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1. INTRODUCTION

In lifetime and reliability studies, an experimenter may not have complete information
of the failure times for each and every experimental units. Due to various reasons, it is
sometimes required to remove few units from an experiment and as a result, one gets censored
data set. There are two most common censoring schemes: (i) type-I and (ii) type-II. The
type-I censoring is censored at fixed time, whereas the type-II censoring is censored at a fixed
number. These two censoring schemes can not handle the situations, in which we need to
remove units at various stages of a test. The removal of experimental units can be done
in the progressive censoring scheme. In this paper, we consider PT-II censoring scheme
for estimation and prediction for an EGT-II distribution. The PT-II censored scheme is
described below. Let n units be placed in a life test. It is pre-decided by the experimenter
that m number of failures will be observed. At the time of first failure, we assume that
Φ1 of the remaining n− 1 surviving units are randomly withdrawn from the experiment.
Further, Φ2 of the remaining n− Φ1 − 2 units are removed from the on-going experiment.
This procedure continues till the occurrence of m-th failure. We remove all the remaining
surviving units Φm = n−m− Φ1 − ··· − Φm−1, when the m-th failure takes place. In PT-II
censoring scheme, we denote the m observed failure times as x1:m:n, ..., xm:m:n. For simplicity,
we use xi = xi:m:n, for i = 1, ...,m.

The most popular lifetime models are those with monotone hazard rates (gamma,
Weibull), which reflect a wear out or a work hardening behaviour of the population under
study. However, there are many other situations, in which the failure pattern is somehow
different. When studying the life-cycle of an industrial product or the entire life-span of a
biological entity, the three-phase behaviour of the failure rate is likely to be observed. For
example, consider a high failure rate in infancy which decreases to a certain level, where
it remains fixed for some time, and then increases from a point onwards due to ageing.
Thus, in this case, a model having bathtub-shaped hazard rate will be appropriate to study
the population’s survival capacity. Further, there are also some situations, in which the
failure pattern looks like upside-down bathtub. The distributions with upside-down bathtub-
shaped hazard rate function is often associated with overload of a component or a subsystem.
Intuitively, a lifetime distribution with upside-down shaped hazard rate would suggest a hard
stress on the components, leading to fast ageing processes for a part of them but leading
to a decreasing failure rate for the surviving items after the stress. There are various real
life applications, when the data show upside-down bathtub shape hazard rates. For example,
Langlands et al. [10] studied cases of breast carcinoma and showed that the associated hazard
rate has upside-down bathtub shape. We refer to Efron [5] for more applications of this type
of hazard rate functions. The EGT-II distribution has a upside-down bathtub-shaped hazard
rate function. Thus, this distribution can be useful in modelling population having bathtub-
shaped failure pattern. In addition, this distribution can model various types of data as it can
take various shapes (Leptokurtic, platykurtic with thick and thin tails) for various choices of
the parameters.

Let X be a random variable following EGT-II distribution, with probability density
and cumulative distribution functions respectively given by

fX(x : α, β, γ) = αβγx−β−1 exp{−γx−β}
(
1− exp{−γx−β}

)α−1
(1.1)
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and

FX(x : α, β, γ) = 1−
(
1− exp{−γx−β}

)α
,(1.2)

for x > 0 and α, β, γ > 0. The constants α and β are known as the shape parameters, whereas
γ is known as the scale parameter. We denote X ∼ EGT-II(α, β, γ) if X has the distribution
function given by (1.2). The EGT-II distribution is a generalization of various well known
statistical models. When α = 1, β = 1, β = 2 and γ = 1, the EGT-II distribution reduces to
the Gumbel type-II, generalized inverted exponential, inverted exponentiated Rayleigh and
exponentiated Frechet distributions, respectively. The EGT-II distribution becomes Frechet
distribution for α = γ = 1.

Several authors have considered estimation of parameters and some reliability charac-
teristics of various lifetime distributions based on PT-II censored observations. Maiti and
Kayal [13] considered estimation for the generalized Frechet distribution based on the PT-II
censored data. Ghanbari et al. [7] studied estimation of stress-strength reliability for Marshall-
Olkin distributions based on PT-II censored samples. Ren and Gui [17] explored goodness
of fit test for Rayleigh distribution based on PT-II censored samples. Tarvirdizade and Ne-
matollahi [20] proposed some inferences for the power-exponential hazard rate distribution
under PT-II censored data. To the best of authors’ knowledge, nobody has considered the
problem of estimation of parameters of EGT-II distribution based on PT-II censored data. It
is already seen that this distribution can be considered as an alternative lifetime model since
it has upside-down bathtub shaped hazard rate function, which is useful in various places.

The aim of this paper is three-fold. First, we consider statistical inference of EGT-II
distribution based on the PT-II censored data. The existence and uniqueness of the maximum
likelihood estimates (MLEs) are investigated. Further, we obtain MLEs of the parameters.
The closed-form solutions of the likelihood equations can not be obtained. Thus, we apply EM
algorithm. We also use stochastic EM algorithm to compute the desired MLEs. Confidence
intervals using bootstrap algorithms are obtained. The Bayes estimates are derived. It is
noticed that the explicit expressions of the Bayes estimates can not be obtained. So, we
use Lindley’s approximation and importance sampling methods. The Metropolies-Hastings
algorithm is also used for this purpose. Second, we study Bayesian prediction problem, and
obtain Bayesian prediction intervals. Third, we consider optimal life testing plan for the
present problem.

The paper is organized as follows. In Section 2, we present sufficient condition for the
existence and uniqueness of MLEs. For the purpose of computation, two algorithms: EM
and stochastic EM are used. In Section 3, we obtain observed Fisher’s information matrix.
The bootstrap confidence intervals are constructed in Section 4. Section 5 provides the form
of Bayes estimates with respect to the entropy loss function. Since explicit expressions of the
Bayes estimates do not exist, we use various approximation methods to compute the estimates
in Section 6. The prediction problem has been considered in Section 7 from Bayesian point of
view. Bayesian predictive intervals are also obtained. Data analysis is carried out in Section 8
based on a real life data set. In Section 9, we propose optimal PT-II censoring plan. Finally,
Section 10 concludes the paper.
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2. ML ESTIMATES AND THEIR COMPUTATION

In this section, first, we show that MLEs of the parameters exist and unique based on
the PT-II censored sample.

2.1. Existence and uniqueness of the MLEs

Consider PT-II censored sample of size m from a sample of size n from EGT-II distri-
bution as X = (X1, ..., Xm). The likelihood function of α, β and γ is given by

L(α, β, γ|x) ∝ αmβmγm
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }
(
1− exp{−γx−β

i }
)α(Φi+1)−1

,

where x = (x1, ..., xm). Here, x1 ≤ ... ≤ xm. The log-likelihood function is denoted by
`(α, β, γ|x) = lnL(α, β, γ|x). The MLEs of α, β and γ can be obtained after solving first
order partial derivatives of the log-likelihood function with respect to the parameters equal
to zero, simultaneously. The normal equations are

∂`

∂α
=

m

α
+

m∑
i=1

(1 + Φi) ln
(
1− exp{−γx−β

i }
)

= 0,(2.1)

∂`

∂β
=

m

β
− γ

m∑
i=1

(α(1 + Φi)− 1)x−β
i exp{−γx−β

i } lnxi

1− exp{−γx−β
i }

(2.2)

+γ
m∑

i=1

x−β
i lnxi −

m∑
i=1

lnxi = 0,

∂`

∂γ
=

m

γ
+

m∑
i=1

(α(1 + Φi)− 1)x−β
i exp{−γx−β

i }
1− exp{−γx−β

i }
−

m∑
i=1

x−β
i = 0.(2.3)

Note that the closed forms of the MLEs do not exist. So, to get approximate values of the
MLEs, we use EM algorithm, which is presented in the following subsection. An important
question always comes out whether the MLEs exist, and unique. To investigate this, note
that the domain of `(α, β, γ|x) is (0,∞)× (0,∞)× (0,∞). So, our goal is to show that
for (α, β, γ) ∈ (0,∞)× (0,∞)× (0,∞), the function `(α, β, γ|x) has unique maximum. The
second order partial derivatives of ` with respect to α, β and γ can be shown to be strictly
negative under the following conditions:

∂2`

∂α2
< 0,(2.4)

∂2`

∂β2
< 0, if α(1 + Φi) > 1,(2.5)

∂2`

∂γ2
< 0, if α(1 + Φi) > 1.(2.6)
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Therefore, ` is a strictly concave function with respect to one of the parameters keeping other
two parameters fixed. For fixed (β, γ), (α, γ) and (α, β), we respectively have

lim
α→0

`(α, β, γ|x) = −∞, lim
α→∞

`(α, β, γ|x) = −∞,

lim
β→0

`(α, β, γ|x) = −∞, lim
β→∞

`(α, β, γ|x) = −∞,

lim
γ→0

`(α, β, γ|x) = −∞, lim
γ→∞

`(α, β, γ|x) = −∞.

So, `(α, β, γ|x) is a unimodal function with respect to α, β and γ, when other two associated
parameters are fixed. Now, proceeding with the similar arguments as in Dey et al. [4], we get
the following theorem, which provides sufficient conditions for the existence and uniqueness
of MLEs.

Theorem 2.1. The MLEs of α, β and γ when (α, β, γ) ∈ (0,∞)× (0,∞)× (0,∞)
exist and unique based on the PT-II censored sample, provided α(1 + Φi) > 1.

Remark 2.1. From real data set, which are presented in Section 8, we notice that the
sufficient condition in Theorem 2.1 is satisfied. Thus, as stated, the MLEs of the parameters
exist and are unique. The profile of the log-likelihood function of α, β and γ for the data set
is depicted in Figure 2.

2.2. EM and StEM algorithms

The EM algorithm is very useful iterative process to obtain MLEs of the parameters
when the data are censored. For incomplete data problems, the most attractive features of
the EM algorithm relative to other optimization techniques are its simplicity and stability.
Further, successive iterations of the EM algorithm are guaranteed never to decrease the likeli-
hood function, which is not generally true of gradient methods like Newton-Raphson. Hence,
in the case of the unimodal and concave likelihood function, the EM algorithm converges to
the global maximizer from any starting value. Due to this, it has been widely used by various
authors. One may refer to Singh and Tripathi [19] and Singh et al. [18] for computing MLEs
of some lifetime distributions using this method. The EM algorithm is described briefly as
follows. To start the EM algorithm, the likelihood function of the complete sample which
have been put on a test is required. We denote the complete sample by W = (W1, ...,Wn).
After conducting the test, we see that the complete sample is a combination of the observe
data X = (X1, ..., Xm) and the censored data Z = (Z1, ..., Zm). Here Zj is a 1× Φj vector
(Zj1, ..., ZjΦj ) for j = 1, ...,m. Then, the complete sample is W = (X,Z). The log-likelihood
function of α, β and γ based on the complete sample is given by

`C(α, β, γ|w) = n ln(αβγ) +
m∑

j=1

[
(α− 1)

(
ln(1− exp{−γx−β

j })(2.7)

+
Φj∑

k=1

ln(1− exp{−γz−β
jk })

)
− γ
(
x−β

j +
Φj∑

k=1

z−β
jk

)

−(β + 1)
(

lnxj +
Φj∑

k=1

ln zjk

)]
.
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Further, the pseudo log-likelihood function is obtained in E-step as

Lp(α, β, γ) = n ln(αβγ) + (α− 1)
m∑

j=1

ln(1− exp{−γx−β
j })− γ

m∑
j=1

x−β
j(2.8)

−(β + 1)
m∑

j=1

lnxj − (β + 1)
m∑

j=1

ΦjE[lnZjk|Zjk > xj ]

+(α− 1)
m∑

j=1

ΦjE[ln(1− exp{−γZ−β
jk })|Zjk > xj ].

Please see the Appendix A for the expressions of the expectations, which are involved in (2.8).
In M -step, we will find the values of the parameters such that the pseudo log-likelihood func-
tion is maximum. Let (α(k), β(k), γ(k)) be the value of (α, β, γ) obtained after k-th iteration.
Mathematically, at the (k + 1)-th iteration, (α(k+1), β(k+1), γ(k+1)) has to be computed by
maximizing the following function based on (α(k), β(k), γ(k)):

L∗p(α, β, γ) = n ln(αβγ)− (β + 1)
m∑

j=1

lnxj − γ
m∑

j=1

x−β
j(2.9)

+ (α− 1)
m∑

j=1

ln(1− exp{−γx−β
j })

− (β + 1)
m∑

j=1

ΦjE[lnZjk|Zjk > xj , α
(k), β(k), γ(k)]

− γ

m∑
j=1

ΦjE[Z−β
jk |Zjk > xj , α

(k), β(k), γ(k)]

+ (α− 1)
m∑

j=1

ΦjE[ln(1− exp{−γZ−β
jk })|Zjk > xj , α

(k), β(k), γ(k)].

The normal equations are given by

n

α
+

m∑
j=1

ln
(
1− e−γx−β

j

)
+

m∑
j=1

E3Φj = 0,(2.10)

n− (α−1)βγ
m∑

j=1

x−β
j e−γx−β

j lnxj

1− e−γx−β
j

− β
( m∑

j=1

E1Φj − γ
m∑

j=1

x−β
j lnxj +

m∑
j=1

lnxj

)
= 0,(2.11)

n

γ
+ (α−1)

m∑
j=1

x−β
j e−γx−β

j

1− e−γx−β
j

−
m∑

j=1

x−β
j −

m∑
j=1

E2Φj = 0,(2.12)

where E1 = E[lnZjk|Zjk > xj , α
(k), β(k), γ(k)], E2 = E[Z−β

jk |Zjk > xj , α
(k), β(k), γ(k)] and

E3 = E[ln(1− exp{−γZ−β
jk })|Zjk > xj , α

(k), β(k), γ(k)]. The (k + 1)-th iteration values of the
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unknown parameters can be obtained from

α(k+1) = −n

[
m∑

j=1

ln
(
1− e−γ(k)x−β(k)

j
)

+
m∑

j=1

E3(xj ;α(k), β(k), γ(k))Φj

]−1

,(2.13)

β(k+1) =

(
m∑

j=1

E1(xj , α
(k+1), β(k), γ(k))Φj − γ(k)

m∑
j=1

x−β(k)

j lnxj +
m∑

j=1

lnxj

)−1

(2.14)

×

(
n− (α(k+1) − 1)β(k)γ(k)

m∑
j=1

x−β(k)

j exp{−γ(k)x−β(k)

j } lnxj

1− exp{−γ(k)x−β(k)

j }

)
,

γ(k+1) = n

(
m∑

j=1

x−β(k+1)

j − (α(k+1) − 1)
m∑

j=1

x−β(k+1)

j exp{−γ(k)x−β(k+1)

j }

1− exp{−γ(k)x−β(k+1)

j }
(2.15)

+
m∑

j=1

E2(xj , α
(k+1), β(k+1), γ(k))Φj

)−1

.

Next, we present the algorithm.

Algorithm-1

Step-1: Set k = 0. Given the starting value (α(0), β(0), γ(0)), we estimate the param-
eters α, β and γ.

Step-2: In E-step, let (α(k), β(k), γ(k)) be an estimate of (α, β, γ) at k-th iteration.
We compute the required conditional expectations E1, E2 and E3 and then
substitute in (2.9).

Step-3: In M -step, we obtain (α(k+1), β(k+1), γ(k+1)) the updated values of the pa-
rameters at (k + 1)-th iteration by solving Equations (2.13− 2.15).

Step-4: If |α(k+1)−α(k)|+ |β(k+1)− β(k)|+ |γ(k+1)− γ(k)| ≤ ε for a given ε > 0 (small
tolerance), then we stop the procedure. The latest values will be the MLEs
of α, β and γ.

Step-5: If |α(k+1)−α(k)|+ |β(k+1)− β(k)|+ |γ(k+1)− γ(k)| > ε, then set k = k+ 1 and
go to the Step-1.

Denote the MLEs of α, β and γ by α̂, β̂ and γ̂, respectively.

There are various situations, where EM algorithm is difficult to implement due to
difficulty in the expectation step. To overcome this, a novel technique has been introduced
in the literature called Stochastic EM algorithm. It consists of replacing E-step of the EM
algorithm by one iteration of a stochastic approximation procedure. We refer the reader
to Nielsen et al. [15] for some discussions on this method. The main advantage of StEM
algorithm is that it is usually less complicated and gives more appropriate results compared
to EM algorithm for many problems (see Tregouet et al. [21]). Similar to EM algorithm, the
StEM algorithm has two steps: S-step and M -step. In S-step, the missing observations Z are
generated from conditional distribution given observed data X. We generate Φi independent
number of censored lifetimes zij from the condition distribution function FZ|X(xj : α, β, γ)
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for j = 1, ...,m, which is given by

FZ|X(xj : α, β, λ) =
FZ(zjk : α, β, γ)− FX(xj : α, β, γ)

1− FX(xj : α, β, γ)
.(2.16)

The Z is then substituted to (2.7) to form the pseudo log-likelihood function and then this
function is optimized in M -step to get (α(k+1), β(k+1), γ(k+1)) for the next iteration. These
two steps are repeated until a stationary distribution is reached for each parameter. The mean
of the stationary distribution is considered as an estimate of the parameters. For brevity, the
details are not presented here.

3. OBSERVED FISHER’S INFORMATION MATRIX

In this section, we compute observed Fisher’s information matrix, which can be used for
construction of the asymptotic confidence intervals. Louis [12] derived Fisher’s information
matrix using the missing information based on EM algorithm. According to him, the observed
information is equal to complete information minus missing information. That is,

IX(α, β, γ) = IW (α, β, γ)− IW |X(α, β, γ),(3.1)

where IX(α, β, γ), IW (α, β, γ) and IW |X(α, β, γ) are observed, complete and missing infor-
mations, respectively. Let `∗ = `C(w;α, β, γ) and akl = −E[ ∂2`∗

∂θk∂θl
] for k, l = 1, 2, 3, where

θ1 = α, θ2 = β and θ3 = γ. Then, the complete information matrix IW (α, β, γ) is given as

IW (α, β, γ) =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

.(3.2)

Further, denote bkl = −
∑m

j=1 ΦjEZj |Xj
[∂2 ln f∗

∂θk∂θl
] and f∗ = fZj |Xj

(zj |xj , α, β, γ). Thus, the
missing information matrix IW |X(α, β, γ) is

IW |X(α, β, γ) =
m∑

j=1

ΦjI
j
W |X(α, β, γ) =

 b11 b12 b13
b21 b22 b23
b31 b32 b33

,(3.3)

where Ij
W |X(α, β, γ) is missing information matrix at the j-th failure time xj . It is given as

Ij
W |X(α, β, γ) = −EZj |Xj


∂2 ln f∗

∂α2
∂2 ln f∗

∂α∂β
∂2 ln f∗

∂α∂γ

∂2 ln f∗

∂β∂α
∂2 ln f∗

∂β2
∂2 ln f∗

∂β∂γ

∂2 ln f∗

∂γ∂α
∂2 ln f∗

∂γ∂β
∂2 ln f∗

∂γ2

.(3.4)

It is worthwhile to mention that the matrices in (3.2) and (3.3) are computed at (α, β, γ) =
(α̂, β̂, γ̂). From the 3× 3 order matrices given by (3.2) and (3.3), one can easily compute the
observed Fisher’s information matrix of the model parameters α, β and γ. We obtain the
asymptotic variance covariance matrix (M̂) for the MLEs of α, β and γ from the inverse of
IX(α, β, γ), which is given by

M̂ =

 var(α̂) cov(α̂, β̂) cov(α̂, γ̂)
cov(α̂, β̂) var(β̂) cov(β̂, γ̂)
cov(α̂, γ̂) cov(β̂, γ̂) var(γ̂)

.
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The asymptotic confidence intervals of the parameters by using normal approximation (NA)
to MLE, and normal approximation of the log-transformed (NL) MLE can be constructed.
The derivations are omitted to maintain brevity.

4. BOOTSTRAP CONFIDENCE INTERVALS

In this section, we construct two bootstrap confidence intervals for the parameters.
These are the percentile bootstrap (Boot-p) (see Efron and Tibshirani [6]) and the bootstrap-
t (Boot-t) (see Hall [8]) methods. The algorithms for these methods are presented below.

Algorithm-2 (Boot-p)

Step-1: From Equations (2.1), (2.2) and (2.3), under the original data sets xi,
i = 1, ...,m, we obtain α̂, β̂ and γ̂.

Step-2: Based on the values of the estimates of the parameters, generate a bootstrap
sample x∗ = (x∗1, ..., x

∗
m) for a pre-specified censoring scheme. Then, compute

the bootstrap estimates α̂∗, β̂∗ and γ̂∗.

Step-3: Repeat Step-2, for N = 1000 times to get (α̂∗1, ..., α̂
∗
1000), (β̂

∗
1 , ..., β̂

∗
1000) and

(γ̂∗1 , ..., γ̂
∗
1000).

Step-4: Arrange the values obtained in Step-3 in ascending order and denote
α̂∗(1), ..., α̂

∗
(1000), β̂∗(1), ..., β̂

∗
(1000) and γ̂∗(1), ..., γ̂

∗
(1000).

Then, for a specified value of σ, the 100(1− σ)% Boot-p confidence intervals for α, β and γ

are respectively given by(
α̂(N(σ

2
)), α̂(N(1−σ

2 ))
)
,
(
β̂(N(σ

2
)), β̂(N(1−σ

2 ))
)

and
(
γ̂(N(σ

2
)), γ̂(N(1−σ

2 ))
)
.

Algorithm-3 (Boot-t)

Step-1: In analogy to Step-1 and Step-2 as in Boot-p method, obtain bootstrap esti-
mates of the unknown parameters.

Step-2: Compute variance-covariance matrix I∗(α̂∗, β̂∗, γ̂∗)−1. Write

T ∗αi
=

α̂∗i − α̂i√
V̂ar(α̂∗i )

, T ∗βi
=

β̂∗i − β̂i√
V̂ar(β̂∗i )

and T ∗γi
=

γ̂∗i − γ̂i√
V̂ar(γ̂∗i )

for i = 1, ..., 1000.

Step-3: Repeat Step-1 and Step-2, N = 1000 times and arrange the values in ascend-
ing order. Denote

T ∗α(1)
, ..., T ∗α(1000)

, T ∗β(1)
, ..., T ∗β(1000)

and T ∗γ(1)
, ..., T ∗γ(1000)

.

Thus, for a given σ, the 100(1−σ)% Boot-t confidence intervals for α, β and γ are respectively
obtained as(

T̂α(N( σ
2 ))
, T̂α(N(1−σ

2 ))

)
,
(
T̂β(N( σ

2 ))
, T̂β(N(1−σ

2 ))

)
and

(
T̂γ(N( σ

2 ))
, T̂γ(N(1−σ

2 ))

)
.
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5. BAYESIAN ESTIMATION

In this section, we focus on obtaining Bayes estimates of α, β and γ with respect to
entropy loss function. Let δ be an estimator for the unknown parameter θ. The entropy loss
function (ELF) is

Le(θ, δ) =
(
δ

θ

)q

− q ln
(
δ

θ

)
− 1, q 6= 0.(5.1)

This loss function is asymmetric in nature. The constant q in (5.1) stands for the magnitude
and degree of symmetry. The overestimation is dangerous than the underestimation for pos-
itive values of q. When q is negative, underestimation is dangerous than the overestimation.
The Bayes estimate of θ with respect to this loss function can be obtained using the following
tool:

θ̂be =
[
Eθ

(
θ−q| x

)]− 1
q , q 6= 0.(5.2)

Note that the Bayes estimate of the parameter θ under ELF reduces to the Bayes estimates
with respect to the squared error loss function (SELF) when q = −1. For q = −2 and 1, it
becomes Bayes estimates under the precautionary loss function (PLF) and weighted squared
error loss function (WSELF). Prior distributions play an essential role for derivation of the
Bayes estimators. There is no clear method on choosing priors for a particular problem. We
refer to Arnold and Press [1] for more details on this. Here, we consider independent gamma
prior density functions for the parameters α, β and γ as

g1(α : c1, c2) ∝ αc1−1 exp{−αc2},(5.3)

g2(β : c3, c4) ∝ βc3−1 exp{−βc4},(5.4)

g3(γ : c5, c6) ∝ γc5−1 exp{−γc6},(5.5)

where α, β, γ > 0 and ci > 0; i = 1, 2, 3, 4, 5, 6. The constants ci’s are known as the hyper-
parameters. The joint prior distribution of α, β and γ is given by

π(α, β, γ) ∝ αc1−1βc3−1γc5−1 exp{−(αc2 + βc4 + γc6)}.(5.6)

Further, the joint distribution of α, β, γ and X is

π1(α, β, γ,x) ∝ αm+c1−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.7)

×
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }(1− exp{−γx−β
i })

Φi+α−1.

The posterior distribution of α, β and γ given X = x is obtained as

Π(α, β, γ|x) =
1
k
αm+c1−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.8)

×
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }(1− exp{−γx−β
i })

Φi+α−1,

where

k =
∫ ∞

α=0

∫ ∞

β=0

∫ ∞

γ=0
αm+c1−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.9)

×
m∏

i=1

x
−(β+1)
i exp{−γx−β

i }(1− exp{−γx−β
i })

Φi+α−1 dα dβ dγ.
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Thus, from Equation (5.2), the Bayes estimate of α with respect to the entropy loss function
is obtained as

α̂be =
[
1
k

∫ ∞

α=0

∫ ∞

β=0

∫ ∞

γ=0
αm+c1−q−1βm+c3−1γm+c5−1 exp{−(αc2 + βc4 + γc6)}(5.10)

×
m∏

i=1

exp{−γx−β
i }(1− exp{−γx−β

i })
Φi+α−1x

−(β+1)
i dα dβ dγ

]− 1
q

, q 6= 0.

Similarly, the Bayes estimates of β and γ with respect to the entropy loss function can be
obtained. We omit these for the sake of conciseness. Below, we discuss how to compute Bayes
estimates using some well known techniques.

6. COMPUTING METHODS FOR BAYESIAN ESTIMATION

In the previous section, we have seen that the desired Bayes estimates can not be
obtained in explicit forms. So, we consider approximation methods in this section. First, we
explain Lindley’s method (see Lindley [11]).

6.1. Lindley’s approximation method

Let θ1, θ2 and θ3 be the unknown parameters of a statistical model and u(θ) be a
function of the parameters, where θ = (θ1, θ2, θ3). It is known that the Bayes estimate of
u(θ) is evaluated in terms of expectation, where the expectation is taken with respect to
posterior distribution. Let l(θ|x) denote the log-likelihood function and ρ(θ) is the logarithm
of the joint prior distribution of θ1, θ2 and θ3. From the Lindley’s approximation technique,
we obtain (see Lindley [11])

δ̂be(x) ≈ u(θ̂) +W (θ̂) + ρ1(θ̂)W123 + ρ2(θ̂)W213 + ρ3(θ̂)W321(6.1)

+ 0.5
[
`∗300V123 + `∗030V213 + `∗003V321 + 2`∗111(E123 + E213 + E312)

+ `∗210C123 + `∗201C132 + `∗120C213 + `∗102C312 + `∗021C231 + `∗012C321

]
,

where W (θ̂) = 1
2

∑3
i=1

∑3
j=1 uij(θ̂)τij(θ̂), θ̂ is the MLE of θ, `∗ijk = ∂3`(θ|x)

∂θi∂θj∂θk
|θ=θ̂ with

i, j, k = 0, 1, 2, 3 such that i+ j + k = 3, τij is the (i, j)-th element in the inverse matrix
of [−∂2`(θ|x)

∂θi∂θj
]|θ=θ̂. Other unknown terms of (6.1) are given as

Wijk = uiτii(θ̂) + ujτji(θ̂) + ukτki(θ̂),

Vijk = τii(θ̂)(uiτii(θ̂) + ujτij(θ̂) + ukτik(θ̂)),

Eijk = ui(τii(θ̂)τjk(θ̂) + 2τij(θ̂)τik(θ̂))

and

Cijk = 3uiτii(θ̂)τij(θ̂) + uj(τii(θ̂)τjj(θ̂) + 2τ2
ij(θ̂)) + uk(τii(θ̂)τjk(θ̂) + 2τij(θ̂)τik(θ̂)).
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Further, uij(θ̂) = ∂2u(θ)
∂θi∂θj

|θ=θ̂, ui(θ̂) = ∂u(θ)
∂θi
|θ=θ̂, ρi(θ) = ∂ρ(θ)

∂θi
|θ=θ̂, and ρ(θ) is equal to the

logarithmic of the joint prior distribution of θ1, θ2 and θ3, where i, j, k = 1, 2, 3. Now, we
provide approximate Bayes estimate for the unknown parameter α with respect to the entropy
loss function. In order to write the Bayes estimate of α with respect to the entropy loss
function, we have u(α, β, γ) = α−q, u1 = −qα−(q+1), u11 = q(q + 1)α−(q+2) and u2 = u3 =
u12 = u13 = u21 = u22 = u23 = u31 = u32 = u33 = 0. Thus, from (6.1), the approximate Bayes
estimate of α with respect to the entropy loss function is obtained as

α̂LI
be =

[
α−q + 0.5

[
q(q + 1)α−(q+2)τ11 − qα−(q+1)

{
`∗300τ

2
11 + `∗030τ21τ22(6.2)

+ `∗003τ31τ33 + 2`∗111(τ11τ23 + 2τ13τ12) + `∗120(τ11τ22 + 2τ2
21)

+ `∗102(τ33τ11 + 2τ2
31) + `∗021(τ22τ31 + 2τ23τ21)

+ `∗012(τ33τ21 + 2τ32τ31) + 2ρ1τ11 + 2ρ2τ12 + 2ρ3τ13

}]]− 1
q
∣∣∣∣
(α,β,γ)=(α̂,β̂,γ̂)

.

Similarly, we can obtain the Bayes estimates of β and γ with respect to the entropy loss
function. The expressions are omitted here.

6.2. Importance sampling method

In the subsection, we consider another approximation technique known as importance
sampling method to obtain the Bayes estimates for the parameters. We rewrite the posterior
distribution of α, β and γ given in (5.8) as

Π(α, β, γ|x) ∝ Gβ

(
m+ c3, c4 +

m∑
i=1

lnxi

)
.Gγ|β

(
m+ c5, c6 +

m∑
i=1

x−β
i

)
(6.3)

× Gα|β,γ

(
m+ c1, c2 −

m∑
i=1

ln(1− exp{−γx−β
i })

)
.ψ(α, β, γ),

where

ψ(α, β, γ) =
(c4 +

∑m
i=1 lnxi)−(m+c3)

(c2 −
∑m

i=1 ln(1− exp{−γx−β
i }))(m+c1)

(6.4)

×
exp{

∑m
i=1(Φi + 1) ln(1− exp{−γx−β

i })}
(c6 +

∑m
i=1 x

−β
i )m+c5 exp{

∑m
i=1 lnxi}

.

Below, we present the steps which will be used for the implementation of importance sampling
technique.

Algorithm-4

Step-1: Generate β from Gβ(m+ c3, c4 +
∑m

i=1 lnxi), that is, from a gamma distri-
bution with shape parameter (m+ c3) and scale parameter (c4 +

∑m
i=1 lnxi)).

Step-2: For a given β as obtained in Step-1, we generate γ from Gγ|β(m+ c5, c6 +∑m
i=1 x

−β
i ).
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Step-3: For β and γ as generated in Step-1 and Step-2, we will generate parameter
α from Gα|β,γ(m+ c1, c2 −

∑m
i=1 ln(1− exp{−γx−β

i })).

Step-4: Repeat Steps-1,2 and 3, N = 1000 times to obtain (α1, β1, γ1), ..., (αN , βN , γN ).

Finally, the Bayes estimate of a parametric function g(α, β, γ) with respect to entropy loss
function is obtained as

ĝIS
be (α, β, γ) =

[∑N
i=1 g(αi, βi, γi)−qψ(αi, βi, γi)∑N

i=1 ψ(αi, βi, γi)

]− 1
q

.(6.5)

Substituting q = −1, 1 and q = −2 in the above expression, we obtain Bayes estimates with
respect to the SELF, WSELF and PLF, respectively. Further, to get the Bayes estimates of
α, β and γ, one needs to respectively replace α, β and γ in place of g(α, β, γ) in (6.5).

6.3. Metropolis-Hastings algorithm

In this subsection, we use an alternative method to get Bayes estimates of α, β and
γ using Gibbs sampling method and Metropolis-Hastings algorithm. The MH algorithm is
also used for the construction of credible intervals. After analysing the posterior distribution
given by (5.8), the marginal posterior distribution of α given β, γ and x is obtained as

Π1(α|β, γ,x) ∝ G

(
m+ c1,

(
c1 −

m∑
i=1

ln(1− exp{−γx−β
i })

))
.(6.6)

Similarly, the marginal posterior distributions of β given α, γ and x; and γ given α, β and x

can be obtained as

Π2(β|α, γ,x) ∝ βm+c3−1 exp{−βc4}
m∏

i=1

x−β
i exp{−γx−β

i }
(1− exp{−γx−β

i })
(6.7)

and

Π3(γ|α, β,x) ∝ γm+c5−1 exp{−γc6}
m∏

i=1

exp{−γx−β
i }

(1− exp{−γx−β
i })

,(6.8)

respectively. Note that the marginal posterior distribution in (6.6) is gamma distribution.
But, other two marginal posterior distributions in (6.7) and (6.8) do not follow any know
models. Thus, one has to generate random samples for β and γ from the normal proposal
distribution. The following algorithm is useful for the generation of the posterior samples.

Algorithm-5

Step-1: Set an initial value (α(0), β(0), γ(0)) and set j = 1.

Step-2: Generate β∗ and γ∗ from the proposal distributions N(β(j−1), var(β)) and
N(γ(j−1), var(γ)), respectively. Then, generate α∗ from
G(m+ c1, (c1 −

∑m
i=1 ln(1− exp{−γ(j−1)x−β(j−1)

i }))).
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Step-3: Compute

ωβ = min
{

1,
Π2(β∗|α(j), γ(j),x)

Π2(β(j−1)|α(j−1), γ(j−1),x)

}
(6.9)

and ωγ = min
{

1,
Π3(γ∗|α(j), β(j),x)

Π3(γ(j−1)|α(j−1), β(j−1),x)

}
.

Step-4: Generate samples u2 and u3 from uniform distribution U(0, 1).

Step-5: If u2 ≤ ωβ and u3 ≤ ωγ then β(j) ←− β∗, else β(j) ←− β(j−1) and γ(j) ←− γ∗,
else γ(j) ←− γ(j−1), respectively. Further, set j = j + 1.

Step-6: Repeat Steps (3− 5), N = 1000 times to obtain MCMC samples. These are
denoted as (α(1), β(1), γ(1)), ..., (α(N), β(N), γ(N)).

Now, the Bayes estimate of α with respect to entropy loss function based on MCMC samples
is given by

α̂MH
be =

 1
N

N∑
j=1

(
α(j)

)−q

− 1
q

.(6.10)

Similarly, the Bayes estimates of β and γ under entropy loss function can be obtained. Next,
we compute HPD credible intervals of α, β and γ by using the method due to Chen and
Shao [3]. Here, we use MH algorithm to generate samples from the posterior density. After
that we arrange α̂(j), β̂(j) and γ̂(j) in ascending order, and denote α̂(1), ..., α̂(N), β̂(1), ..., β̂(N)

and γ̂(1), ..., γ̂(N), respectively. Thus, the 100(1− σ)% credible intervals for α, β and γ are
respectively given by(

α̂(N(σ
2 )), α̂(N(1−σ

2 ))
)
,
(
β̂(N(σ

2 )), β̂(N(1−σ
2 ))
)

and
(
γ̂(N(σ

2 )), γ̂(N(1−σ
2 ))
)
.

6.4. Computation of hyper-parameters

Here, we briefly discuss the procedure how to calculate the hyper-parameters when
informative priors are known to us. The hyper-parameters are c1, c2, c3, c4, c5 and c6. These
are obtained from gamma prior distributions as given in Section 5. Suppose r samples are
available from the EGT-II distribution. The MLEs of the parameters α, β and γ are α̂j , β̂j

and γ̂j for j = 1, ..., r, respectively for each of these r number of samples. Note that these
hyper-parameter values are evaluated from the past data set. First, we calculate hyper-
parameters c1 and c2. The mean and variance of the gamma prior of α are c1/c2 and
c1/c

2
2, respectively. Further, the mean and variance of the MLEs of α for r samples are

1
r

∑r
j=1 α̂

j and 1
r−1

∑r
j=1(α̂

j− 1
r

∑r
j=1 α̂

j)2, respectively. Therefore, c1
c2

= 1
r

∑r
j=1 α̂

j and c1
c22

=
1

r−1

∑r
j=1(α̂

j − 1
r

∑r
j=1 α̂

j)2. Solving these equations, we get

c1 =
(1

r

∑r
j=1 α̂

j)2

1
r−1

∑r
j=1(α̂j − 1

r

∑r
j=1 α̂

j)2
(6.11)

and c2 =
1
r

∑r
j=1 α̂

j

1
r−1

∑r
j=1(α̂j − 1

r

∑r
j=1 α̂

j)2
.

Similarly, other hyper-parameters c3, c4 and c5, c6 can be obtained from (6.11) replacing β̂j

and γ̂j in place of α̂j , respectively.
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7. BAYESIAN PREDICTION AND INTERVAL ESTIMATION

In this section, we discuss Bayesian prediction for the future observations depending
upon the PT-II censored sample. We assume that the sample is taken from the EGT-II
distribution. We also compute the corresponding prediction intervals. Many authors have
studied prediction problems related to Bayesian prediction and interval estimation. We refer
to Bdair et al. [2] and Maiti and Kayal [13] for some references. We illustrate the one-
sample prediction problem. Suppose n independent life testing units are put in an experi-
ment. Let x = (x1, ..., xm) be the observed PT-II censored sample. Further, assume that the
censoring scheme is taken as Φ = (Φ1, ...,Φm). Let yi = (yi1, ..., yiΦi) represent the ordered
lifetimes of the units which are censored at the i-th failure xi. Our goal is to predict the fu-
ture observations based on x. We assume that these are y = (yip ; i = 1, ...,m; p = 1, ...,Φi).
The conditional density of y under the given information can be obtained as

f1(y|x, α, β, γ) = αβγp

(
Φi

p

) p−1∑
k=0

(−1)p−k−1

(
p− 1
k

)
y−(β+1)(7.1)

× exp{−γy−β}(1− exp{−γy−β})α(Φi−k)−1

×(1− exp{−γx−β
i })

α(k−Φi), y > xi.

The conditional distribution function is

F1(y|x, α, β, γ) = p

(
Φi

p

) p−1∑
k=0

(−1)p−k−1

Φi − k

(
p− 1
k

)
×
[
1− (1− exp{−γx−β

i })
α(k−Φi)(1− exp{−γy−β})α(Φi−k)

]
.(7.2)

Notice that the posterior predictive density and the distribution functions are respectively
given by

f∗1 (y|x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
f1(y|x, α, β, γ)Π(α, β, γ|x) dα dβ dγ(7.3)

and

F ∗1 (y|x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
F1(y|x, α, β, γ)Π(α, β, γ|x) dα dβ dγ.(7.4)

Thus, the Bayesian predictive estimate of y under the entropy loss function is obtained as

ŷbe = [E(P1(α, β, γ)|x)]−
1
q ,

where

P1(α, β, γ) =
∫ ∞

xi

y−qf1(y|x, α, β, γ) dy.

Note that the above integrals can not be evaluated analytically. Therefore, we have to adopt
numerical technique for the computation of the predictive estimates. In this purpose, we use
importance sampling method which is mentioned in Subsection 6.2. Equation (7.5) can be
computed using the importance sampling method as

ŷBP
be =

[∑1000
i=1 P1(αi, βi, γi)ψ(αi, βi, γi)∑1000

i=1 ψ(αi, βi, γi)

]−1/q

.(7.5)
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Now, we obtain the Bayesian predictive interval (BPI). The prior predictive survival
function is obtained as

S1(t|x, α, β, γ) =
P (y > t|x, α, β, γ)
P (y > xi|x, α, β, γ)

=

∫∞
t f1(u|x, α, β, γ) du∫∞
xi
f1(u|x, α, β, γ) du

.

The posterior survival function is

S∗1(t|x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
S1(t|x, α, β, γ)Π(α, β, γ|x) dα dβ dγ.(7.6)

Using (7.6), we obtain two-sided 100(1− σ)% equal-tail symmetric predictive interval (L,U)
by solving the following non-linear equations

S∗1(L|x) = 1− σ

2
and S∗1(U |x) =

σ

2
.(7.7)

For the algorithm to obtain L and U from the above equations, we refer to Singh and Tripathi
[19].

8. REAL DATA ANALYSIS

In this section, we analyze a real life data set to illustrate our established results. We
consider real life data set representing the window strength in a life test. The data set was
provided by Ed Fuller of the NICT Ceramics Division in December 1993. It contains polished
window strength data. The data set was introduced by Pepi [16]. The data set is presented
below:

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52
25.8 26.69 26.77 26.78 27.05 27.67 29.9 31.11 33.2
33.73 33.76 33.89 34.76 35.75 35.91 36.98 37.08 37.09
39.58 44.045 45.29 45.381

For the purpose of goodness of fit test, we consider various methods such as Bayesian
information criterion (BIC), Akaikes-information criterion (AIC), the associated second-order
information criterion (AICc), negative log-likelihood criterion and Kolmogorov-Smirnov (KS)
statistic. Five distributions such as exponential (Exp), half-logistic (HL), inverse Weibull
(InWE), Weibull (WE) and EGT-II distributions. The values of the MLEs and the five
goodness of fit test statistics are presented in Table 1. It is observed that the values of
test statistics corresponding to the EGT-II distribution are smaller comparing to the other
distributions. Thus, it can be assumed that the given data set follows EGT-II distribution.

Next, we consider the PT-II censoring sample and two different censoring schemes (CS)
as CS-I and CS-II with the failure sample size m = 20 in Table 2. The CS-I is progressive
type-II censoring and CS-II is conventional type-II censoring schemes.

In Table 3, we present the values of the proposed estimates of α, β and γ for different
censoring schemes. Note that CS-III represents for the case of the complete sample. We
assume c1 = 2, c2 = c3 = 4, c4 = 3, c5 = 2 and c6 = 4 while computing the Bayes estimates.
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Table 1: The MLE, BIC, AICc, AIC, negative log-likelihood and KS values for the real data set.

Method Parameter Exp HL InWE WE EGT-II

MLE
Shape

α 55.68475
β 17.18068 4.63630 1.11743

Scale γ 0.03247 0.04961 0.58803 33.67241 198.992

BIC 277.9629 266.8936 260.3572 218.8458 218.6415
AICc 276.6668 265.5976 257.9178 215.4064 215.2285
AIC 276.5289 265.4596 257.4892 214.9779 214.3396
−InL 137.2645 131.7298 126.7446 105.4889 104.1698
KS 0.45878 0.44230 0.47472 0.15257 0.13645

Table 2: PT-II censored data and censoring schemes for the real data set.

(n, m)

(31, 20)

xi

18.83 20.80 21.657 24.05 24.321 25.8 26.78
27.05 27.67 29.9 33.73 33.89 34.76 35.75
35.91 36.98 37.08 37.09 39.58 45.381

Φi

(CS-I)
2 0 0 0 0 0 0
0 0 2 2 0 0 0
0 5 0 0 0 0

(CS-II)
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 11

The Bayes estimates with respect to the ELF are computed for two distinct values of q, say
−0.5 and 0.5, which are denoted by (̂·)

EN

be |−0.5 and (̂·)
EN

be |0.5, respectively. Further, under the
squared error, weighted squared error and precautionary loss functions, the Bayes estimates
are presented, which are respectively denoted by (̂·)

SE

be , (̂·)
WS

be and (̂·)
PL

be . We use (̂·)EM and
(̂·)StEM for the MLEs by the EM and StEM algorithms, respectively. The sixth column
presents three different methods such as Lindley’s approximation (LI), importance sampling
(IS) and Metropolies-Hastings algorithm. In Table 4, the 95% various confidence and credible
intervals for α, β and γ are presented. These are the asymptotic (asy) confidence intervals
based on the NA to MLE and NL, the bootstrap (t and p) confidence intervals and the HPD
credible intervals. Table 5 reports one-sample predictive observations and 95% predictive
interval estimates of the lifetime of first two units at i-th failure. The following points can be
pointed out from Tables 3, 4 and 5:

• From Table 3, we notice that the estimated values of the parameters obtained based
on MH algorithm are smaller compared to that obtained using LI and IS methods.
The Lindley’s method provides largest Bayes estimates with respect to WSELF.
For PLF, we get largest Bayes estimates when IS method is used. Under the ELF
with q = −0.5, MH method yields largest estimates. It is also observed that the
estimated values for q = 0.5 are always smaller than that for q = −0.5.
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Table 3: Estimates of the parameters α, β and γ for the real data set.

(n, m) (̂·)EM

Schemes (̂·)StEM

(̂·)
SE

be (̂·)
WS

be (̂·)
PL

be (̂·)
EN

be |−0.5 (̂·)
EN

be |0.5

(31, 20)

92.76551 LI 91.16425 92.34685 91.94697 91.46521 91.13645
α 92.64304 MH 90.26894 90.13469 91.23567 92.2641 91.56770

IS 93.10641 94.34077 96.11584 92.36499 91.82408

0.96694 LI 0.94365 0.99643 0.94895 0.93482 0.91142

(CS-I)
β 0.99004 MH 0.90876 0.90397 0.93499 0.96315 0.94315

IS 0.92465 0.95157 0.95708 0.93145 0.91349

147.2729 LI 144.26052 146.48510 143.05582 143.89825 143.63215
γ 147.5308 MH 141.68496 140.99953 142.53064 143.10289 142.94891

IS 144.70046 147.83406 148.31648 144.32213 141.70526

(31, 20)

29.74175 LI 28.16496 29.03008 27.69961 27.16431 26.92482
α 29.31584 MH 26.64515 26.31584 27.00948 27.67598 27.20806

IS 28.16845 31.06412 31.47601 28.10648 26.16004

0.78636 LI 0.73168 0.765461 0.74524 0.72886 0.71145

(CS-II)
β 0.79857 MH 0.68065 0.641328 0.69546 0.70094 0.69088

IS 0.71094 0.71643 0.71948 0.68315 0.66081

66.33405 LI 65.10594 65.84694 63.40869 64.28256 63.81425
γ 66.94850 MH 61.16764 60.46131 63.16512 63.84247 61.23548

IS 63.16185 67.99107 68.57093 66.91354 64.09728

(31, 31)

55.68475 LI 54.06889 54.76121 53.16428 53.81254 53.46942
α 55.40823 MH 51.68434 51.20809 53.46849 55.64813 51.65741

IS 53.64794 54.58215 54.61348 52.16310 50.82622

1.11743 LI 1.10144 1.12465 1.10412 1.09526 1.09034

(CS-III)
β 1.13526 MH 1.07164 1.04316 1.08797 1.08964 1.05152

IS 1.11364 1.15049 1.15942 1.11310 1.10034

198.992 LI 194.56894 197.16421 196.46852 192.84542 192.08806
γ 199.35641 MH 191.47964 191.08871 194.94568 195.81774 192.67880

IS 195.39486 196.03513 196.37460 193.81345 191.10130

• Table 4 shows that among the asymptotic intervals, estimates obtained via NA
method performs better than that obtained using NL method. Here, performance
has been measured in terms of the length. In boot type intervals, Boot-t provides
better confidence interval estimates than Boot-p method. Considering all the five
methods together, it is observed that the HPD method outperforms others. Further,
the lengths of the confidence and credible intervals decrease when effective sample
size increases. The length of the interval estimates under CS-I is smaller than that
under CS-II. Also, the lengths in the scheme CS-III is smaller compared to the
other schemes. When progressive type-II censoring and type-II censoring plans are
compared, the progressive type-II plan provides better result.

• From Table 5, we see that the values of the predictive estimates and prediction
lengths increase as i and p increase. Further, when the effective sample size (m)
increases, the predictive estimate values and predictive interval lengths decrease.
The PT-II plan provides smaller length of the interval estimates compared to the
type-II scheme.
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Table 4: 95% confidence and credible intervals of α, β and γ for the real data set.

(n, m)
Schemes

Methods α β γ

(31, 20)

Asy
NA (87.96352, 97.39403) (0.50153, 2.85852) (138.13641, 159.88704)
NL (88.31042, 97.82276) (0.61582, 3.12609) (135.99003, 158.96112)

(CS-I) Boot
t (85.10587, 96.93401) (0.68148, 3.44237) (137.46815, 161.96911)
p (88.73142, 99.93547) (0.70824, 3.64435) (134.69740, 161.75805)

HPD (89.50718, 98.16640) (0.83540, 2.71149) (138.74876, 158.76592)

(31, 20)

Asy
NA (24.16824, 33.83525) (0.46815, 3.12882) (23.16784, 45.18696)
NL (25.34025, 35.07839) (0.51672, 3.33375) (25.43152, 48.55777)

(CS-II) Boot
t (25.76253, 36.60352) (0.54157, 3.57718) (22.08264, 45.74319)
p (23.15687, 34.76890) (0.55481, 3.71807) (23.56840, 47.79902)

HPD (25.84508, 34.94702) (0.76109, 2.86216) (25.94206, 47.15132)

(31, 31)

Asy
NA (47.16494, 55.78248) (0.81995, 2.68102) (189.18240, 205.44600)
NL (49.15205, 57.99300) (0.86454, 2.76610) (183.49482, 201.24983)

(CS-III) Boot
t (46.85641, 56.57569) (0.84099, 2.79355) (185.10064, 204.99083)
p (47.52215, 57.84276) (0.84672, 2.89734) (185.76185, 206.85296)

HPD (48.77806, 55.97009) (0.92187, 2.21199) (188.64287, 202.75298)

Table 5: One-sample predicted values and 95% prediction intervals for future observations
for the real data set.

(n, m)
Scheme

i p (̂·)
SE

be (̂·)
WS

be (̂·)
PL

be (̂·)
EN

be |−0.5 (̂·)
EN

be |0.5 Interval

(31, 20)
1

1 0.09415 0.11180 0.13157 0.11097 0.10894 (0.00769, 0.13465)
2 0.13642 0.13758 0.14064 0.12771 0.11756 (0.02482, 0.17559)

(CS-I)
10

1 0.74288 0.81256 0.88157 0.80526 0.79157 (0.60408, 1.02431)
2 0.77051 0.78109 0.78698 0.75281 0.75101 (0.66826, 1.14794)

(31, 20)
1

1 0.13065 0.16848 0.17582 0.14033 0.11005 (0.07534, 0.26626)
2 0.14359 0.18157 0.18278 0.18072 0.16121 (0.09077, 0.31233)

(CS-II)
10

1 0.70204 0.76241 0.76587 0.76112 0.71089 (0.48262, 1.08883)
2 0.74885 0.79485 0.79948 0.74158 0.71826 (0.53170, 1.16397)

(31, 31)
1

1 0.02465 0.03110 0.03345 0.03197 0.03128 (0.00894, 0.04656)
2 0.06004 0.06422 0.06784 0.05682 0.04997 (0.01348, 0.09229)

(CS-III)
10

1 0.70909 0.71184 0.71648 0.70482 0.67158 (0.51582, 0.77149)
2 0.72187 0.75001 0.75389 0.72807 0.72554 (0.62877, 0.91890)

Figure 1(a) presents the histogram and fitted probability density plots of five models
based on real data set. From the graphs, we visualize that the EGT-II distribution covers
the maximum area of the data set comparing to other distributions. The scaled total time on
test (TTT) plot reveal that the hazard rate function of the fitted distribution is upside-down
bathtub in Figure 1(b). The profile of the log-likelihood function of α, β and γ for real data
set is shown in Figure 2(a, b, c).
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Figure 1: The first figure (in left) is the plots of the histogram and probability density
functions of the fitted EGT-II, WE, Exp, HL, InWE models for the real data set.
The second figure (in right) is for the scaled TTT plot.
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Figure 2: The profile log-likelihood plots for α (left), β (middle) and γ (right) for real data set.

9. OPTIMAL PT-II CENSORING SCHEME

In this section, we obtain optimum progressive censoring scheme from different cen-
soring schemes for which the value of the chosen criterion is minimum. At first, we need to
define a criterion. Define

Cr1(Φ) = ED{VPos(Φ)(lnTp)},

where VPos(Φ)(lnTp) is the posterior variance of lnTp, Φ = (Φ1, ...,Φm) is the censoring scheme
and ED is the expectation with respect to the data set. Further, Tp is the p-th quantile of
the EGT-II distribution, which is given by

Tp =
[
−
(

1
γ

)
ln
(
1− (1− p)

1
α

)]−� 1
β

�

.(9.1)

Note that the total number of possible censoring schemes, given by
(

n−1
m−1

)
is finite and large

for fixed n and m. For example, when for n = 30 and m = 20, it is equal to 20030010,
which is quite large. We say that a scheme Φ(1) = (Φ(1)

1 , ...,Φ(1)
m ) is better than another

scheme Φ(2) = (Φ(2)
1 , ...,Φ(2)

m ), if Φ(1) gives more information about the parameters than Φ(2).
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Mathematically, this is equivalent to Cr1(Φ(1)) < Cr1(Φ(2)). We refer to Kundu and Pradhan
[9] and Singh and Tripathi [19] for more discussions in this direction. It is easy to see that
the explicit expressions of the criterion are hard to obtain. Therefore, we use Lindley’s
approximation method. In the criterion, we compute approximated value of VPos(Φ)(ln(Tp)).
We know that

VPos(Φ)(lnTp) = EPos(Φ)[lnTp]2 − (EPos(Φ)[lnTp])2.(9.2)

For simulation purpose, we generate all the parameters α, β and γ from Gamma(5, 5) dis-
tribution. To evaluate both terms in the RHS of (9.2), we apply Lindley’s approxima-
tion method, which is explained in Section 6.1. To approximate EPos(Φ)[lnTp]2, we have
u(α, β, γ) = (lnTp)2. Further,

u1 = − 2(1− p)
1
α ln(1− p) lnTp

α2βγ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

, u2 = −2u(α, β, γ)
β

,

u3 =
2 lnTp

βγ
, u12 = u21 =

4(1− p)
1
α ln(1− p) lnTp

α2β2γ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

,

u31 = u13 = − 2(1− p)
1
α ln(1− p)

α2β2γ2
(
(1− p)

1
α − 1

)
exp{−β lnTp}

,

u32 = u32 =
4 lnTp

β2γ
, u22 =

6u(α, β, γ)
β2

, u33 =
2(1− β lnTp)

β2γ2
,

u11 = − 2(1− p)
1
α ln(1− p)

α4β2γ2
(
(1− p)

1
α − 1

)2
(exp{−β lnTp})2

×
(

(1− p)
1
α

(
(2αγ exp{−β lnTp}) + ln(1− p)

)
(−β lnTp) + ln(1− p)

)
− βγ exp{−β lnTp}

(
2α+ ln(1− p)

)
lnTp.

Other terms in (6.1) are same. In this way, EPos(Φ)[lnTp]2 can be approximated. Similarly,
to compute EPos(Φ)[lnTp], we have u(α, β, γ) = lnTp. Furthermore,

u1 = − (1− p)
1
α ln(1− p)

α2βγ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

, u2 = − lnTp

β
, u3 =

1
βγ
,

u11 =

(
(1− p)

1
α ln(1− p)− γ exp{−β lnTp}

(
ln(1− p)− 2α

(
(1− p)

1
α − 1

)))
α4βγ2

(
(1− p)

1
α − 1

)2
(exp{−β lnTp})2

×(1− p)
1
α ln(1− p), u31 = u13 = 0,

u22 =
2 lnTp

β2
, u33 = − 1

βγ2
, u12 = u21 = − (1− p)

1
α ln(1− p)

α2β2γ
(
(1− p)

1
α − 1

)
exp{−β lnTp}

.

From Table 6, we observe that Φ(3) plan gives maximum information compared to other
plans, when p = 0.25 and (n,m) = (25, 15). So, plan Φ(3) is optimal. Similarly, when (n,m) =
(25, 15), Φ(1) and Φ(2) plans are optimal for p = 0.5, 0.9 and p = 0.75, respectively. In each
censoring scheme, p increases, then the value of criterion increases. Next, for (n,m) = (25, 20),
the plans Φ(2),Φ(3),Φ(1) and Φ(3) are optimal for p = 0.25, 0.5, 0.75 and p = 0.9, respectively.
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Table 6: The values of Cr1(Φ) for different censoring schemes Φ.

(n, m) Φ (Φ1, ..., Φm) p = 0.25 p = 0.5 p = 0.75 p = 0.9

(25, 15)

Φ(1) (10,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 0.74826 0.76445 0.90050 0.92418

Φ(2) (5,0,0,0,0,0,0,0,0,0,0,0,0,0,5) 0.85085 0.86170 0.87642 0.98054

Φ(3) (1,1,1,1,0,1,1,0,0,0,0,1,1,1,1) 0.66523 0.81064 0.91135 0.97068
Type-II (0,0,0,0,0,0,0,0,0,0,0,0,0,0,10) 1.09417 1.14158 1.15333 1.20081

(25, 20)

Φ(1) (5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 0.55135 0.61053 0.67182 0.72992

Φ(2) (2,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1) 0.39408 0.51581 0.71540 0.76204

Φ(3) (1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1) 0.45826 0.47643 0.69471 0.70648
Type-II (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5) 0.63105 0.68846 0.72283 0.78524

10. CONCLUDING REMARKS

In this paper, we studied the problem of estimation and prediction when the lifetime
data follow EGT-II distribution under the constraint that the sample is progressively cen-
sored. First, we proved that the MLEs exist and are unique. Further, it was seen that the
closed form expressions of the MLEs do not exist. Thus, we used EM algorithm. The process
of EM algorithm is little complicated since it requires integrations which need to be com-
puted numerically. So, we next used stochastic version of the EM algorithm for the purpose
of computation of the MLEs. In numerical study, it has been noticed that the performance of
the stochastic EM algorithm is better than that of the EM algorithm. The observed Fisher’s
information matrix was also calculated. This is useful for obtaining the asymptotic confi-
dence intervals. In addition, we used Boot-t and p algorithms for the computation of the
confidence intervals. Bayes estimates were derived. Like the MLEs, the explicit forms of the
Bayes estimates are difficult to obtain. Thus, we adopted three approximation techniques:
(i) Lindley’s approximation method, (ii) Importance sampling method and (iii) Metropolis-
Hastings algorithm. The HPD credible intervals were also proposed. In data analysis, it was
seen that the HPD credible intervals outperform others. The discussions on the elicitation
of the hyper-parameters have been presented. Next, we presented the prediction problem.
Here, we obtained Bayes prediction estimates and the associated Bayesian predictive interval
estimates. Finally, we proposed the use of a criteria for the comparison of different sampling
schemes, and then, pointed out the optimal sampling scheme for the given criterion.
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A. APPENDIX

Theorem A.1. The conditional distribution of zjk for k = 1, ..., Rj given X1 = x1, ...,

Xj = xj has the form

fZ|X(zj |X1 = x1, ..., Xj = xj) = fZ|X(zj |Xj = xj)

=


f(zj : α, β, γ)

1− F (xj : α, β, γ)
, zj > xj

0, elsewhere.

Proof: The proof is straightforward. For details, see Ng et al. [14].

Using Theorem A.1, we can write

E[lnZjk|Zjk > xj , α, β, γ] =

=
αβγ

1− FX(xj : α, β, γ)

∫ ∞

xj

t−β−1 exp{−γt−β} (1− exp{−γt−β})α−1 ln t dt

=
α

β
(
1− exp{−γx−β

j }
)α

∫ 0

1−exp{−γx−β
j }

uα−1 ln
(

ln(u− 1)
γ

)
du,

E[Z−β
jk |Zjk > xj , α, β, γ] =

=
αβγ

1− FX(xj : α, β, γ)

∫ ∞

xj

t−2β−1 exp{−γt−β} (1− exp{−γt−β})α−1 dt

=
α

γ(1− exp{−γt−β})α

∫ 0

1−exp{−γx−β
j }

uα−1 ln(1− u) du,

E[ln(1− exp{−γZ−β
jk })|Zjk > xj , α, β, γ] =

=
αβγ

1−FX(xj : α, β, γ)

∫ ∞

xj

t−β−1 exp{−γt−β} (1−exp{−γt−β})α−1 ln(1− exp{−γt−β}) dt

=
α(

1− exp{−γx−β
j }

)α

∫ 1−exp{−γx−β
j }

0
uα−1 lnu du.
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