is completed.
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