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1. INTRODUCTION

Due to practical limitations such as time and(or) budget constraint, it is
not easy to obtain complete sample in practice; expecially, when the test units
feature character of high reliable and expensive. Therefore, censored data fre-
quently appear during the data collection, where only a portion of exact failure
times are observed under such limitated situations, and various censoring schemes
are implemented in experimental procedures simulataneously. Common censor-
ing schemes used in experiments include Type-I censoring, Type-II censoring,
progressive censoring, as well as hybrid censoring. Interested readers may refer
to, for example, the monographes of Balakrishnan and Cramer [6] and Lawless
[21] for a comprehensive review. However, besides conventional censored data
appeared from aforementioned data collection schemes, there are many other in-
complete data types occurred in field and experiment situations such as reliabil-
ity engineering, survival analysis, hydrology, economics, mining and meteorology
among others, and records data is one of popular observation among them. For
example, Guo et al. [14] gave an example regarding a kind of the rock crushing
machine, where the size of the rock being crushed is also obtained when the crush
strength is larger than the previously one appearing as record data. Soliman et
al. [24] investigated a reliability experiment, where the exact measurements of
failure under operating stress are observed sequentially and the record-breaking
values are only collected in this case due to the practical operating mechanism.
The initial conception of records is introduced by Chandler [7] that could be de-
scribed as follows. Let Tn, n = 1, 2, ... be a series of independent and identically
distributed (i.i.d.) random variables. Then an observation Tj is called an upper
record, if Tj > Ti for every j > i. Due to its wide application in practical fields,
records have received wide attention and are discussed by many authors. See,
for example, some recent contributions of Asgharzadeh et al. [3], Dey et al. [9],
Singh et al. [25], Wang and Ye [30] among others. For more details, one could
refer to monographes of Ahsanullah [1] and Nevzorov [23] for a comprehensive
review.

In practical lifetime studies, various distributions like exponential, Weibull,
gamma, normal, etc., have been proposed for data analysis from various perspec-
tives. One of characteristics of these aforementioned traditional models is that
these distributions all feature infinity support (−∞,∞) or (0,∞). However,
there are many situations, where observations collected from practical situation
are bounded within a specified range, and in turn distributions with finite sup-
port may provide better modelling performance than those with infinity support
from goodness-of-fitting perspectives. For example, Zhang and Xie [32] used an
upper-truncated Weibull distribution to fit the pit depth data of a water pipe
where the upper bound of pit depths is the thickness of the water pipe. The
same model is further implemented to describe the wind speed data by Kantar
and Usta [17]. Vicari et al. [27] proposed a generalized Topp-Leone distribution
for fitting the V-I indices data of globular clusters with bounded support. Under
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such aforementioned studies, all of the authors mentioned that the implemented
bounded models have better data fitting accuracy than traditional distributions
with infinity support in their practical discussions. Therefore, distributions with
bounded domain have potential theoretical and practical applications where such
models may provide higher weight to the bounded data and give better fitting
effect in data analysis, and has been extensively studied by many authors from
various perspectives (e.g., [5], [8], [20], [26]).

Among different bounded models, distributions with unit support have
attracted considerable attention in practice, where the associated observation
within (0, 1) is an important and common occurred data type in reality such as
birth rate, mortality data, as well as indices data from fields of energy, reliability
and economic among others. There are various distributions with unit bound
like beta, Kumaraswamy, Topp-Lenoe models among others. Some discussions
and applications for such unit models could be found in the works of Genc [11],
Ghitany et al. [13], Makouei et al. [22] and Wang [31]. Recently, Jha et al. [16]
proposed another unit generalized Rayleigh distribution (UGRD) as follows. Let
T be an UGRD random variable, the associated cumulative distribution function
(CDF), probability density function (PDF) and hazard rate function (HRF) of T
are respectively given by

F (t) = 1−
(
1− e−(λ ln t)2

)θ
, 0 < t < 1,(1.1)

f (t) = −2θλ2 ln t

t
e−(λ ln t)2

(
1− e−(λ ln t)2

)θ−1
,(1.2)

and

H (t) =
−2θλ2 ln t

t e−(λ ln t)2

1− e−(λ ln t)2
,(1.3)

where θ > 0 and λ > 0 are shape and scale parameters, respectively. It is noted
that the shape parameter θ affects the geometric shape of density curve and the
scale parameter λ not only determines the steepness of density curve but also
specifically exhibits the value of random variable. Hereafter, the UGRD with
parameters θ and λ is denoted by UGRD(θ, λ) for concision. Further, plots of
CDF, PDF and HRF of the UGRD are presented in Figure 1 for illustration,
and it is noted visually that the UGRD has very flexible fitting ability and may
be used as an alternative bound model to traditional Beta, Kumaraswamy and
Topp-Leone distributions.

In both theoretical and practical studies, point estimation is one of the
most used approach in statistical inference. However, point estimation some-
times could not produce robust results, especially when estimates heavily depend
on sample size. Since sample size appears frequently as moderate or small due to
practical limitations, estimations of confidence sets are proposed alternatively in
consequence, and have been discussed by many authors from different perspec-
tives. For instance, Asgharzadeh et al. [2] provided the exact confidence intervals
and regions when a bathtub-shaped distribution is used, and similar results are
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Figure 1: CDF, PDF and HRF of UGRD with different parameters.

also obtained by Kinaci et al. [18] for the parameters of the generalized inverted
exponential distribution. Wu [28] constructed the confidence sets for the Weibull
parameters under progressively censored data. Based on a modified progressively
hybrid censored data, Zhu [33] proposed an adaptive Newton-Raphson algorithm
based exact confidence region for a bathtub-shaped distribution. Motivated by
such reasons as mentioned above and due to the flexibility and wide applications
of the UGRD, the current investigation explores estimations of confidence sets
for the UGRD parameters when records data is available, and various approaches
are presented for constructing confidence intervals and confidence regions for the
UGRD parameters in consequence.

The rest parts of this paper are arranged as follows. In Section 2, various
estimates of confidence sets with equal-tailed and minimum-size are established
for the UGRD parameters. Extensive numerical simulations are carried out in
Section 3 to investigate the performance of different results, and two real life
examples are also presented for illustrations. In Section 4, some extended results
are further provided for exploring some more potential confidence sets for UGRD
parameters with better performance. Finally, some concluding remarks are given
in Section 5.

2. ESTIMATIONS OF CONFIDENCE SETS

Based on records data, different confidence sets of the UGRD parame-
ters are established in this section. The equal-tailed confidence intervals and
confidence regions are constructed respectively based on the proposed pivotal
quantities, and the associated minimum-size confidence sets are also established
in consequence. Moreover, conventional asymptotic confidence sets are provided
for comparison.
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2.1. Equal-tailed confidence sets

The equal-tailed confidence sets (ECSs) are discussed here for UGRD pa-
rameters λ and θ including the equal-tailed confidence intervals (ECI) and equal-
tailed confidence region (ECR), respectively.

To construct the ECSs, two useful results are provided as follows.

Lemma 2.1. Let T = {T1, T2, ..., Tn} be upper records from UGRD(λ, θ).
Denote pivotal quantities

Ψ(λ) = (n− 1)

[
ln(1− exp(−(λ lnTn)

2))

ln(1− exp(−(λ lnT1)2))
− 1

]−1

(2.1)

and

Υ (λ, θ) = −2θ ln(1− exp(−(λ lnTn)
2)).(2.2)

Then Ψ(λ) follows the F distribution with 2 and 2(n − 1) degrees of freedom,
Υ (λ, θ) has a chi-square distribution with 2n degree of freedom, and Ψ(λ) and
Υ (λ, θ) are statistically independent.

Proof: The proof is provided in part A of the Supplementary file.

Lemma 2.2. For arbitrary numbers a and b with 0 < b < a < 1, let

h (λ) =
ln(1− exp(−(λ ln a)2))

ln(1− exp(−(λ ln b)2))
, λ > 0,(2.3)

then function h(λ) increases in λ with lim
λ→0

h(λ) = 1 and lim
λ→∞

h(λ) = ∞.

Proof: The proof is provided in part B of the Supplementary file.

Corollary 2.1. According to Lemma 2.2, function Ψ(λ) decreases in
λ with range (0,∞).

In following, the ECIs of parameters λ and θ as well as the ECR of param-
eter vector (λ, θ) are established, respectively.

Theorem 2.1. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ).
For arbitrary 0 < γ < 1, a 100(1− γ)% ECI of λ is given by[

ψ
(
F

2,2(n−1)
γ/2

)
, ψ
(
F

2,2(n−1)
1−γ/2

)]
,(2.4)

where ψ(x) is the solution of equation Ψ(λ) = x w.r.t. λ, and Fm1,m2
p is the upper

100p% percentile of F distribution with m1 and m2 degrees of freedom.
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Proof: The proof is provided in part C of the Supplementary file.

Theorem 2.2. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ).
For given λ and arbitrary 0 < γ < 1, a 100(1− γ)% ECI of θ can be constructed
as [

χ2n
1−γ/2

B(λ)
,
χ2n
γ/2

B(λ)

]
with B(λ) = −2 ln(1− exp(−(λ lnTn)

2)),(2.5)

where χmp denotes the upper 100p% percentile of chi-square distirbution with m
degrees of freedom.

Proof: Using the distribution property of the pivotal quantity Υ (λ, θ)
given in Lemma 2.1, the result could be be established directly by following
similar line as Theorem 2.1, and the details are omitted here for concision.

Remark 2.1. It is noted from Theorem 2.2 that the ECI of θ is avail-
able with known λ. However, parameter λ is unknown in practical applications.
To overcome this drawback, following alternative way is proposed to establish the
ECI of parameter θ when parameter λ is unknown.

Let ψ(Y ) be the unique solution of λ from equation Ψ(λ) = Y , where Y is
a random sample generating from F distribution with 2 and 2(n− 1) degrees of
freedom. Using the substitution method of Weerahandi [29], a generalized pivotal
quantity of θ can be constructed as

S =
Υ (ψ(Y ), θ)

B (ψ(Y ))
.(2.6)

Correspondingly, an approach termed as Algorithm 1 is provided to obtain the
ECI of θ under unknown λ situation.

Further, an ECR of parameter vector (λ, θ) is established as follows.

Theorem 2.3. Let T = {T1, T2, . . . , Tn} be upper record from UGRD(λ, θ).
For arbitrary 0 < γ < 1, a 100(1− γ)% ECR of (λ,θ) can be written as

(λ, θ)

∣∣∣∣∣∣ψ
(
F

2,2(n−1)
1−

√
1−γ
2

)
< λ < ψ

(
F

2,2(n−1)
1+

√
1−γ
2

)
,

χ2n
1+

√
1−γ
2

B(λ)
< θ <

χ2n
1−

√
1−γ
2

B(λ)

 ,

(2.8)

where associated notations are defined in Theorems 2.1 and 2.2, respectively.

Proof: The proof is provided in part D of the Supplementary file.
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Algorithm 1: ECI of θ with unknown λ

Step 1 Generate a random sample Y from the F distribution with 2 and
2(n− 1) degrees of freedom, then ψ(Y ) can be solved through equation
Ψ(λ) = Y .

Step 2 Generate a random value of Υ (ψ(Y ), θ) from chi-square distirbution
with 2n degrees of freedom and calculate S in (2.6).

Step 3 Repeat Steps 1 and 2 M times and obtain a group values of S
arranged in the ascending order, S1, S2, ..., SM .

Step 4 For 0 < γ < 1, an ECI of θ with unknown λ can be constructed by[
S⌈M γ

2
⌉, S⌈M(1− γ

2 )⌉

]
,(2.7)

where ‘⌈·⌉’ refers to the ceiling function.

2.2. Minimum-size confidence sets

It is noted from Subsection 2.1 that the proposed ECSs are obtained un-
der equal-tailed approach, and such results someitmes may not have minimum
sizes. Alternatively, optimal confidence sets for parameters λ, θ and (λ, θ) are
proposed here. Specifically, the minimum-size confidence sets (MCSs) includ-
ing the minimum-length confidence intervals (MCIs) of λ and θ as well as the
minimum-area confidence region (MCR) of (λ, θ) are constructed respectively,
and the associated numercial algorithms are also proposed for optimization com-
putation.

Theorem 2.4. Let T = {T1, T2, ..., Tn} be upper record from UGRD(λ, θ).
For arbitrary 0 < γ < 1, a 100(1− γ)% MCI of λ is given by

[ψ (x∗2) , ψ (x∗1)] ,(2.9)

where x∗1 and x∗2 are the solutions of following non-linear system
ψ′(x1)
ψ′(x2)

=
PF
2,2(n−1)

(x1)

PF
2,2(n−1)

(x2)
,

F2,2(n−1) (x2)− F2,2(n−1) (x1) = 1− γ,

where ψ′(x) is the derivative of ψ(x) with respect to x, Fm1,m2(x) is the CDF of
F distribution with m1 and m2 degrees of freedom and PFm1,m2

(x) is the corre-
sponding density function of Fm1,m2(x).

Proof: The proof is provided in part E of the Supplementary file.



8 X. Zuo, L. Wang, Y. Lio and Y.M. Tripathi

Clearly, there is no closed form solution (x∗1, x
∗
2) for the MCI of λ in The-

orem 2.4, and a numerical approach entitled Algorithm 2 is provided with
pre-fixed accuracy level σ > 0.

Algorithm 2: MCI of λ in Theorem 2.4

Step 1 Let ẋ1 = F
2,2(n−1)
γ be the upper bound of x1 and N = ⌊ẋ1/σ⌋,

where ‘⌊·⌋’ is the floor function.

Step 2 Obtain a value of ẋ2 by computing the equation
F2,2(n−1)(ẋ2)− F2,2(n−1)(ẋ1) = 1− γ.

Step 3 Let ẋ1 = ẋ1 − σ.

Step 4 Repeat Step 2 and Step 3 until ẋ1 < 0 and obtain N groups
(ẋ

[i]
1 , ẋ

[i]
2 ), i = 1, ..., N .

Step 5 The numerical MCI of λ can be constructed as
[
ψ
(
ẋ
[k]
2

)
, ψ
(
ẋ
[k]
1

)]
,

where k satisfies the equation ψ(ẋ
[k]
1 )− ψ(ẋ

[k]
2 ) =

N
min
i=1

[ψ(ẋ
[i]
1 )− ψ(ẋ

[i]
2 )]

Theorem 2.5. Let T = {T1, T2, . . . , Tn} be upper record from UGRD(λ, θ).
For given λ and arbitrary 0 < γ < 1, a 100(1− γ)% MCI of θ can be constructed
as [

y∗1
B(λ)

,
y∗2
B(λ)

]
,(2.10)

where y∗1 and y∗2 are the solutions of following non-linear system{
Pχ2n (y2) = Pχ2n(y1),

χ2n(y2)− χ2n(y1) = 1− γ

and both χm (y) and Pχm (y) are the CDF and PDF of chi-square distribution
with m degree of freedom, respectively.

Proof: For given λ, using pivotal quantity Υ (λ, θ) in Lemma 2.1, the
100(1 − γ)% MCI of θ can be obtained similarly as in Theorem 2.4 and the
details are omitted for concision.

In addition, a numerical approach called Algorithm 3 are presented for
obtaining the MCI of θ.

Remark 2.2. It is noted that the MCI of θ with unknown λ can be still
constructed under the alternative approach as[

S⌈j∗⌉, S⌈j∗+M−(Mγ+1)⌉
]
,(2.11)
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where notation S⌈·⌉ is defined in Algorithm 1 and j∗ is an integer satisfying

S⌈j∗+M−(Mγ+1)⌉ − S⌈j∗⌉ =
⌈Mγ⌉
min
j=1

[
S⌈j+M−(Mγ+1)⌉ − S⌈j⌉

]
.

Algorithm 3: MCI of θ in Theorem 2.5
Step 1 Let p = σ be the initial value.

Step 2 Obtain the solutions ẏ1 and ẏ2 from euqation Pχ2n (y) = p, where
0 < ẏ1 < ẏ2.

Step 3 Calculate C = χ2n(ẏ2)− χ2n(ẏ1), then let σ∗ = C − (1− γ).

Step 4 If σ∗ > σ, then let p = p+ σ, otherwise if σ∗ < −σ, let p = p− σ.

Step 5 Repeat Steps 2 – 4 until |σ∗| ⩽ σ, for known λ, the numerical MCI of
θ can be given by [ẏ1/B(λ), ẏ2/B(λ)].

Similarly, the MCR of (λ, θ) is also established as follows.

Theorem 2.6. Let T = {T1, T2, . . . , Tn} be upper record from UGRD(λ, θ).
For an arbitrary 0 < γ < 1, the 100(1− γ)% MCR of (λ, θ) is given by{

(λ, θ)

∣∣∣∣ψ (x∗2) < λ < ψ (x∗1) ,
y∗1
B(λ)

< θ <
y∗2
B(λ)

}
,(2.12)

where (x∗1, x
∗
2, y

∗
1, y

∗
2) are the solutions of following non-linear system

Pχ2n (y1) = Pχ2n (y2) ,[
F2,2(n−1) (x2)− F2,2(n−1) (x1)

]
[χ2n(y2)− χ2n(y1)] = 1− γ,

ψ′(x2)B(ψ(x1))
ψ′(x1)B(ψ(x2))

= −
PF
2,2(n−1)

(x2)

PF
2,2(n−1)

(x1)
,

ψ′(x1)[F2,2(n−1)(x2)−F2,2(n−1)(x1)]P
χ
2n(y1)

[χ2n(y2)−χ2n(y1)]PF2,2(n−1)
(x1)

∫ ψ(x1)

ψ(x2)
1

B(λ)
dλ

= −B(ψ(x1))
y2−y1 .

Proof: The proof is provided in part F of the Supplementary file.

For finding solution of MCR, the associated numerical approach termed as
Algorithm 4 is provided in consequence.

2.3. Asymptotic confidence sets

For comparison, traditional asymptotic confidence sets (ACSs) of UGRD
parameters are also constructed based on asymptotic theory, where asymptotic
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Algorithm 4: MCR of (λ, θ) in Theorem 2.6

Step 1 Set ẏ1 = σ and obtain ỹ1 and ỹ2 from the following equations{
Pχ2n (ỹ1) = Pχ2n (ỹ2)

χ2n(ỹ2)− χ2n(ỹ1) = (1− γ)
, 0 < ỹ1 < ỹ2.

Then make M = ⌊ỹ1/σ⌋.

Step 2 Obtain a value of ẏ2(> ẏ1) by equation Pχ2n (ẏ1) = Pχ2n (ẏ2), and
calculate γ∗ = 1− (1− γ)[χ2n(ẏ2)− χ2n(ẏ1)]

−1.

Step 3 For i = 1, 2, ...,M , obtain Ni groups (ẋ
[ij ]
1 , ẋ

[ij ]
2 ),j = 1, 2, ..., Ni by

substituting γ∗ for γ in Algorithm 1.

Step 4 Let ẏ1 = ẏ1 + σ.

Step 5 Repeat Step 2 – Step 4 until ẏ1 > ỹ1 and obtain
∑M

i=1Ni groups
solutions (ẋ

[ij ]
1 , ẋ

[ij ]
2 , ẏ

[i]
1 , ẏ

[i]
2 ), i = 1, 2, ...,M , j = 1, 2, ..., Ni.

Step 6 The numercial MCR of (λ, θ) can be constructed as{
(λ, θ)

∣∣∣∣∣ψ
(
ẋ
[i∗
j∗ ]

2

)
< λ < ψ

(
ẋ
[i∗
j∗ ]

1

)
,
ẏ
[i∗]
1

B(λ)
< θ <

ẏ
[i∗]
2

B(λ)

}
,

where (ẋ
[i∗
j∗ ]

1 , ẋ
[i∗
j∗ ]

2 , ẏ
[i∗]
1 , ẏ

[i∗]
2 ) conform to the following equation

∫ ψ

(
ẋ
[i∗
j∗ ]

1

)
ψ

(
ẋ
[i∗
j∗ ]

2

) ẏ
[i∗]
2 − ẏ

[i∗]
1

B (λ)
dλ =

(M,Ni)

min
(i,j)=(1,1)

∫ ψ

(
ẋ
[ij ]

1

)
ψ

(
ẋ
[ij ]

2

) ẏ
[i]
2 − ẏ

[i]
1

B (λ)
dλ

 .

confidence intervals (ACIs) of of λ and θ as well as asymptotic confidence region
(ACR) of of (λ, θ) are obtained, respectively.

Let T1, T2, . . . , Tn be upper records from UGRD(λ, θ), and t1, t2, . . . , tn be
the associated observations. Therefore, log-likelihood function ℓ (λ, θ) of λ and θ
can be expressed from Ahsanullah [1] as

ℓ (λ, θ) =n ln
(
2θλ2

)
+ θ ln

(
1− e−(λ ln tn)

2
)

(2.13)

−
n∑
i=1

ln
[
−
(
1− e−(λ ln ti)

2
)
t−1
i ln ti

]
+ (λ ln ti)

2.

By taking derivatives, MLE λ̂ of λ can be obtained from equation

n

λ2
− n (ln tn)

2 e−(λ ln tn)
2(

1− e−(λ ln tn)
2
)
ln
(
1− e−(λ ln tn)

2
) −

n∑
i=1

(ln ti)
2

1− e−(λ ln ti)
2 = 0,(2.14)
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whereas the MLE θ̂ of θ is given by

θ̂ = − n

ln

(
1− e−(λ̂ ln tn)

2
) .

Remark 2.3. It is worth mentioning that the UGRD MLEs λ̂ and θ̂
uniquely exist under records situation, and the associated existence and unique-
ness are provided in part G of the Supplementary file. Therefore, altough there
is no closed form for MLE λ̂ in Eq. (2.14), the associated estimate could be
obtained in a simple way by using numerical approaches like biasection or fixed-
point iteration methods.

Further, let β = (λ, θ)′ = (β1, β2)
′ with β1 = λ, β2 = θ, the observed

information matrix of β̂ = (β̂1, β̂2)
′ is given by

I(β̂) =

(
−∂2ℓ(λ,θ)

∂λ2
−∂2ℓ(λ,θ)

∂λ∂θ

−∂2ℓ(λ,θ)
∂λ∂θ −∂2ℓ(λ,θ)

∂θ2

)∣∣∣∣∣
λ=λ̂,θ=θ̂

,(2.15)

where
∂2ℓ (λ, θ)

∂2λ
= −2n

λ2
− ω (tn) + θ

n∑
i=1

ω (ti),
∂2ℓ (λ, θ)

∂2θ
= − n

θ2
,

∂2ℓ (λ, θ)

∂λ∂θ
=

2λ (ln tn)
2 e−(λ ln tn)

2

1− e−(λ ln tn)
2

and

ω (t) =
2 (ln t)2 e−(λ ln t)2

[
1− 2λ2 (ln t)2 − e−(λ ln t)2

]
[
1− e−(λ ln t)2

]2 .

Therefore, the variance-covariance matrix of (λ̂, θ̂) can be constructed as

I−1(β̂) =

(
V ar(λ̂) Cov(λ̂, θ̂)

Cov(λ̂, θ̂) V ar(θ̂)

)
.

Consequently, the asymptotic distribution of β̂ can be obtained under some mild
regularity conditions as β̂ − β → N(0, I−1(β̂)).

For arbitrary 0 < γ < 1, the 100(1− γ)% ACI of βi can be constructed by[
β̂i + u1−γ/2

√
V ar(β̂i), β̂i + uγ/2

√
V ar(β̂i)

]
, i = 1, 2,(2.16)

where uγ is the upper 100γ% percentile of standard normal distribution. More-
over, the 100(1− γ)% ACR of (λ, θ) can be obtained as follows{

(λ, θ)
∣∣∣(β̂ − β)′I(β̂)(β̂ − β) < χ2

γ

}
.(2.17)
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Remark 2.4. In some cases, the lower confidence bounds of the ACIs
(2.16) sometimes may be negative. To overcome this drawback, one could use
logarithmic transformation and delta method to obtain the asymptotic normal-
ity distribution of ln β̂i, i = 1, 2 as ln β̂i − lnβi → N

(
0, V ar

(
ln β̂i

))
, with

V ar(ln β̂i) = V ar(β̂i)/β̂
2
i . Therefore, the 100(1− γ)% modified ACI of βi can be

constructed in this manner as β̂i

exp

(
uγ/2

√
V ar

(
ln β̂i

)) , β̂i exp
(
uγ/2

√
V ar

(
ln β̂i

)) , i = 1, 2.(2.18)

3. NUMERICAL ILLUSTRATION

Extensive simulation studies are carried out to investigate the performance
of the proposed results. In addition, two real-life examples are also presented to
show the applicability of our methods.

3.1. Simulation studies

In simulation studies, performance of ECSs, MCSs and ACSs are compared
in terms of criteria quantities including average width (AW) for confidence inter-
vals, average area (AA) for confidence regions and coverage probability (CP) for
all confidence sets.

For generating records data, another sampling approach termed as Algo-
rithm 5 is provided as follows.

Algorithm 5: Upper record values from UGRD(λ, θ)

Step 1 Generate n i.i.d. samples u1, u2, ..., un from uniform distribution
with range (0, 1).

Step 2 Calculate vi = − ln(1− ui), i = 1, 2, ..., n.

Step 3 Take wi = 1− exp(−
∑i

j=1 vj), then w1, w2, ..., wn are upper records
standard uniform distribution.

Step 4 Implementing inverse transformation

ti = exp[−(− ln(1− (1− wi)
1/θ))1/2/λ], i = 1, 2, . . . , n

then t1, t2, ..., tn are the upper record values from UGRD(λ, θ).
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Table 1: AWs, AAs and CPs (within brackets) for UGRD confidence sets
with λ = 0.5, θ = 1.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
ACI 1.9864 1.7601 1.6818 1.6299 1.6118 1.5961

(0.8226) (0.8835) (0.9043) (0.9244) (0.9370) (0.9434)
λ ECI 1.8250 1.6381 1.5820 1.5363 1.5169 1.5036

(0.9523) (0.9479) (0.9486) (0.9483) (0.9518) (0.9484)
MCI 1.6773 1.5208 1.4777 1.4434 1.4294 1.4208

(0.9279) (0.9286) (0.9342) (0.9322) (0.9395) (0.9346)
ACI 8.3863 5.0168 3.3495 2.5414 2.0836 1.8349

(0.9791) (0.9748) (0.9765) (0.9773) (0.9728) (0.9753)
θ ECI 9.0399 5.2259 3.1536 2.3884 1.9646 1.7430

(0.9334) (0.9361) (0.9410) (0.9454) (0.9436) (0.9446)
MCI 5.7770 4.0595 2.7762 2.1864 1.8336 1.6346

(0.9496) (0.9443) (0.9508) (0.9557) (0.9509) (0.9489)
ACR 12.5066 8.0762 5.5025 4.1949 3.4725 3.0587

(0.7982) (0.9010) (0.9369) (0.9559) (0.9629) (0.9626)
(λ,θ) ECR 14.0787 8.5107 5.2939 4.1231 3.3691 2.9745

(0.9417) (0.9523) (0.9536) (0.9478) (0.9537) (0.9461)
MCR 9.0862 6.3987 4.5192 3.5098 2.9310 2.6252

(0.9451) (0.9469) (0.9527) (0.9523) (0.9531) (0.9475)

Table 2: AWs, AAs and CPs (within brackets) for UGRD confidence sets
with λ = 0.5, θ = 0.5.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
ACI 5.4513 5.1275 5.2425 4.688 4.5967 4.383

(0.8705) (0.9194) (0.9465) (0.9608) (0.9703) (0.9744)
λ ECI 4.4116 4.1500 4.3133 3.8481 3.7679 3.6012

(0.9489) (0.9490) (0.9492) (0.9476) (0.9491) (0.9500)
MCI 3.9530 3.7088 3.8517 3.4429 3.3775 3.2236

(0.9404) (0.9426) (0.9388) (0.9412) (0.9456) (0.9465)
ACI 4.9927 2.1162 1.3507 1.1324 0.9712 0.8753

(0.9815) (0.9783) (0.9752) (0.9807) (0.9835) (0.9908)
θ ECI 4.7218 1.9903 1.2216 1.0477 0.9117 0.8309

(0.9391) (0.9416) (0.9451) (0.9486) (0.9539) (0.9569)
MCI 3.4154 1.6898 1.1217 0.9786 0.8604 0.7893

(0.9449) (0.9535) (0.9584) (0.9624) (0.9615) (0.9568)
ACR 20.0447 7.6137 5.7514 4.4766 3.8706 3.3478

(0.8857) (0.9481) (0.9661) (0.9747) (0.9838) (0.9881)
(λ,θ) ECR 22.3566 6.6294 4.9081 3.7994 3.2875 2.8493

(0.9517) (0.9519) (0.9524) (0.9514) (0.9622) (0.9587)
MCR 14.3081 5.3074 4.0968 3.2366 2.8335 2.4759

(0.9530) (0.9532) (0.9516) (0.9537) (0.9616) (0.9641)

In this simulation, parameter values (λ, θ) are randomly chosen as (0.5, 1),
(0.5, 0.5) and (3, 1), sample sizes n = 3, 4, 5, 6, 7 and 8 are considered and the
significance level is γ = 0.05. For all numerical computation in minimum-size
confidence sets, the accuracy level is taken to be σ = 0.001, and the simulations
are conducted based 10,000 times of repetitions, where the ECI and MCI of θ are
obtained under unknown λ cases by using the strategies provided in Remarks
2.1 and 2.2. The simulated associated criteria quantities AW, AA and CP are
tabulated in Tables 1 – 3. In addition, for complementary and comparison,
performance of ECI and MCI for θ given in Theorems 2.2 and 2.5 are also
investigated with known λ, the associated criteria quantities are obtained by
using the true values of λ in simulation and the associted results are tabulated
in Table 4.

From Tables 1 – 4, it is noted that
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Table 3: AWs, AAs and CPs (within brackets) for UGRD confidence sets
with λ = 3, θ = 1.

n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
ACI 11.7857 10.6667 10.0701 9.7815 9.5784 9.4684

(0.8416) (0.8856) (0.9086) (0.9252) (0.9352) (0.9422)
λ ECI 10.9231 9.9324 9.4579 9.179 9.0211 8.9084

(0.9431) (0.9497) (0.9498) (0.9511) (0.9501) (0.953)
MCI 10.0412 9.2208 8.8449 8.6182 8.5062 8.4214

(0.9382) (0.9331) (0.9341) (0.9359) (0.9365) (0.9412)
ACI 11.8480 5.0491 3.3021 2.5118 2.103 1.8341

(0.9799) (0.9799) (0.9748) (0.9734) (0.975) (0.9742)
θ ECI 12.7022 4.9763 3.0889 2.3403 1.9792 1.7371

(0.9425) (0.947) (0.9391) (0.9411) (0.9434) (0.9447)
MCI 8.2348 4.0257 2.7213 2.1438 1.8473 1.639

(0.9479) (0.9529) (0.9526) (0.9504) (0.9512) (0.9499)
ACR 96.2407 49.7994 32.6615 24.8758 20.9596 18.2307

(0.8087) (0.9003) (0.9376) (0.9530) (0.9606) (0.9645)
(λ,θ) ECR 98.9104 50.5229 32.5485 24.2006 20.4082 17.6974

(0.9537) (0.9502) (0.9517) (0.9499) (0.95) (0.9505)
MCR 73.1492 38.7621 26.6496 20.6069 17.7536 15.6203

(0.9467) (0.9504) (0.9522) (0.9508) (0.9523) (0.9513)

Table 4: AWs and CPs (within brackets) of ECIs and MCIs of θ with
known λ .

λ = 0.5, θ = 1 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
ECI 3.3429 2.5739 2.1547 1.8892 1.7095 1.5629

(0.9499) (0.9487) (0.9516) (0.9492) (0.9518) (0.9525)
MCI 3.0857 2.4258 2.0559 1.8173 1.6540 1.5186

(0.9496) (0.9486) (0.9514) (0.9491) (0.9519) (0.9534)
λ = 0.5, θ = 0.5 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

ECI 1.6397 1.2780 1.0774 0.9416 0.8589 0.7948
(0.9530) (0.9521) (0.9515) (0.9570) (0.9607) (0.9741)

MCI 1.5136 1.2045 1.0281 0.9058 0.8309 0.7722
(0.9526) (0.9518) (0.9524) (0.9534) (0.9615) (0.9728)

λ = 3, θ = 1 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
ECI 3.3284 2.5828 2.1577 1.8856 1.7096 1.5634

(0.9440) (0.9463) (0.9533) (0.9507) (0.9498) (0.9515)
MCI 3.0723 2.4342 2.0589 1.8139 1.6540 1.5190

(0.9461) (0.9476) (0.9522) (0.9484) (0.9480) (0.9521)

• AWs and AAs of all confidence sets decrease with increase of sample size n.
Such phenomenon indicate the consistence property of the proposed results
when sample size increases.

• Under fixed sample size n, MCIs of λ have the best performance than ECIs
and ACIs in terms of AWs, whereas the ACI estimates of λ feature the
largest AWs. In addition, the ACIs for λ have lowest CPs than those of
ECIs and MCIs.

• For parameter θ, MCIs of θ are superior to ECIs and ACIs in terms of AWs,
whereas although the CPs of ACI are highest, AWs of ACIs are larger than
the other two interval estimates in general.

• For confidence region of (λ, θ), MCRs have the smallest AAs, whereas the
CPs of all three confidence regions of (λ, θ) are close to the nominal signif-
icance level in most cases.

• From Table 4, for given parameter λ, AWs of both ECIs and MCIs of θ are
smaller than those of θ with unknown λ shown in Tables 1 – 3, and the CPs
under this case are still close to the nominal significance level.
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To sum up, the simulation results indicate that the ECSs and MCSs of
different parameters λ, θ and (λ, θ) perform better than traditional likelihood
based ACRs in general, and the proposed MCSs are recommended as superior
choices in practice.

3.2. Real data illustration

In this subsection, two real life examples are presented to demonstrate
the practicality of the proposed methods. For comparison, another three unit
bounded distributions namely Beta distribution (BeD), Kumaraswamy distribu-
tion (KuD) and Topp-Leone distribution (TLD) are considered as competitors of
UGRD in this illustration. The corresponding PDFs of BeD, KuD and TLD are
given respectively by

BeD : f1 (t) = tα−1 (1− x)β−1 [B (α, β)]−1 , α > 0, β > 0, 0 < t < 1,

KuD : f2 (t) = αβtα−1 (1− tα)β−1 , α > 0, β > 0, 0 < t < 1,

TLD : f3 (t) = 2α (1− t) tα−1 (2− t)α−1 , 0 < α < 1, 0 < t < 1.

It is noted that above three distributions are also common used unit models that
are widely implemented in practical data analysis. (e.g., Arora et al. [4], Gupta
and Nadarajah [10] and Kohansal [19]).

Example 1. (Reservoir capacity ratio data) In this real life example, a data
set from http://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA is con-
sidered for illustration. The data set is about the water capacities of Shasta reser-
voir in California, USA for the month of October from 2008 to 2019. Since the
maximum capacity of Shasta reservoir is 4552000 acre-foot, the original data were
converted to the (0, 1) interval by dividing 4552000 acre-foot. The transformed
data are shown as follows

0.28180, 0.37520, 0.71891, 0.70887, 0.54177, 0.38317

0.24360, 0.31113, 0.60748, 0.69789, 0.48134, 0.71859.

To check whether the UGRD could be used to fit the real life data, Kolmogorov-
Smirnov (K-S) test is carried out for UGRD, BeD, KuD and TLD respectively
under origin complete data, the associated results are tabulated in Table 5. It
is noted from Table 5 that comparing with BeD, KuD and TLD, the UGRD
seems more proper to fit the reservoir capacity ratio data. In addition, the
corresponding quantile-quantile (Q-Q) plot, probability-probability (P-P) plot
and empirical cumulative distribution (ECD) plot of UGRD are also provided in
Figure 2, which also indicates that the UGRD is a reasonable model used here.

Based on the reservoir capacity ratio data, a group of records data of size
3 is obtained as follows

0.28180, 0.37520, 0.71891.

http://cdec.water.ca.gov/dynamicapp/QueryMonthly?s=SHA
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Table 5: MLEs and K-S test of fitted distributions for reservoir capacity
ratio data.

MLE of model parameters K-S distance p-value
UGRD (λ̂, θ̂) = (1.2369, 1.1284) 0.1893 0.7166

BeD (α̂, β̂) = (3.9505, 3.8693) 0.1949 0.6834
KuD (α̂, β̂) = (2.9870, 4.7499) 0.1959 0.6777
TLD α̂ = 2.8190 0.2071 0.6111
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Figure 2: Q-Q, P-P and ECD plots of UGRD under the reservoir capacity
ratio data.

Table 6: Confidence intervals for λ and θ under reservoir capacity ratio
records data.

Parameter ACI ECI MCI
λ [-0.0326,1.7337] [0.0007,1.5843] [0.0001,1.4140]

(1.7663) (1.5836) ( 1.4139 )
θ [-0.4311,2.7566] [0.1042,3.0771] [0.0279,2.4935]

(3.1877) (2.9729) (2.4656)

Then different confidence sets are estimated with γ = 0.05 and σ = 10−4, and
the associated results are listed in Tables 6 and 7 respectively, where the widths
of confidence intervals and the areas of confidence regions are provided in paren-
theses. It is observed that the MCSs outperform the other competitors according
to their criteria widths and areas. In Table 6, it is also noted that the lower con-
fidence bounds of ACIs are negative. Using the alternative results in Remark
2.4, the modified ACIs and associated interval widths (within parentheses) of λ
and θ are [0.3264, 2.2162](1.8898) and [0.2652, 5.0985](4.8333) respectively. More-
over, for further illustration, the confidence regions and contour of log-likelihood
function (2.13) are plotted in Figure 3 to show the superority of MCR and the
uniqueness of MLEs in this real data example.

Table 7: Confidence regions for (λ, θ) under reservoir capacity ratio
records data.

Confidence regions Areas

ACR
{(

0.8506− λ
1.1628− θ

)′ (
0.2030 0.2068
0.2068 0.6613

)(
0.8506− λ
1.1628− θ

)
< 5.9915

}
(5.6939)

ECR
{
0.0001 < λ < 1.7333, 0.9528

B(λ)
< θ < 16.2120

B(λ)

}
(5.4465)

MCR
{
0.0002 < λ < 1.5389, 0.3790

B(λ)
< θ < 15.1281

B(λ)

}
(4.2208)
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Figure 3: Contour of log-likelihood function (left) and confidence regions
(right) under reservoir capacity ratio records data.

Table 8: MLEs and K-S test results of fitted distributions for electricity
supply rate data.

MLE of model parameters K-S distance p-value
UGRD (λ̂, θ̂) = (1.1002, 1.2703) 0.1971 0.7636

BeD (α̂, β̂) = (3.4950, 4.3081) 0.2277 0.6008
KuD (α̂, β̂) = (2.5636, 5.0465) 0.2391 0.5404
TLD α̂ = 2.2064 0.2790 0.3505

Example 2. (Electricity supply rate data) Another real life data set drawn
out from https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2018&
locations=KE&start=2009 is used for illustration. The data set is about the
electricity supply rate in Kenya from 2009 to 2018. The original data are shown
as follows

0.23000, 0.19200, 0.38581, 0.40793, 0.43049,

0.36000, 0.41600, 0.65400, 0.63589, 0.75000.

By computation, MLEs and corresponding K-S test results for UGRD, BeD, KuD
and TLD are listed in Table 8 under these data. It is also noted that UGRD have
best performance among these models to fit the electricity supply rate data.
Meanwhile, the associated Q-Q, P-P and ECD plots of UGRD are also shown in
Figure 4 for illustration.

Similarly, records from the original observations are given as follows

0.23000, 0.38581, 0.40793, 0.43049, 0.65400, 0.75000.

Different ACSs, ECSs and MCSs are shown in Tables 9 and 10 under same setting
as Example 1. From the results in Tables 9 and 10, the MCSs still perform best
among all estimates. In addition, the plots of confidence regions and contour
curve of log-likelihood function are also presented in Figure 5 for illustration and
comparison.

https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2018&locations=KE&start=2009
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?end=2018&locations=KE&start=2009
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Figure 4: Q-Q plot, P-P plot and ECD plot for the electricity supply rate
data of UGRD.

Table 9: Confidence intervals for λ and θ under electricity supply rate
records data.

Parameter ACI ECI MCI
λ [0.2086, 1.4980] [0.1165, 1.4757] [0.0700, 1.3917]

(1.2894) (1.3592) (1.3217)
θ [0.1008, 4.1260] [0.5652, 4.5006] [0.3726, 3.9809]

(4.0253) (3.9351) (3.6083)

Table 10: Confidence regions for (λ, θ) under electricity supply rate
records data.

Confidence Regions Areas

ACR
{(

0.8533− λ
2.1134− θ

)′ (
13.0909 −2.2738
−2.2738 1.3433

)(
0.8533− λ
2.1134− θ

)
< 5.9915

}
(5.3421)

ECR
{
0.0703 < λ < 1.5907, 3.7632

B(λ)
< θ < 25.4910

B(λ)

}
(5.8436)

MCR
{
0.0001 < λ < 1.4603, 2.8890

B(λ)
< θ < 24.1103

B(λ)

}
(4.9916)
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Figure 5: Contour of log-likelihood function (left) and confidence regions
(right) under electricity supply rate records data.
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4. EXTENSION WORK

In statistical inference, accuracy of confidence sets is one of main concerns in
analysis which in turn affects the practical performance of applications. Following
similar approach of previous inferential procedure, some extended results are
proposed in this section for complementary, where a series of pivotal quantities
is constructed, and then alternative generalized confidence sets are provided in
consequence.

Using notations W1,W2, ...,Wn and associated distribution properties given
in Lemma 2.1, let ξk =

∑k
i=1Wi and ηk =

∑n
i=k+1Wi, k = 1, 2, ..., n − 1, one

has

Ψk(λ) =
2ξk/2k

2ηk/2 (n− k)
=

(n− k)

k

[
ln (1− exp (− (λ lnTn)

2))

ln (1− exp (− (λ lnTk)2))
− 1

]−1

(4.1)

and

Υk (λ, θ) = 2(ξk + ηk) = −2θ ln(1− exp(−(λ lnTn)
2)), k = 1, ..., n− 1(4.2)

follow F and chi-square distributions with (2k, 2(n− k)) and 2n degrees of free-
dom, respectively. Meanwhile, quantities Ψk(λ) and Υk(λ, θ) are statistically
independent. Moreover, it is also noted from Lemma 2.2 that Ψk(λ) decreases
in λ with range (0,∞).

Using quantities Ψk(λ), Υk(λ, θ) and following similar way as Theorems
2.1 and 2.3, for arbitrary 0 < γ < 1, a series of 100(1 − γ)% ECIs of λ can be
constructed as[

ψk

(
F

2k,2(n−k)
γ/2

)
, ψk

(
F

2,2(n−k)
1−γ/2k

)]
, k = 1, 2, ..., n− 1,(4.3)

where ψk(x) refers to the solution of Ψk(λ) = x, and correspondingly a group of
100(1− γ)% ECRs of (λ, θ) can be written as

(λ, θ)

∣∣∣∣∣∣ψk
(
F

2k,2(n−k)
1−

√
1−γ
2

)
< λ < ψk

(
F

2k,2(n−k)
1+

√
1−γ
2

)
,

χ2n
1+

√
1−γ
2

B(λ)
< θ <

χ2n
1−

√
1−γ
2

B(λ)


(4.4)

with k = 1, 2, . . . , n− 1.

It is observed that there are n−1 confidence intervals and regions obtained
under this manner, and their sizes may be different with different k. To find
the optimal confidence sets among the proposed results, following criterions are
provided.
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Table 11: ECIs for λ and ECRs for (λ, θ) with different k under electricity
supply rate records data.

k ECIs ECRs
1 [0.1165, 1.4757] (1.3592)

{
0.0703 < λ < 1.5907, 3.7632

B(λ)
< θ < 25.4910

B(λ)

}
(5.8436)

2 [0.0512, 1.6687] (1.6175)
{
0.0220 < λ < 1.8063, 3.7632

B(λ)
< θ < 25.4910

B(λ)

}
(7.4175)

3 [0.0015, 1.2970] (1.2955)
{
0.0002 < λ < 1.4326, 3.7632

B(λ)
< θ < 25.4910

B(λ)

}
(4.9472)

4 [0.0001, 0.9519] (0.9518)
{
0.0001 < λ < 1.0930, 3.7632

B(λ)
< θ < 25.4910

B(λ)

}
(3.1794)

5 [0.0001, 2.2521] (2.2520)
{
0.0001 < λ < 2.5783, 3.7632

B(λ)
< θ < 25.4910

B(λ)

}
(15.0503)

Note: the interval widths and region areas are listed in the parentheses.

Criterion 1. The best ECI of λ is obtained as k∗-th one among
proposed ECIs, where k∗ satisfies

ψk∗
(
F

2k∗,2(n−k∗)
1−γ/2

)
− ψk∗

(
F

2k∗,2(n−k∗)
γ/2

)
=

n−1
min
k=1

[
ψk

(
F

2k,2(n−k)
1−γ/2

)
− ψk

(
F

2k,2(n−k)
γ/2

)]
.

Criterion 2. The best ECR of (λ,θ) is obtained as k∗-th one
among all ECRs, where k∗ satisfies

∫ ψk∗

(
F

2k∗,2(n−k∗)
1+

√
1−γ
2

)

ψk∗

(
F

2k∗,2(n−k∗)

1−
√

1−γ
2

) χ2n
1−

√
1−γ
2

− χ2n
1+

√
1−γ
2

B (λ)
dλ =

n−1
min
k=1

∫ ψk

(
F

2k,2(n−k)

1+
√

1−γ
2

)

ψk

(
F

2k,2(n−k)

1−
√

1−γ
2

) χ2n
1−

√
1−γ
2

− χ2n
1+

√
1−γ
2

B (λ)
dλ

 .

Note from (4.2) that, since Υk (λ, θ) = Υ (λ, θ) does not change with k and
the associated ECI of θ coincides with the results obtained in Theorem 2.2.
Further, following the similar approach of Subsection 2.2, a series of MCSs for
parameters λ and (λ, θ) could be also obtained based on pivotal quantities Ψk(λ)
and Υk(λ, θ), k = 1, 2, . . . , n − 1, the detailed results are omitted for concision
and saving space. In addition, the optimal confidence sets for such MCSs could
be also selected by using similar method as shown in Criterions 1 and 2.

For illustration, the confidence sets for parameters λ and (λ, θ) are recon-
structed by using the records data in Example 2 with k = 1, 2, 3, 4, 5, where
the significance level is γ = 0.05 as same as previous. The associated results are
tabulated in Tables 11 and 12. From the results, it is seen that for ECSs estima-
tion, the optimal ECI of λ and ECR of (λ, θ) are obtained at k = 4, whereas the
associated optimal MCI of λ and MCR of (λ, θ) are also obtained at k = 4. In
addition, one also note that the MCSs perform better than the associated ECSs
at given k and that all the confidence sets obtained by using the proposed pivotal
quantities Ψk(λ), Υk(λ, θ), k = 4 have smaller sizes than the ACSs in Tables 9 and
10. Further, plots of extended ECR, MCR of (λ, θ) with k = 4 and traditional
ACR are also presented in Figure 6, which indicate that the proposed extended
confidence regions have better performance in this manner.
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Table 12: MCIs for λ and MCRs for (λ, θ) with different k under electricity
supply rate records data.

k MCIs MCRs
1 [0.0700, 1.3917] (1.3217)

{
0.0001 < λ < 1.4603, 2.8890

B(λ)
< θ < 24.1103

B(λ)

}
(4.9916)

2 [0.0101, 1.5144] (1.5043)
{
0.0001 < λ < 1.6370, 2.8346

B(λ)
< θ < 24.3403

B(λ)

}
(6.1677)

3 [0.0001, 1.1420] (1.1419)
{
0.0002 < λ < 1.2459, 2.7388

B(λ)
< θ < 24.7603

B(λ)

}
(3.9759)

4 [0.0001, 0.7925] (0.7924)
{
0.0001 < λ < 0.8702, 2.5663

B(λ)
< θ < 25.5503

B(λ)

}
(2.3655)

5 [0.0001, 1.8748] (1.8747)
{
0.0001 < λ < 2.0143, 2.4165

B(λ)
< θ < 26.2903

B(λ)

}
(10.0198)

Note: the interval widths and region areas are listed in the parentheses.
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Figure 6: Plots of ECR and MCR with k = 4 and traditional ACR.

5. CONCLUSION

In this paper, different confidence sets of parameters from the unit gener-
alized Rayleigh distribution are explored under records data. By constructing
pivotal quantities, equal-tailed confidence sets are established for model parame-
ters. Further, the associated minimum-size confidence sets are constructed based
on optimization techniques, and the algorithms along with Lagrange multiplier
method are also provided for computation. In addition, conventional likelihood
based asymptotic confidence sets are also constructed for comparison. Extensive
simulation studies and two real life examples are carried out to investigate the
performance of different methods, and the results indicate that the proposed piv-
otal quantities based ECSs and MCSs perform better than common likelihood
based confidence sets. Furthermore, a series of confidence sets are also proposed
as extension based on constructed alternative pivotal quantities which sometimes
may further provide potential better estimates.
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