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1. INTRODUCTION

Extreme phenomena such as floods, droughts and economic crises cause
devastating damage to our societies and tend to be driven by concatenated rare
events in complex systems such as rivers or financial networks. Flooding in the
lower part of a river system is often the result of simultaneous high flows fur-
ther up in the system [39, 17]. Severe droughts are the result of joint extremes
of several meteorological variables [41]. The risk of economic crises is highly
dependent on the connections between different financial institutions [40]. In
all these examples, the multivariate dependence between individual rare events
determines the risk of an extreme phenomenon, and multivariate extreme-value
theory provides a suitable framework for modelling such dependence. Standard
extreme-value modelling approaches, however, rely on the assumption that data
consists of independent and identically distributed (i.i.d.) random vectors, while
in applications, temporal dependence in data is common. Failure to account
for temporal dependence leads to underestimating the uncertainty of estimated
quantities, such as the strength of multivariate dependence, and, in consequence,
inaccurate risk assessment. Against this background, the present study is con-
cerned with methods to account for the effect that temporal dependence in data
has on the estimated parameter uncertainty when modelling bivariate dependence
between rare events.

An often more realistic assumption than that of i.i.d. observations is that
data constitutes a stationary sequence of random vectors. Under stationarity,
temporal dependence can be explicitly modelled in conjunction with the mul-
tivariate model, or accounted for after model estimation by adjusting standard
errors with block bootstrap estimators [19, 25, 29] or sandwich covariance matrix
estimators [13, 38, 34]. Explicit modelling might yield the most accurate results,
but models can be application specific or intractable, and if the model fit is poor,
results may be misleading. To adjust the standard errors with a block boot-
strap or sandwich estimator is more robust and often simpler. However, block
bootstraps are computationally expensive and sensitive to the choice of block
length, and while sandwich estimators are computationally cheaper, they might
be subject to numerical difficulties.

The goal of this study is to, through simulation, investigate and compare
the performance of four standard error estimators when modelling the bivariate
dependence between extreme values from bivariate stationary sequences. Fo-
cus is on the logistic extreme-value model due to its relative simplicity, which
makes it a good model of reference. The results are, however, generalized both
to higher dimensions and to additional models. The considered estimators are,
first, the sandwich estimators of [13] and [34], where the former is combined with
the Newey-West estimator [26] to account for temporal dependence. Second, the
moving block- and stationary bootstrap estimators of [19] and [25], and [29] re-
spectively. Focus is on how the uncertainty of the estimated dependence strength
is affected by temporal dependence in data, and to what extent the considered
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methods can mitigate underestimation.

To the author’s knowledge, no comparative performance assessment of
sandwich and block bootstrap estimators has been conducted in the context of
modelling extremes from bivariate (or multivariate) stationary sequences. The
performance of some estimators have, however, been examined in specific set-
tings. [11] show that the sandwich estimator of [34] yields notably less biased
standard errors of parameter estimates when modelling univariate threshold ex-
ceedances from first order Markov chains; [27] uses the sandwich estimator of
[38] and the stationary bootstrap [29] to adjust standard errors of different ex-
tremal index estimators for univariate block-maxima showing that the bootstrap
generally provides a good bias reduction; and [15] show that the stationary boot-
strap adequately captures temporal dependence in rare events when modelling
extremes from spatial processes with a censored likelihood.

In Section 2, a brief overview of bivariate extreme-value theory is given.
In Section 3, the block bootstrap and sandwich estimators are presented in more
detail, and in Section 4, the performance of the estimators is assessed through
simulation. The outcomes of the study are discussed in Section 5.

2. BIVARIATE EXTREMES

In this section, an overview of the bivariate extreme-value theory used in
this study is given. For a more comprehensive account of multivariate extreme-
value theory, see [7], [3, Ch. 8], and [2, Ch. 8-9].

2.1. Block-maxima

Let {(Xi, Yi)}i∈N be a sequence of i.i.d. bivariate random vectors with joint
cumulative distribution function F (x, y), and denote the vector of component-
wise maxima Mn = (Mx,n,My,n) = (maxi=1,...,n(Xi),maxi=1,...,n(Yi)). It should
be noted that the maximum might not occur for the same index i in both Xi and
Yi which means that the joint maxima Mn might not correspond to an actual
observation. Furthermore, assume that there exist sequences (ax,n, ay,n) > 0 and
(bx,n, by,n), and a non-degenerate distribution G(x, y), such that the distribution
of normalized maxima converges as

(2.1) lim
n→∞

Pr

(
Mx,n − bx,n

ax,n
≤ x,

My,n − by,n
ay,n

≤ y

)
= G(x, y),

whereG(x, y) has non-degenerate marginalsGX(x) andGY (y). Then, G(x, y) is a
bivariate extreme-value distribution, and the marginals belong to the generalized
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extreme-value (GEV) family of distributions, which has the distribution function

(2.2) GZ(z) =

{
exp

[
−
(
1 + ξ

( z−µ
τ

))−1/ξ

+

]
, ξ ̸= 0,

exp
[
− exp

(
− z−µ

τ

)]
, ξ = 0,

defined on {z : 1 + ξ(z − µ)/τ > 0}, and where c+ = max(c, 0), and µ ∈ R,
τ ∈ R+ and ξ ∈ R are location, scale and shape parameters which can be different
for the respective marginals. A customary assumption is that the univariate
marginals of {(Xi, Yi)}i∈N follow the unit Fréchet distribution (corresponding to
GEV(µ = τ = ξ = 1)). This assumption is not restrictive because the marginals
can be transformed with the probability integral transform to approximately
follow the unit Fréchet distribution once the parameters of the GEV distribution
have been estimated. With unit Fréchet marginals the joint distribution function
G(x, y) can be expressed as

(2.3) G(x, y) = exp[−V (x, y)], x > 0, y > 0,

[9]. The function V can be written as

(2.4) V (x, y) = 2

∫ 1

0
max

(
w

x
,
1− w

y

)
dH(w),

where H is a distribution function that determines the bivariate dependence
structure and satisfies the mean constraint

(2.5)

∫ 1

0
w dH(w) =

∫ 1

0
(1− w) dH(w) = 1/2,

[3, 24].

In practice, vectors of component-wise maxima Mn are obtained by split-
ting the data sequence into large disjoint blocks and extracting the maxima from
each block, such as annual maximum daily rainfall. For sufficiently large blocks
the block-maxima can be viewed as approximate realizations from a GEV dis-
tribution. Maximum likelihood estimation is often used to estimate the model
parameters [30], and the marginal and dependence parameters can be estimated
either separately or simultaneously. Simultaneous estimation has the benefit that
information can be shared across marginals, although at a higher computational
cost. The procedure of modelling maxima from large disjoint blocks of data is
referred to as the block-maxima modelling approach.

2.2. Threshold exceedances

In many cases, rare events occur in clusters, such as consecutive days of
heavy rainfall or high temperatures, which the analysis of block-maxima over-
looks. A more efficient use of data is achieved with the peaks over thresholds
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(POT) approach, in which exceedances over some high thresholds, ux and uy, are
studied. More specifically, for a random variable X with distribution function
FX(x), define the right endpoint of the distribution as xF = sup{x : FX(x) < 1}.
Then, if the distribution of normalized block-maxima from FX(x) converge to
a GEV distribution, the limiting distribution of suitably normalized conditional
excesses ((X − u)/a(u) | X > u), a(u) > 0, as u ↗ xF , is a generalized Pareto
(GP) distribution with distribution function

(2.6) H(z) =

{
1−

(
1 + ξ zτ̃

)−1/ξ

+
, ξ ̸= 0,

1− exp
(
− z

τ̃

)
, ξ = 0,

defined on {z : z > 0 and (1 + ξz/τ̃) > 0}, with parameters τ̃ ∈ R+ and ξ ∈ R,
and where τ̃ = τ + ξu [1, 28]. Thus, for high thresholds, a GP likelihood provides
an appropriate model for threshold excesses.

In practice, for bivariate sequences {(Xi, Yi)}i∈N, GP likelihoods are fitted
to each marginal, and the marginal distributions are transformed to unit Fréchet
scale. To model the bivariate dependence structure it can be shown that with
unit Fréchet marginals, if the thresholds are sufficiently high and (Xi ≥ ux,
Yi ≥ uy), the limiting joint distribution of conditional excesses is approximately
the multivariate extreme-value distribution in (2.3) [2, p. 276]. This fact was
used by [23] as the basis for a censored likelihood for threshold exceedances in
which contributions of observations are censored from below at the thresholds.
To specify the censored likelihood in the bivariate case, let λx and λy be some
small probabilities and set rx = −1/ ln(1 − λx) and ry = −1/ ln(1 − λy) which
corresponds to marginal thresholds transformed to unit Fréchet scale. Then the
bivariate censored likelihood can be expressed as

(2.7) L(θ;x, y) =


∂2

∂x∂y exp[−V (x, y)] if x > rx, y > ry,
∂
∂x exp[−V (x, ry)] if x > rx, y ≤ ry,
∂
∂y exp[−V (rx, y)] if x ≤ rx, y > ry,

exp[−V (rx, ry)] if x ≤ rx, y ≤ ry.

2.3. Models

To form tractable models from the distribution in (2.3), a common approach
is to approximate the family of distributions with some parametric sub-family.
A frequently used alternative is the logistic extreme-value model [14] which has
the exponent function

(2.8) V (x, y) =
(
x−1/α + y−1/α

)α
, x > 0, y > 0.

The parameter 0 < α ≤ 1 governs the dependence with α = 1 corresponding
to independence and the limiting case α → 0 to complete dependence. The
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logistic model is relatively easy to work with and is therefore chosen as a model
of reference in this study. It is also related to more flexible models, such as the
asymmetric logistic model presented below.

To assess the generality of the results, the asymmetric logistic [37] and the
Hüsler-Reiss [16] models are also considered. Assuming unit Fréchet marginals,
the asymmetric logistic model has the exponent function

(2.9) V (x, y) =
1− ψ1

x
+

1− ψ2

y
+

{(
ψ1

x

)1/β

+

(
ψ2

y

)1/β
}β

, x > 0, y > 0.

Here, dependence is governed by the parameter 0 < β ≤ 1, and the asymmetry
parameters 0 ≤ ψ1, ψ2 ≤ 1. As such, this model has two additional parameters
compared to the (symmetric) logistic model and, including the marginals, it has
a total of 9 parameters to be estimated for block-maxima, and 7 for POT. In-
dependence can be achieved when either β = 1 or ψ1 = 0 or ψ2 = 0, or when
ψ1 = ψ2 = β = 1, while complete dependence is obtained in the limit when
ψ1 = ψ2 = 1 and β → 0. The exponent function of the Hüsler-Reiss model has
the form

(2.10) V (x, y) =
1

x
Φ

[
1

r
+
r

2
ln
(y
x

)]
+

1

y
Φ

[
1

r
+
r

2
ln

(
x

y

)]
, x > 0, y > 0,

where Φ(·) is the standard normal distribution function. The dependence is
governed by r > 0, where independence is obtained in the limit as r → 0 and
complete dependence corresponds to r → ∞.

3. EXTREMES OF DEPENDENT SEQUENCES

In this section, the modelling of extreme values from temporally depen-
dent sequences is discussed, and the considered sandwich and block bootstrap
estimators are described.

3.1. Asymptotic dependence

When analysing extreme values from bivariate (or multivariate) random
vectors, the primary interest is often to describe the dependence in the tail,
referred to as asymptotic dependence. As standard association metrics often
perform poorly in the tail, asymptotic dependence can better be characterized
by the tail dependence coefficient χ [4]. For two random variables X and Y with
continuous distributions FX and FY , the tail dependence coefficient is defined as

(3.1) χ = lim
u→1

P (FX(X) > u | FY (Y ) > u).

The variables X and Y are considered asymptotically dependent if χ > 0 and
asymptotically independent if χ = 0.
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3.2. Modelling of extremes from dependent sequences

Since the block-maxima and POT approaches in their simplest form rely
on the assumption of i.i.d. observations, applying them to temporally dependent
stationary sequences results in model misspecification. A common practice is
therefore to remove, or at least diminish, the dependence before model estima-
tion. For block-maxima, provided that long-range dependence in the sequence is
weak at extreme levels, maxima are often close to independent and the limiting
distribution still belongs to the GEV family [22]. Thus, applying the block-
maxima approach to maxima from stationary sequences yields valid parameter
point estimates, although different than if data had been independent [3, p. 96].
However, if some temporal dependence remains, standard errors associated with
the parameter estimates are underestimated.

In the POT approach, exceedances from stationary sequences tend to form
clusters of dependent extremes above the thresholds. In consequence, the result-
ing sequence of exceedances constitutes a series of concatenated clusters, with
temporal dependence retained within the clusters. Perhaps the most common
remedy is declustering, which entails identifying clusters of extremes and only
using the maximum from each cluster in the analysis [8]. However, [11] suggest
that declustering might induce serious bias in estimates, and showed that fitting
GP likelihoods to all exceedances from first order Markov chains yields close to
unbiased parameter estimates but underestimated standard errors. A better ap-
proach than declustering might therefore be to fit the model to all exceedances
and to account for temporal dependence afterwards.

The underestimated standard errors can be inflated with sandwich or block
bootstrap estimators to yield more correct uncertainty measurements. In Sec-
tions 3.3 and 3.4, the four standard error estimators considered in this study are
presented in more detail.

3.3. Sandwich estimators

Under model misspecification, and given regularity conditions, the maxi-
mum likelihood estimator, θ̂, of the vector of model parameters, θ, converges
as

(3.2)
√
n(θ̂ − θ)

d−→ N(0, Ĩ(θ)−1) as n→ ∞,

with Ĩ(θ)−1 = H(θ)−1J(θ)H(θ)−1. Here, Ĩ(θ)−1 is the sandwich covariance
matrix, H(θ) = −E[∇2ℓ(θ;x, y)] is the Fisher information matrix and J(θ) =
V[∇ℓ(θ;x, y)] is the variance of the score vector, with ℓ(θ;x, y) being the model
log-likelihood, and ∇ and ∇2 the first and second order gradients [5, p. 147].
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The negative Hessian matrix

(3.3) −Hθ̂ = −∂
2ℓ(θ;x, y)

∂θ∂θ

∣∣∣∣
θ=θ̂

,

provides an estimate of H(θ), and to estimate J(θ), while also taking temporal
dependence into account, the covariance matrix of [26] is used which has the form

(3.4) Jθ̂ = Jθ̂,0 +
m∑
j=1

wj,m(Jθ̂,j + JT
θ̂,j

),

with

(3.5) Jθ̂,j =

n−j∑
i=1

∇ℓ(θ̂;xi, yi)∇ℓ(θ̂;xi+j , yi+j)
T and wj,m = 1−

(
j

m+ 1

)
.

Here Jθ̂,j is the heavy tailed sample autocovariance [12] at lag j, and wj,m are
weights that decline as j increases. The first term on the right hand side of (3.4)
is the non-adjusted variance of the score vector, while the second term accounts
for temporal dependence up to lag m. An optimal choice of m is determined by
the dependence strength and the sequence length. In this study, however, m is
chosen based on the actual asymptotic dependence in the data, by studying plots
of χ̂(u) for a range of lags. The “standard” sandwich covariance matrix estimator
is then

(3.6) ˆ̃I(θ)−1 = (−Hθ̂)
−1Jθ̂(−Hθ̂)

−1.

If data consists of blocks of observations, such as annual summer temperatures,
with dependence within, but near independence between the blocks, [34] proposed
a blocked sandwich estimator in which the sequence of n observations is split into
K approximately independent blocks. The log-likelihood is divided accordingly
as

(3.7) ℓ(θ;x,y) =
K∑
k=1

hk(θ;xk,yk),

where hk(θ;xk,yk), k = 1, . . . ,K, is the contribution to the log-likelihood from
the kth block. The score vector can be expressed as

(3.8) ∇ℓ(θ;x,y) =
K∑
k=1

∇hk(θ;xk,yk),

and score covariance estimator

(3.9) Jθ̂,Block =
K∑
k=1

∇hk(θ̂;xk,yk)∇hk(θ̂;xk,yk)
T.

The blocked sandwich estimator is formed by replacing Jθ̂ with Jθ̂,Block in (3.6).
This estimator was developed for spatial data with dependence in space but near
independence in time, but [11] showed that when modelling first order Markov
chains with GP likelihoods, the blocked sandwich estimator provided a notable
improvement compared to non-adjusted standard errors, even when the blocks
were dependent.
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3.4. Block bootstrap estimators

The bootstrap of [10] provides a method to approximate the sampling dis-
tribution of a statistic through repeated random sampling of individual observa-
tions with replacement. In its original form, however, the method relies on the
assumption that data are i.i.d. and fails to reproduce dependence in temporally
dependent sequences [33]. Block bootstrap methods, on the other hand, sample
blocks of length l ∈ {1, 2, . . . , n − 1} of consecutive observations which retain
some temporal dependence in data and, provided that

(3.10) l → ∞ and n−1l → 0 as n→ ∞,

they produce asymptotically valid approximations of the underlying sequence for
weakly dependent sequences. In this study, the moving block bootstrap (MBB)
of [19] and [25], and the stationary bootstrap (SB) of [29] are considered, and
descriptions of the methods are provided below. For a more comprehensive pre-
sentation of block bootstrap see e.g. [21] and [18].

To describe the MBB method, first, let X1, . . . , Xn denote observations
from a stationary sequence. To generate an MBB sample,X∗

1 , . . . , X
∗
n, start by de-

termining a block length l and define the set of overlapping blocks {B1, . . . ,Bn−l+1},
where Bi = (Xi, . . . , Xi+l−1). Then draw b = min(k ≥ 1 : kl ≥ n) blocks with
replacement from {B1, . . . ,Bn−l+1}, and concatenate the blocks. The first n ob-
servations form the MBB sample.

The SB method is similar to the MBB, but the block lengths are random,
drawn from a Geometric(p) distribution with p = 1/l ∈ (0, 1] such that l = 1/p is
the mean, rather than the actual, block length. To form an SB sample, first draw
a block length L1 from the Geometric(p) distribution. Second, draw a block, BL1 ,
of L1 consecutive observations randomly from the original sequence. Repeat the
procedure until L1 + · · ·+Lb ≥ n and concatenate the BL1 , . . . , BLb

blocks. The
first n observations in the sequence form the SB sample. As the name suggests,
samples generated by the SB are stationary, in contrast to those generated by
the MBB. However, in terms of bias and variance, [20] showed that MBB and SB
variance estimators share asymptotic bias, but that the asymptotic variance of
the SB estimator is considerably larger than that of the MBB.

To compute a block bootstrap standard error associated with an estimate
of the dependence parameter θ of one of the considered extreme-value models,
first generate a bootstrap sample {(X∗

i , Y
∗
i )}i=N with the MBB or SB. Second, fit

GEV or GP likelihoods to the marginals, and a bivariate extreme-value likelihood
to the joint sample to obtain a bootstrap estimate θ̂∗. Repeat the procedure N
times and estimate the standard error as

(3.11) σ̂θ̂ =

 1

N − 1

N∑
j=1

(θ̂∗j − θ̄∗)2

1/2

,
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where θ̄∗ is the average of the N bootstrap estimates θ̂∗j .

The bias and variance of block bootstrap estimators are largely affected by
the choice of block length; longer blocks yield a better approximation of the tem-
poral dependence and thus lower bias, but also fewer blocks to sample from and
thereby higher variance [6, p. 397]. An investigation of block length estimators
is outside the scope of this study. However, it is investigated through simulation
how the choice of block length affects the standard error estimates.

4. SIMULATION STUDY

In this section, the implementation of, and the results from, the simulation
study are presented. All numerical experiments are performed in R [31].

4.1. Data generating process

The considered data generating process is a bivariate process with first order
temporal dependence imposed by a logistic extreme-value copula with parameter
0 < φ ≤ 1, and bivariate dependence imposed by one of the extreme-value models
in Section 2.3. To achieve this, first, a bivariate sequence {(Xi, Yi)}i∈N of inde-
pendent vectors is generated with algorithms from [36] which are implemented
in the R package evd [35]. Second, temporal dependence is imposed on each
marginal separately by inverse transform sampling of xt+1 from the conditional
distribution of xt+1 given xt and φ, i.e.

(4.1) GXt+1|Xt=xt
(xt+1 | φ) = Pr(Xt+1 ≤ xt+1 | Xt = xt, φ),

where G is the logistic extreme-value distribution formed by (2.8). As such, the
joint distribution function of two values (xt, xt+1) from the marginal {Xi} is

(4.2) FXt,Xt+1(xt, xt+1;φ) = exp
[
−
(
x
−1/φ
t + x

−1/φ
t+1

)φ]
,

and correspondingly for {Yi}. For simplicity, the same temporal dependence
strength is used for both marginals. The marginal distributions of {(Xi, Yi)} are
then transformed with the probability integral transform to GEV(µ = 0, τ =
1, ξ = 0.1) for block-maxima, and GP(τ = 1, ξ = 0.1) for POT. To investigate if
the heaviness of the marginal tails have an effect on the standard error estimator’s
performance, parts of the simulation were replicated with marginal distributions
GEV(µ = 0, τ = 1, ξ = −0.1) for block-maxima, and GP(τ = 1, ξ = −0.1) for
POT. Changing the value of ξ from 0.1 to −0.1, however, had a negligible effect
on the results and is therefore not further discussed.

To assess the strength of temporal dependence in the generated data, the
tail dependence coefficient χ in (3.1) is estimated for {Xi} and {Yi} respectively.
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For the POT approach, χ is estimated only from the exceedances as those are
the only actually informative observations. The empirical estimator

(4.3) χ̂(u) =

∑n
i=k+1 I(Zi > F̂−1

Z (u))I(Zi−k > F̂−1
Z (u))∑n

i=k+1 I(Zi > F̂−1
Z (u))

,

is used, where I is the indicator function and F̂−1 is the inverse empirical dis-
tribution function [3, p. 165]. Estimates are computed with u = 0.95 at lags
k = 1, . . . , 5, and in Figure 1 the averages over 1000 estimates from the logistic
model for different temporal dependence strengths are presented. Correspond-
ing estimates from the asymmetric logistic and Hüsler-Reiss models look similar.
When temporal dependence is weak (φ = 0.9), the estimated asymptotic depen-
dence is close to 0 already at lag 2, while under strong temporal dependence
(φ = 0.3) there is still notable dependence in the tail at lag 5.

ϕ = 0.3 ϕ = 0.6 ϕ = 0.9

0.0

0.2

0.4

0.6

Block−maxima

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.0

0.2

0.4

0.6

Lags

POT
χ(u)

Figure 1: Average estimates of χ under different levels of temporal depen-
dence for the marginals {Xi} (solid, circles) and {Yi} (dashed,
triangles) at lags 1 to 5, computed from 1000 simulated data
sets from the logistic model.

4.2. Estimation

To compute the parameter estimates and associated standard errors, a bi-
variate extreme-value model with GEV (block-maxima) or GP (POT) marginals
is fitted with maximum likelihood estimation to each generated data sequence.
The model fitting is done in one step, estimating marginal and dependence pa-
rameters simultaneously. Once the model is fitted, standard errors are computed



12 Alexander Engberg

with each method described in Sections 3.3 and 3.4. Furthermore, 95% confidence
intervals are computed by using either the normal distribution approximation of
the maximum likelihood estimator for the sandwich estimators or basic bootstrap
confidence intervals for the block bootstrap estimators [6, p. 194]. For com-
parison, confidence intervals are also computed with the non-adjusted “naive”
standard errors

(4.4) σ̂Naive = −∂
2ℓ(θ;x, y)

∂θ2

∣∣∣∣
θ=θ̂

,

where ℓ(θ;x, y) is the log-likelihood of the considered model with bivariate de-
pendence parameter θ. As a benchmark, the sample standard deviation of the
maximum likelihood estimator (MLE) is used

(4.5) σR =

(
1

R− 1

R∑
r=1

(
θ̂r − θ̄

)2)1/2

.

Here θ̂r is the parameter estimate from the rth data sequence and θ̄ is the average
over R estimates.

4.3. Main simulation: logistic model

This section presents the main simulation study performed with the logistic
extreme-value model with bivariate dependence parameter 0 < α ≤ 1. Comple-
mentary results from the asymmetric logistic and the Hüsler-Reiss models are
presented in Section 4.4.

To investigate how the standard error estimators perform under different
dependence strengths, data sets are generated from the bivariate logistic model
with dependence parameter α ∈ {0.3, 0.7} (strong, moderate) and temporal de-
pendence parameter φ ∈ {0.1, 0.2, . . . , 0.9} (strong to weak). In each scenario
R = 1000 independent sequences of length n = 100 are generated for block-
maxima, and n = 2000 for POT. In the POT approach, the thresholds are set
to the 0.95 quantiles such that there are 100 exceedances in each marginal. The
block length for the blocked sandwich estimator is specified such that the data
sequences are divided into 10 equally sized blocks, i.e. of size 10 for block-maxima
and 200 for POT. Different block lengths were considered but with small effects
on the results and, as such, the chosen lengths are deemed to be adequate.

To assess the effect that the choice of bootstrap block length has on estima-
tion, root mean squared error (RMSE) is computed for the bootstrap estimators
for each block length l ∈ {2, 3, . . . , 12} for block-maxima, and l ∈ {2, 4, . . . , 24}
for POT, with 300 bootstrap replicates. This is done for strong and weak tem-
poral dependence, and the difference in block lengths between block-maxima and
POT is due to the different lengths of the underlying sequences (100 and 2000).
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The results are presented in Figure 2 together with associated 95% bootstrap per-
centile confidence intervals. Under weak dependence, the shortest possible block
length (lMBB = lSB = 2) yields the lowest RMSE for both estimators. This is
unsurprising as dependence is weak and close to 0 at lag 2 (see Figure 1). Un-
der strong dependence RMSE decreases with block length and has a minimum
at lMBB = 10 and lSB = 9 for block-maxima, and lMBB = 24 and lSB = 18
for POT. Since the lowest RMSE for the moving block bootstrap was achieved
with lMBB = 24, longer block lengths were investigated but with no notable
improvements of the results.

In Section 4.3.1, block bootstrap results are computed with the block
lengths that yield the lowest RMSE, henceforth referred to as the “minimum
RMSE block lengths”.
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Figure 2: RMSE with 95% bootstrap percentile confidence intervals un-
der strong (left panel) and weak (right panel) dependence for
the moving block bootstrap (dotted, circles) and the station-
ary bootstrap (long-dash, triangles) estimators, computed from
1000 simulated data sets with 300 bootstrap replicates.

4.3.1. Results for the bivariate logistic model

In this section, results from the main simulation with the bivariate logistic
model are presented. Only the results from the scenarios with strong bivariate
dependence (α = 0.3) are shown, as these summarise the general outcomes of
the study. In the following, “dependence” refers to temporal dependence unless
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stated otherwise.

Figure 3 presents coverage probabilities of 95% confidence intervals for the
bivariate logistic dependence parameter α, computed from data sets with depen-
dence φ ∈ {0.1, 0.2, . . . , 0.9}. Here, the effect of ignoring temporal dependence is
clearly seen as the naive estimator has poor coverage probabilities under strong
dependence. Noteworthy is that the sandwich and block bootstrap estimators
also have coverage probabilities far from 0.95 under strong dependence; although
they still provide a clear improvement compared to the naive estimator. As ex-
pected, when dependence weakens all estimators approach the nominal coverage
probability. The standard sandwich estimator slightly outperforms the other es-
timators for the POT approach, but overall the differences are quite small.
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Figure 3: Coverage probabilities of 95% confidence intervals from the bi-
variate logistic model under strong (α = 0.3) bivariate depen-
dence for the naive (solid, squares), standard sandwich (dashed,
circles), blocked sandwich (two-dash, triangles), MBB (dash-
dotted, plus) and SB (long-dash, diamonds) estimators, com-
puted from 1000 simulated data sets.

In Figure 4, box-plots of σ̂r/σR are illustrated, where σ̂r is the estimate from
one replicate and σR is the benchmark in (4.5). This gives a view of the sampling
distributions of the estimators in relation to the benchmark σR. Under strong
dependence, the estimates are overall negatively biased. The block bootstraps
perform slightly better than the standard sandwich estimator, while the blocked
sandwich estimates are almost as biased as the naive ones for POT. Under weak
dependence, the distributions of all estimates are more or less centred around the
benchmark with similar variability.
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Figure 4: Distributions of σ̂r/σR for strong (left panel) and weak (right
panel) temporal dependence, under strong (α = 0.3) bivariate
dependence computed from 1000 simulated data sets. Two large
estimates of σSand. were excluded for visibility purposes.

To summarise, when dependence in data is moderate to weak all considered
standard error estimators perform similarly and quite well. Under strong depen-
dence, however, all estimators are negatively biased, and confidence intervals
computed from the estimates have coverage probabilities far from the nominal
coverage probability. It is known that both sandwich and block bootstrap estima-
tors might perform poorly when dependence in data is strong, which is confirmed
by the results of this study. Furthermore, the standard sandwich estimator might
provide inaccurate results if the data sequence is too short. This is supported by
results from complementary numerical experiments (not shown) where substan-
tially increasing the size of data sets clearly improved the coverage probabilities.
Hence, altogether the results suggest that if the number of observations is large,
the standard sandwich estimator can provide acceptable results under strong de-
pendence, while the considered block bootstrap estimators should only be used
when temporal dependence in data is moderate to weak.

4.3.2. Results for the logistic model in higher dimensions

In order to assess how the results from Section 4.3.1 generalize to higher
dimensions, numerical experiments are conducted with the logistic model in
dimensions d = 5 and d = 10, in the scenarios with temporal dependence
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φ ∈ {0.3, 0.6, 0.9} and multivariate dependence α = 0.3. The data generating
process is the same as described in Section 4.1 although extended to higher di-
mensions. Furthermore, the marginal distributions are directly transformed to
unit Fréchet to avoid the estimation of a large number of marginal parameters.
Thus, only the multivariate logistic dependence parameter α is estimated. The
multivariate logistic log-likelihood is fitted efficiently using a representation from
[32], and only the block-maxima approach is considered as the results from the
bivariate logistic model were similar for the block-maxima and the POT ap-
proaches.

Figure 5 shows coverage probabilities of 95% confidence intervals for the
multivariate logistic dependence parameter α computed from 1000 independent
data sets. The relation between the estimators is similar to what was observed in
the bivariate case. The coverage probabilities are, however, lower and decrease
with increasing dimension, due to increasing bias. Thus, the results suggest
that even greater care must be taken when modelling extremes from temporally
dependent sequences in higher dimensions.
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Figure 5: Coverage probabilities of 95% confidence intervals from the mul-
tivariate logistic model in dimension d = 5 (left) and d = 10
(right) under strong (α = 0.3) multivariate dependence for
the naive (solid, squares), standard sandwich (dashed, circles),
blocked sandwich (two-dash, triangles), MBB (dash-dotted,
plus) and SB (long-dash, diamonds) estimators, computed from
1000 simulated data sets.
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4.4. Results for the bivariate asymmetric logistic and Hüsler-Reiss
models

To evaluate if the results from the bivariate logistic model in Section 4.3.1
translates to other models, numerical experiments are conducted with the asym-
metric logistic and Hüsler-Reiss models. Data is generated as previously, de-
scribed in Section 4.1, but the bivariate dependence is imposed with either the
asymmetric logistic model in (2.9), or the Hüsler-Reiss model in (2.10). Again,
only the block-maxima approach is considered in the scenarios with temporal
dependence φ ∈ {0.3, 0.6, 0.9}.

With the asymmetric logistic model, dependence is governed by the pa-
rameter 0 < β ≤ 1 and the asymmetry parameters 0 ≤ ψ1, ψ2 ≤ 1. Numerical
experiments are performed with β = 0.3, ψ1 = 0.5 and ψ1 = 0.8 which cor-
responds to quite strong bivariate dependence. The Hüsler-Reiss model has a
single dependence parameter r > 0 which, in the experiments, is set to r = 1.5
which corresponds to moderate bivariate dependence. The results are presented
in Figure 6, which shows coverage probabilities of 95% confidence intervals for the
dependence parameter β of the asymmetric logistic model, and r of the Hüsler-
Reiss model, computed from 1000 independent data sets. Corresponding results
from the bivariate logistic model with α = 0.3 are also shown for comparison.

The relation between the estimator’s performance is similar for all mod-
els, although the block bootstraps perform somewhat worse than the sandwich
estimators for the asymmetric logistic model under strong dependence. It is
noteworthy that the coverage probabilities of all estimators for the asymmetric
logistic model are far from the nominal coverage probability, even when temporal
dependence is weak. A possible explanation is the added complexity from the
two additional parameters in the model, which has a total of 9 parameters to
be estimated compared to 7 for the bivariate logistic and Hüsler-Reiss models.
The estimator’s performance for the Hüsler-Reiss model is similar to that of the
logistic model and, hence, the conclusions from Section 4.3.1 seem to also hold
for the Hüsler-Reiss model.

5. DISCUSSION

The goal of this study was to investigate and compare the performance of
four sandwich and block bootstrap standard error estimators when modelling the
bivariate dependence between extremes from bivariate stationary sequences. The
performance of the estimators was assessed through coverage probabilities of 95%
confidence intervals, and by comparing the estimators sampling distributions to
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Figure 6: Coverage probabilities of 95% confidence intervals under differ-
ent levels of temporal dependence for the naive (solid, squares),
standard sandwich (dashed, circles), blocked sandwich (two-
dash, triangles), MBB (dash-dotted, plus) and SB (long-dash,
diamonds) estimators. Values are computed from 1000 simu-
lated data sets from the asymmetric logistic model (left) with
parameter β = 0.3, the Hüsler-Reiss model (middle) with pa-
rameter r = 1.5, and logistic model (right) with parameter
α = 0.3.

a benchmark. Focus was on the bivariate logistic extreme-value model, but the
results were generalized both to higher dimensions and to additional models.

In the cases with the logistic and Hüsler-Reiss models, when temporal de-
pendence in data is moderate to weak, all considered estimators perform quite well
and provide viable alternatives to account for underestimation. With the asym-
metric logistic model, however, all estimators performed poorly under both strong
and weak dependence, and extra care should be taken if modelling extremes from
temporally dependent sequences with this model. Under strong temporal depen-
dence, all estimators have coverage probabilities far from the nominal coverage
probability and are notably biased due to an inability to fully capture the strong
dependence in data. Furthermore, for the standard sandwich estimator, the con-
sidered data sequences seem too short, at least in the block-maxima case, for the
estimator to perform well.

Altogether, the results suggest that when encountered with smaller data
sets with strong temporal dependence, none of the considered estimators are
preferable. Instead, it may be more successful either to model the dependence
explicitly or, if feasible, to decrease the dependence by e.g. declustering. There
also exist bootstrapping techniques that might provide more accurate standard
errors, such as residual bootstraps where a parametric model is first fitted to data
and the residuals resampled, or bootstrap methods tailored for Markov processes.
An investigation of additional bootstrapping methods is, however, left for future
research.
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