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1. INTRODUCTION

Data analytic techniques are very important to explore the structure and the distribu-
tion of the data to enable analysts gaining greater understanding of the raw data. Data is
often collected in large, unstructured volumes from various sources and analysts must first
understand and develop a comprehensive view of the data before using it in further anal-
ysis; see, Healy (2019). Nowadays, data exploration has established as a mandatory phase
in every data science project. Typical plots include scatter plot, box plot, quantile quantile
plot and many more have been used as a graphical approach to learn about distributions,
correlations, outliers, trends, and other data characteristics; see, Tukey (1987), Gandomi and
Haider (2015) and Cumming and Finch (2005). One main advantage of data exploration
graphically is to learn about characteristics and potential problems of a data set without
the need to formulate assumptions about the data beforehand and to foster a quick and a
deep understanding of the data as an important basis for successful and efficient data science
projects; see, Matt and Joshua (2019), Runkler (2020), James et al. (2013), Healy (2019),
and Larson-Hall (2017). The estimation of a distribution function is not only a fascinating
problem by itself, but it also emerges naturally in real-world problems in a variety of scientific
domains including commerce, hydrology, and environmental sciences. As a result, a variety
of nonparametric approaches for tackling this problem have risen in different disciplines; see,
Efromovich (2001), Cheng and Peng (2002), and Charles et al. (2010). The risk term, or nat-
ural hazard, appears to be closely tied to the distribution function in many circumstances.
Scientists want to know the likelihood of a large earthquake, the likelihood of high wind speed
or hurrican, and the hazard of low levels; see, Baszczynska (2016), Xue and Wang (2010),
Babu et al. (2002), Erdogan et al. (2019) and Mombeni et al. (2021).

The population mean absolute deviation (MAD) about any value v can be written as

(1.1) ∆X(v) = E|X − v|, v ∈ R.

This function is usually used as a direct measure of the scale for any distribution about chosen
v such as mean absolute deviation about population mean (µ)

∆X(µ) = E|X − µ|

and mean absolute deviation about population median (M)

∆X(M) = E|X −M |.

These measures offer a direct indication of the dispersion of a random variable about its mean
and median, respectively, and have many applications in different fields; see, Dodge (2002),
Pham-Gia and Hung (2001), Gorard (2005), Elamir (2012) and Habib (2012).

There are two main aims for this article. Since the mean absolute deviation function
characterizes the distribution function and gives a dispersive ordering of probability distribu-
tions, the first aim is to use the mean absolute deviation function to explore the pattern in the
data graphically. The second aim is to use the first derivative of the mean absolute function
to estimate the population distribution function where a new method based on Richardson
extrapolation approach is proposed.
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This article is organized as follows. MAD function representation is explained in Sec-
tion 2. MAD plot is proposed in Section 3. Some uses of MAD function are introduced in
Section 4. Distribution function in terms of MAD is presented in Section 5. Several nonpara-
metric estimation approaches for distribution functions are derived in Section 6. Simulation
study is conducted to study the properties of proposed estimators in terms of average mean
square in Section 7. Ricardson extrapolation approximation is applied to acute toxicity values
in Section 8. Section 9 is devoted to conclusion.

2. MAD FUNCTION AND ITS REPRESENTATION

Let X1, ..., Xn be an independent and identically a random sample from a continuous
distribution function FX(.)(0 < F < 1), density fX(.)(f ≥ 0), mean µ = E(X), median M =
Med(X), standard deviation σ =

√
E(x− µ)2 , indicator function Ii≤k be 1 if i ≤ k, 0 else,

and X(1), ..., X(n) be the corresponding order statistics. Another representation of MAD in
terms of distribution function is given by Munoz-Perez and Sanchez-Gomez (1990) as

(2.1) ∆X(v) = v[2FX(v)− 1] + E(X)− 2E[XIX≤v]

and its first derivative

(2.2) ∆́X(v) = 2FX(v)− 1.

For more details, see, Habib (2012).

Theorem 2.1. The mean absolute deviation about v(v ∈ R) is minimized when v is

the median and it is a convex function.

Proof: Since FX(M) = 0.5, the first derivative of MAD function at median (M) is

zero ∆́X(M) = 0 with positive second derivative ´́∆X(M) = 2fX(M) > 0. Therefore, ∆X(v) =

E|X−v| has a minimum value at v = M . Where ∆́X(v) = 2FX(v)−1 and ´́∆X(v) = 2fX(v) ≥ 0
for all v ∈ R, then ∆X(v) is a convex function.

Munoz-Perez and Sanchez-Gomez (1990) prove that ∆X(v) characterizes the distri-
bution function and give a dispersive ordering of probability distributions as it satisfies the
following conditions: (1) there is only a finite number of discontinuity points in the derivative,
(2) it is a convex function on real line (R), (3) limx→∞ ∆́X(x) = 1 and limx→−∞ ∆́X(x) = −1
and (4) limx→∞[∆X(x)− x] = −E(X), and limx→−∞[∆X(x) + x] = E(X). Since ∆X(v) sat-
isfies the above conditions, there subsists a unique distribution function which has ∆X(v) as
its dispersion function.

3. MEAN ABSOLUTE DEVIATION PLOT (MAD PLOT)

The MAD plot can be introduced as

(3.1) Xaxis = vi, versus Yaxis = ∆X(vi), for each vi = xi and i = 1, ..., n

with two straight lines at
µ− vi and vi − µ.
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This plot represents data on x-axis and the mean absolute deviation at each v = x on the
y-axis that includes mean absolute deviation about mean and median as special cases. In
other words, it is a simple curve plot between the actual data and its mean absolute deviation
at each point. Figure 1 displays the MAD plot for the standard normal distribution using the
quantile function for standard normal from R-software (2021) vi = qnorm(p = (i− 0.5)/n,
µ = 0, σ = 1), and i = 1, ..., 100 with two straight lines µ− vi and vi−µ that show the degree
of approximation with ∆X(vi).
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Figure 1: MAD function plot for standard normal distribution using
qnorm((i− 0.5)/n), and i = 1, ..., 100.

For the standard normal distribution, the MAD function formulates a parabola curve,
or a quadratic function that has a minimum at median ∆X(M) = ∆Med (mean absolute
deviation about median) and reflects a lot of information that includes:

• the location measure median (M) on x-axis is at min ∆X(v) and the mean (µ) is at
the intersection of straight lines,

• the scale measure ∆X(M) (mean absolute deviation about median) is at the mini-
mum of the MAD function,
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• the right MAD branch ∆X(v)Iv>M and its maximum ∆R
Max give an indication of

spread out of the data and tail length in the right side of median,

• the left MAD branch ∆X(v)Iv<M and its maximum ∆L
Max give an indication of

spread out of the data and tail length in the left side of median,

• two straight lines µ− vi and vi − µ give the degree of approximation with ∆X(vi),

• the wideness between MAD function, median, straight lines µ− vi and vi − µ (right
wideness WR, and left widenes WL) give an indication of the direction, degree of
skewness and peakedness,

• the cluster of data may give an indication about modality.

Furthermore, the MAD function could be divided to the right MAD function (∆+
X(v))

and the left MAD function (∆−X(v)) as

∆X(v) = E|X − v| = E(X − v)+ + E(X − v)− = ∆+
X(v) + ∆−X(v)

and

∆+
X(v) = E[(X − v)IX>v] and ∆−X(v) = E[(v −X)IX≤v].

The relationship between the straight lines and the MAD functions can be written as

E(X − v) = ∆+
X(v)−∆−X(v).

Therefore, when v = µ, we have ∆+
X(v) = ∆−X(v), also if v = M , we have µ−M = ∆+

X(M)−
∆−X(M) that could be considered as a measure of skewness; see, Munoz-Perez and Sanchez-
Gomez (1990) and Habib (2012).

4. USES OF MAD FUNCTIONS

4.1. Wideness and skewness

The area between the right straight line, median and right MAD branch can be defined
in standard form as

WR = ∆+
X(M)/σ

and

∆+
X(M) = E[(X −M)IX>M ].

We may consider WR as the right wideness measure which reflect how much the right MAD
branch is away from the right straight line (vi − µ) and median. Since ∆ ≤ σ by Jensen’s
inequality, it is straightforward to prove that 0 ≤ WR ≤ 1. In terms of data, when the value
of WR is near 1 it indicates big wideness or stretch out from the median, in other words, the
data will be spread out far away from median in the right side. If the value of WR is near
0 it indicates small wideness from the median, in other words, the data will be concentrated
near the median in the right side.
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Also, the area between the left straight line, median and the left MAD branch (left
wideness) can be defined in standard form as

WL = ∆−X(M)/σ

and
∆−X(M) = E[(M −X)IX≤M ].

We may consider WL as the left wideness measure which reflect how much the left MAD
branch is away from left straight line (µ− vi) and median. It is straightforward to prove that
0 ≤ WL ≤ 1. In terms of data, when the value of WL is near 1 it indicates big wideness or
stretches out from the median. In other words, the data will be spread out far away from
median in the left side. If the value of WL is near 0 it indicates small wideness from the
median, in other words, the data will be closed to the median in the left side.

The general measure of wideness for a distribution in terms of right and left wideness
may be defined as

W = WL + WR = (∆−X(M) + ∆+
X(M))/σ = ∆X(M)/σ.

We may consider W as a measure of total wideness between MAD function and the two
straight lines. This measure will be very useful for symmetric distributions where it may
be related to what is called platykurtic or flatness that had been used as a test for normal
distribution; see, Geary (1935) and Elamir (2012). The interpretation of this measure es-
pecially for symmetric distributions in terms of data can be as follows. If W is near 1, the
distribution of the data is “strong curved inwards”, near zero strong “curved outwards”, and
0.798 for normal distribution. The tightness between MAD function and the two straight
lines may be defined as a complement of wideness as

L = 1−W = (σ −∆X(M))/σ.

The standardized distance between the standard deviation of the population and the mean
absolute deviation about median. This measure is very useful for symmetric distributions
where it may be related to what is called leptokurtic (peakedness). As σ getting far away from
∆X(M), the more leptokurtic (more data concentration about median). Since ∆X(M) ≤ σ,
then 0 ≤ L ≤ 1. The values of WR, WL, W and L are presented in Table 1 for some selected
symmetric distributions. The distributions that have big flatness as Beta (1, 1) and Beta
(0.1, 0.1) have W near 1 while the distributions with strong peakedness such as t(df = 3)
have W with a low value.

Table 1: Wideness and leptokurtic for some symmetric distributions.

Distribution WR WL W L

Beta(0.1,0.1) 0.483 0.483 0.966 0.034
Beta(1,1) 0.433 0.433 0.866 0.134
Normal 0.399 0.399 0.798 0.202
Logistic 0.382 0.382 0.765 0.235
Laplace 0.355 0.355 0.71 0.29
t(df = 3) 0.326 0.326 0.652 0.348
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With respect to the tails of the distribution, different measures may be proposed from
Figure 1 as

TR = ∆R
Max/σ and TL = ∆L

Max/σ.

Alternatively,

TR1 = σ/∆R
Max and TL1 = σ/∆L

Max.

where

∆R
Max = Max.[(v −X)IX≤v] and ∆L

Max = Max.[(X − v)IX>v].

All values of these measures are more than or equal 0 with no upper value. These measures
give an indication about tail length. For the first two measures, the small values around 1
indicate short tails, around 3 medium tails while larger values indicate long tail. For the other
two measures TR1 and TL1, the values around zero indicate very long tails, values around 0.30
indicate medium tails while values around one indicate short tails. Note that the values of
the above measures will depend on the sample size. The first measure of skewness in terms
of wideness can be defined as

SK1 = WR −WL = (µ−M)/σ.

This measure is equivalent to Groeneveld and Meeden (1984) measure of skewness. The
second measure of skewness in terms of tailedness can be proposed as

SK2 = TR − TL = (∆R
Max −∆L

Max)/σ.

Alternatively,

SK21 = TL1 − TR1 = σ/∆L
Max − σ/∆R

Max.

Figure 2 displays a MAD plot for Beta (0.1,0.1), normal, Laplace and exponential
distributions using their quantile function for each distribution in R-software with n = 300.
It may conclude that:

• the location measures median and mean values are located at minimum of MAD
curve and intersection between two straight lines on x axis, respectively, while the
dispersion measure ∆X(M) is located on y axis at minimum of MAD curve,

• tails measures (TR and TL) near 1 may give an indication of short tail such as beta
distribution while around 3 may give an indication of medium tail such as normal
distribution,

• equal wideness (WR, WL) may give an indication of symmetric distributions such
as beta, normal and Laplace, while not equal measures are indication of skewed
distributions such as exponential,

• for symmetric distributions, a value of wideness as 0.966 may give an indication
of strong “curved inwards” such as beta (0.1,0.1) and value as 0.71 may give an
indication of data close to the median.
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Figure 2: MAD plot for Beta (0.1,0.1), normal, Laplace and exponential
distributions using quantile function for each distribution in
R-software with p = (i− 0.5)/n, and i = 1, ..., 300.

5. DISTRIBUTION FUNCTION IN TERMS OF MAD

According to Munoz-Perez and Sanchez-Gomez (1990), the MAD function can be
rewritten in terms of indicator function as

∆X(v) = E[(X − v)IX>v] + E[(v −X)IX≤v].

The first derivative of ∆X(v) with respect to v can be obtained as

∆́X(v) = −[1− FX(v)] + FX(v).

Therefore, the distribution function can be re-expressed in three MAD functions as follows.
In terms of the derivative of MAD function (∆́X(v)) as

(5.1) FX(v) = 0.5 + 0.5∆́X(v).
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In terms of the derivative of right MAD function (∆́+
X(v)) as

(5.2) FX(v) = 1 + ∆́+
X(v).

Finally, in terms of the derivative of left MAD function as

(5.3) FX(v) = ∆́−X(v).

The right and left MAD can characterize the distribution function because they are primeval
function of Fx; see, Munoz-Perez and Sanchez-Gomez (1990). Figure 3 displays the MAD
functions (∆X(v), ∆́+

X(v) and ∆́−X(v) plot of standardized data from beta, exponential, Laplace
and normal distributions. It may conclude that:

• ∆́−X(v) is monotone increasing function with minimum 0 and intersection with ∆́+
X(v)

at mean,

• ∆́+
X(v) is monotone decreasing function with minimum 0 and intersection with

∆́−X(v) at mean,

• ∆́−X(v) and ∆́+
X(v) have joint points with ∆X(v) at extreme ends.
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q = (i− 0.5)/n and n = 100.
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The most common non-parametric estimator for the underlying distribution function
F is specified by the empirical cumulative distribution function (ecdf). The ecdf is defined
by

F̂n(x) =
1
n

n∑
i=1

IXi≤x.

F̂n(x) has good statistical properties such as: (1) it is a nondecreasing function with jumps
of size 1/n at each order statistic, (2) it is bounded between zero and one, (3) it is first order
efficient based on minimax criteria, for every x, h = nF̂n(x) has a binomial distribution (n, p =
FX(x)), (4) and for large n,

√
n(F̂n(x)− F (x)) ∼ N(0, FX(x)(1− FX(x)); see Dvoretzky

et al. (1956), Lehmann and Casella (1998), and Csaki (1984). Furthermore, the empirical
distribution function is the nonparametric maximum likelihood estimator of F and has an
important role in nonparametric bootstrap and simulation; see, Haddou and Perron (2006)
and Efron and Tibshirani (1993).

6. ESTIMATION OF DISTRIBUTION FUNCTION USING MAD

When it is difficult to analytically obtain the derivative of the function ∆−X(v)

(6.1) FX(v) = lim
h→0

∆−X(v + h)−∆−X(v)
h

.

The numerical derivative can be used to obtain a good approximation to the true function
FX(v). In the following we assume that this limit exists, i.e., ∆−X(v) is differentiable at x = v.
By using the numerical differentiation, it could consider nonparametric estimators of the
population distribution function FX(v) using a random sample X1, ..., Xn of size n. Consider
the pairs of data

(xi = x(i), yi, i = 1, ..., n),

where x(i) is the observed order data and yi is the estimated left MAD function that can be
obtained from data as

yi = g(x(i)) = ∆̂−X(v) = Ê[(v − x)Ix≤v] =
1
n

n∑
j=1

(vi − xj)Ixj≤vi for vi = x(i), i = 1, ..., n.

The nonparametric estimates of FX(v) can be derived numerically using several approaches
as follows.

6.1. Forward difference approach

By using Taylor series,

g(x + h) = g(x) + ǵ(x)h +
´́g(x)
2

h2 + ···+ gk−1(x)
(k − 1)!

hk−1.

See, Burden and Faires (2011) and Levy (2012).
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The first derivative in terms of first two terms,

ǵ(x) ≈ g(x + h)− g(x)
h

− h2

2
´́g(ζ), ζ ∈ (x, x + h).

This is the first order approximation O(h). Therefore, a forward difference approach is

ǵ(x) ≈ gi+1 − gi

h
+ O(h).

By considering h = xi+1 − xi and with one-sided 1 at the endpoints of the data set, an
estimation of FX(v) can be approximated by two terms Taylor series expansion as

(6.2) F̂O(v) =


yi+1 − yi

xi+1 − xi
, i = 1, ..., n− 1,

1, i = n.

Theorem 6.1. With one-sided 1 at the endpoint of the data set, the forward difference

approach is

(6.3) F̂O(v) =


i

n
, i = 1, ..., n− 1,

1, i = n.

Proof: By considering yi = 1
n

∑n
j=1(vi − xj)Ixj≤vi for each vi = xi, i = 1, ..., n. For

v1 = x1 then y1 = 0, for v2 = x2 then y2 = 1
n(x2 − x1), for v3 = x3 then y3 = 1

n [(x3 − x1) +
(x3 − x2)] = 1

n [2x3 + ny2 − x2 − x2] = 1
n [2(x3 − x2) + ny2], ... for vi = xi then yi = 1

n [(xi −
x1) + ···+ (xi − xi−1)] = 1

n [(i− 1)(xi − xi−1) + nyi−1], therefore,

yi − yi−1 =
(i− 1)

n
(xi − xi−1), i = 2, ..., n

and
yi+1 − yi =

i

n
(xi+1 − xi), i = 1, ..., n− 1.

This shows that the forward difference approach for the left MAD function is just the empirical
distribution function i/n, i = 1, ..., n and has equal jumping value 1/n.

6.2. Backward difference approach

Similarly, a backward differencing estimation of FX(v) can be approximated by two
terms Taylor series expansion as

(6.4) F̂B(v) =


yi − yi−1

xi − xi−1
, i = 2, ..., n,

0, i = 1.

For more details, see, Burden and Faires (2011) and Levy (2012).
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Theorem 6.2. With one-sided 0 at the endpoint of the data set, the backward dif-

ference approach is

(6.5) F̂B(v) =


i− 1

n
, i = 2, ..., n,

0, i = 1.

Proof: By noting that yi − yi−1 = (i−1)
n (xi − xi−1), i = 2, ..., n.

This shows that the backward difference approach for the left MAD function is just the
empirical distribution function i−1

n , i = 1, ..., n and has equal jumping value 1/n.

6.3. Centre difference approach

A more accurate scheme can be derived using Taylor series

g(x + h) = g(x) + ǵ(x)h +
´́g(x)
2

h2 +
g(3)(ζ1)

6
h3

and

g(x− h) = g(x)− ǵ(x)h +
´́g(x)
2

h2 − g(3)(ζ2)
6

h3.

By subtracting, the second order approximation (O(h2)) of the first derivative is

ǵ(x) =
g(x + h)− g(x− h)

2h
− h2

6
g(3)(ζ) =

g(x + h)− g(x− h)
2h

+ O(h2), ζ ∈ (x− h, x + h).

With two-sided 1/n and (n− 1)/n at the endpoints of the data set, an estimate of FX(v) can
be approximated by Taylor series expansion as

(6.6) F̂C(v) =



y2 − y1

x2 − x1
, i = 1,

yi+1 − yi−1

xi+1 − xi−1
, i = 2, ..., n− 1,

yn − yn−1

xn − xn−1
, i = n.

Theorem 6.3. With two-sided 1/n and (n− 1)/n at the endpoints of the data set,

the centre difference approach is

(6.7) F̂C(v) =



1
n

, i = 1,

i

n
− xi − xi−1

n(xi+1−xi−1)
, i = 2, ..., n− 1,

n− 1
n

, i = n.

Proof: By noting that yi − yi−1 = (i−1)
n (xi − xi−1), i = 2, ..., n.
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This shows that the centre difference approach does not have an equal jumping function,
but it is jumping by unequal quantity that depends on the ratio (xi − xi−1)/n(xi+1 − xi−1).
Note that (xi − xi−1)/n(xi+1 − xi−1) is less than 1 and tends to 0 for n →∞. Also, noting
that for n = 2, ..., n− 1, we have∣∣∣F̂C(v)− F̂n(v)

∣∣∣ =
∣∣∣∣ i

n
− (xi − xi−1)

n(xi+1 − xi−1)
− i

n

∣∣∣∣ =
(xi − xi−1)

n(xi+1 − xi−1)
<

1
n

.

F̂C(v) is strongly uniformly consistent as n →∞; see, Serfling (1980).

6.4. FC-Hermite approach

With one-sided difference at the endpoints of the data set, an accurate estimate of FX(v)
can be proposed by what is known as FC-Hermite approach or Hermite spline interpolation
from Fritsch and Carlson (1980) and “splinefun” given in stats-package R-software (2021) as

(6.8) F̂FCH(v) =



y2 − y1

x2 − x1
, i = 1,

0.5
(

yi+1 − yi−1

xi+1 − xi−1
+

yi − yi−1

xi − xi−1

)
, i = 2, ..., n− 1,

yn − yn−1

xn − xn−1
, i = n.

It can be noted that this approach combines the forward and backward approaches by using
three data points at i + 1, i and i− 1. The FC-Hermite approach can be rewritten in a very
simple form as

F̂FCH(v) =



1
n

, i = 1,

2i− 1
2n

, i = 2, ..., n− 1,

n− 1
n

, i = n.

This approach has equal jumping value 1/n except for first and last values and is related to
Hazen (1914) plotting position. Also, note that for n = 2, ..., n− 1, we have

∣∣∣F̂FCH(v)− F̂n(v)
∣∣∣ =

∣∣∣∣ i

n
− 0.5

n
− i

n

∣∣∣∣ =
1
2n

<
1
n

.

F̂FCH(v) is strongly uniformly consistent as n →∞; see, Serfling (1980).

6.5. Forward-backward-center approach

It might be very useful to use the combination of different approaches to increase
accuracy of distribution function estimation. Another proposed estimate for FX(v) can be
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obtained by combining forward, backward and centre approaches as

(6.9) F̂OBC(v) =



y2 − y1

x2 − x1
, i = 1,

1
3

(
yi − yi−1

xi − xi−1
+

yi+1 − yi−1

xi+1 − xi−1
+

yi+1 − yi

xi+1 − xi

)
, i = 2, ..., n− 1,

yn − yn−1

xn − xn−1
, i = n.

This can be rewritten as

F̂OBC(v) =



1
n

, i = 1,

3i− 1
3n

− (xi − xi−1)
3n(xi+1 − xi−1)

, i = 2, ..., n− 1,

n− 1
n

, i = n.

This approach uses three data points at i− 1, i, and i+1 and has an advantage of having non
equal jumping values. Also, note that for n = 2, ..., n− 1, we have∣∣∣F̂OBC(v)− F̂n(v)

∣∣∣ =
∣∣∣∣ i

n
− (xi − xi−1)

3n(xi+1 − xi−1)
− i

n

∣∣∣∣ =
1
3n

∣∣∣∣1− (xi − xi−1)
(xi+1 − xi−1)

∣∣∣∣ <
1
n

.

F̂OBC(v) is strongly uniformly consistent as n →∞; see, Serfling (1980).

6.6. Richardson extrapolation approach

When applying low order formulas, Richardson’s extrapolation is employed to achieve
high accuracy results. As pointed out by Burden and Faires (2011), Richardson extrapolation
is significantly more effective with even power than when all powers of h are used because
the averaging process creates results with errors O(h2), O(h4) and O(h6), ..., with essentially
no increase in computation, over the results with errors, O(h), O(h2), O(h3), ...; see, Burden
and Faires (2011).

Theorem 6.4. An improved approximation for distribution function estimation based

on Richardson extrapolation is

(6.10) F̂R(v) = ǵ(x) =
22p1G(h)−G(2h)

22p1 − 1
+ O(h2p2).

Proof: Assume that G(h) be a difference formula with step-size h, approximating ǵ(x)
as

G(h) = ǵ(x) + a1h
2p1 + a2h

2p2 + a3h
2p3 + ···

Note p1 < p2 < p3, ... and ai are constants. Therefore,

ǵ(x) = G(h)− a1h
2p1 − a2h

2p2 − a3h
2p3 − ··· = G(h) + O(h2p1).



Data analytics and distribution function estimation via MAD function 93

Hence, if we consider G(h) as an approximation to ǵ(x), the error is O(hp1). Sure, if h tends
to zero, G(h) → ǵ(x). If G(h) is computed for step-size 2h, then

G(2h) = ǵ(x) + a122p1h2p1 + a222p2h2p2 + a322p3h2p3 + ···

Multiplying G(h) by 22p1 and subtract from G(2h) we obtain

ǵ(x) =
22p1G(h)−G(2h)

22p1 − 1
+

[
a222p1 − a222p2

]
h2p1 + ··· = 22p1G(h)−G(2h)

22p1 − 1
+ O(h2p2).

Hence,

ǵ(x) ≈ 22p1G(h)−G(2h)
22p1−1

.(6.11)

This new approximation is of order O(h2p2).

The estimate F̂R(v) can be simply obtained from R software (package “pracma”; see,
Borchers, 2021) using function “numdiff (f=function, x)”. Because F̂R(v) is bounded by 0
and 1 and estimated numerically, it may not become in some cases nondecreasing. In these
cases, F̂R(v) needs to be adjusted to become monotonic nondecreasing. One of the good
methods that can be used is bounded isotonic regression introduced by Barlow et al. (1972)
and Balabdaoui et al. (2009). The PAVA algorithm has been used to find this solution and has
been implemented in the R package OrdMonReg (Balabdaoui et al., 2009) under the function
BoundedIsoMean; see, Balabdaoui et al. (1980). This function can produce an estimate that is
bounded by 0, 1 and monotone nondecreasing. The adjusted F̂Ra(v) is estimated via function

F̂Ra = BoundedIsoMean(y = F̂R(v), w = 1/n, a = 0, b = 1)

based on OrdMonReg package in R software.

Theorem 6.5. The Richardson extrapolation estimator F̂Ra(v) is strongly uniformly

consistent

sup
v

∣∣∣F̂Ra(v)− FX(x)
∣∣∣ → 0 w.p.1.

Proof: Let Fn(v) be the empirical distribution function. It may write∣∣∣F̂Ra(v)− FX(x)
∣∣∣ ≤ ∣∣∣F̂Ra(v)− Fn(v)

∣∣∣ + |Fn(v)− FX(v)|.

It is well known from Serfling (1980) that

sup
v

∣∣∣F̂n(v)− FX(x)
∣∣∣ → 0 w.p.1,

and
sup

v

∣∣∣F̂Ra(v)− Fn(v)
∣∣∣ ≤ 1

n

tends to 0 when n →∞. Therefore,

sup
v

∣∣∣F̂Ra(v)− FX(x)
∣∣∣ → 0 w.p.1.
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Theorem 6.6. The Richardson extrapolation estimator F̂Ra(v) has an asymptotic

normal distribution as

√
n
(
F̂Ra(v)− FX(v)

)
d−→ N(0, FX(v)(1− FX(v))).

Proof: Let Fn(v) be the empirical distribution function and FX(v) be the true func-
tion. It is well known that; see, Serfling (1980),

√
n
(
F̂n(v)− FX(v)

)
d−→ N(0, FX(v)(1− FX(v))).

Then √
n
(
F̂Ra(v)− Fn(v)

)
≤ 1√

n
.

As n →∞
√

n
(
F̂Ra(v)− FX(v)

)
d−→ N(0, Fx(v)(1− FX(v))).

7. SIMULATION

Simulation study is conducted to evaluate the performance of the proposed approaches.
Five mixture normal distributions that used in Xue and Wang (2010) are implemented to
compare the proposed approaches results with their results. These distributions are Gaus-
sian distribution (G), distribution no. 3 (strongly skewed distribution (SS)), distribution
no. 5 (outlier (OU)), distribution no. 7 (separated bimodal distribution (SB)), distribution
no. 14 (smooth comb (SC)). These distributions cover a wide range of shapes and they are
given in Table 2, for more details; see, Marron and Wand (1992). From every distribu-
tion, 1000 simulated samples of sizes 20, 50 and 200 are generated, respectively. The es-
timators F̂ ∗n (empirical), F̂O (forward), F̂B (backward), F̂C (centre), F̂FCH (FC-Hermite),
F̂OBC (forward-backward-centre) and F̂Ra (adjusted Richardson extrapolation) are computed.

Table 2: Distribution functions used in the simulation study.

Name Distribution

Standard normal distribution (G) N(0, 1)

Strongly skewed distribution #3 (SS)
P7

l=0
1
8
N
�
3
��

2
3

�l − 1
�
,
�

2
3

�2l
�

Outlier distribution #5 (OU) 1
10

N(0, 1) + 1
10

N
�
0,
�

1
10

�2�
Separated bimodal distribution #7 (SB) 1

2
N
�
− 3

2
,
�

1
2

�2�
+ 1

2
N
�

3
2
,
�

1
2

�2�

Smooth comb #14 (SC)
P5

l=0

�
25−l

63

�
N

�
65−96/2l

21
,
�

32/63

2l

�2
�

It should be noted that these estimators are not smoothed, and they will be compared with
empirical F̂ ∗n and smoothed estimators (linear spline (PS1), cubic spline (PS3), constrained
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linear spline (CPS1), and constrained cubic spline (CPS3)) given in Xue and Wang (2010) in
terms of averaged squared errors (ASE) that is defined as

ASEF̂ =
1
n

n∑
i=1

[
F̂X(vi)− FX(vi)

]2
.

Table 3: Averaged squares errors (ASE) of all estimators (×103).

n PS1∗ PS3∗ CPS1∗ CPS3∗ F̂ ∗
n F̂O F̂B F̂C F̂OBC F̂FCH F̂Ra

G 20 6.97 6.86 8.08 7.17 8.53 8.48 8.56 8.70 8.09 7.84 7.42
50 2.87 2.76 3.13 2.97 3.29 3.31 3.30 3.35 3.24 3.19 2.99
200 0.82 0.75 0.83 0.78 0.84 0.84 0.83 0.83 0.82 0.81 0.77

SS 20 8.07 7.36 8.70 7.89 9.02 8.58 8.66 8.89 8.21 7.90 7.24
50 3.38 2.98 3.33 3.25 3.51 3.42 3.32 3.42 3.30 3.26 3.17
200 0.84 0.79 0.83 0.82 0.84 0.84 0.84 0.83 0.83 0.83 0.83

OU 20 8.25 8.10 8.47 9.20 8.71 8.52 8.47 8.80 8.16 7.92 7.92
50 3.38 3.33 3.41 3.38 3.46 3.32 3.32 3.38 3.27 3.22 3.22
200 0.78 0.77 0.79 0.82 0.81 0.78 0.78 0.79 0.78 0.77 0.77

SB 20 8.07 7.86 8.39 8.04 8.56 8.93 7.82 8.60 8.00 7.73 7.01
50 3.19 3.12 3.20 3.14 3.32 3.37 3.15 3.31 3.20 3.16 2.92
200 0.79 0.77 0.79 0.78 0.81 0.84 0.83 0.84 0.83 0.82 0.79

SC 20 8.20 7.80 8.28 7.98 8.56 8.62 8.48 8.82 8.14 7.85 7.18
50 3.23 3.19 3.27 3.25 3.36 3.34 3.39 3.43 3.31 3.26 3.25
200 0.81 0.79 0.81 0.83 0.82 0.82 0.84 0.84 0.83 0.80 0.82

∗ indicate that the results in these columns are from Xue and Wang (2010), G: standard normal, SS: strongly
skewed, OU: outliers, SB: separated bimodal, SC, smooth com (PS1), cubic spline (PS3), constrained linear
spline (CPS1), and constrained cubic spline (CPS3).

The results of the simulation study are given in Table 3 that illustrates that:

• The ASE decreases for all estimators with increasing n,

• The estimators F̂O, F̂B, and F̂C have almost the same ASE as F̂ ∗n and this is
expected where all of them are some types of general class of empirical functions;
see Cunnane (1978) and Hosking and Wallis (1995),

• The estimator F̂OBC has improved ASE over classical empirical estimators, for ex-
ample, if the distribution is normal and sample size is 20, there is improvement
about 5% in ASE over F̂ ∗n, F̂O, F̂B,

• The estimator F̂FCH is surprised as it is very simple and has a very good improve-
ment in terms of ASE. In all cases, there is an improvement about 10% in ASE over
F̂ ∗n, F̂O, F̂B, about 4% over F̂C , and less improvement about 2% than F̂Ra,

• The estimator F̂Ra has a major improvement about 12% over F̂ ∗n, F̂O, F̂B, medium
improvement about 6% over F̂C , and small improvement about 2% over F̂FCH . The
F̂Ra is very comparable to two spline smooth unconstrained estimators PS1 and PS3
in terms of ASE,

• With respect to two monotone nondecreasing constrained splines (CPS1 and CPS3),
F̂Ra has a very competitive ASE with all studied distributions and F̂FCH has ASE
almost as same as CPS1 and CPS3,

• For a large n such as 200, the performance of all estimators is comparable in terms
of ASE.
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8. APPLICATION

In ecotoxicology, lognormal and loglogistic distributions are applied to fit a data. A low
percentile 5% is of great interest where the hazardous concentration 5% (HC5) is explained as
the value of pollutant concentration protecting 95% of the species; see Posthuma et al. (2010).
There is a data set ‘endosulfant’ in R software package “fitdistplus”; see, Delignette-Muller
and Dutang (2021). This data includes acute toxicity values (ATV) for the organochlorine
pesticide ‘endosulfan’ (geometric mean of LC50 and EC50 values in ug.L(−1), tested on Aus-
tralian and non-Australian laboratory-species; see, Hose and Van den Brink (2004). Figure 4
displays the MAD plot and Cullen and Frey graph; see, Cullen and Frey (1999). MAD plot
shows a very weak right wideness and a very weak wideness in the left side. The distribution
is very strong right skewed (k = 0.26) and has a very long right tail T̂R = 6.707, while very
short left tail T̂L = 0.266. The skewness based on tails is 6.441 (very strong). Cullen and
Frey graph is an indicative graph where it shows the relationship between Pearson skewness
squared and kurtosis. For given data, the skewness is 5.076 and kurtosis is 30.728 that may
suggest a lognormal distribution as a good candidate to fit the data. Moreover, Muller and
Dutang (2014, 2021) used lognormal, loglogistic, Pareto and Burr III distributions to fit a
suitable distribution for ATV data.
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Figure 4: MAD plot and Cullen and Frey graph for acute toxicity values data (ATV).
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The proposed adjusted Richardson approximation (F̂Ra) is used to estimate nonpara-
metric distribution function of ATV data. Also, 99% pointwise confidence intervals based
on normal approximation for (F̂Ra) are obtained. In Figure 5 the estimated distribution
function and 99% confidence interval are plotted along with the estimated parametric distri-
bution functions; for more details about this estimation; see, Delignette-Muller and Dutang
(2021). For the lognormal distribution it has a good fit in the right tail while a bad fit in
the left tail due to a high probability at left tail. The loglogistic does not fit from both tails.
The two-parameter Pareto and three-parameter distributions have a good fitting in left tail
while a worse fitting in the right tail. As concluded by Delignette-Muller and Dutang (2021),
none of the four distributions correctly described the right tail observed in ATV data, but
the left tail seems to be better described by Burr III distribution; see also, Hose and Van
den Brink (2004). They estimated the HC5 value using Burr III distribution as 0.294 while
the HC5 from the data is 0.20. The Richardson approximation for HC5 is computed using
interpolation as 0.242 while the estimation of HC5 using empirical distribution function is
0.161 (forward approach).

0 10000 20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DF using Richardson approx. and lognorm fitting

ATV

R
ic

ha
rd

so
n 

ap
pr

ox
.

pointwise C.I

Richardson approx

DF lnorm

0 10000 20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DF using Richardson approx. and llogis fitting

ATV

R
ic

ha
rd

so
n 

ap
pr

ox
.

pointwise C.I

Richardson approx

DF llogis

0 10000 20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DF using Richardson approx. and Pareto fitting

ATV

R
ic

ha
rd

so
n 

ap
pr

ox
.

pointwise C.I

Richardson approx

DF Pareto

0 10000 20000 30000 40000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DF using Richardson approx. and Burr fitting

ATV

R
ic

ha
rd

so
n 

ap
pr

ox
.

pointwise C.I

Richardson approx

DF Burr

Figure 5: Plots of the estimated distribution function using Richardson extrapolation approximation
with its 99% pointwise confidence intervals, and the estimated distribution functions from
lognormal, loglogistic, Pareto and Burr III models for ATV data.
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9. CONCLUSION

The usefulness of the mean absolute deviation function is introduced in two directions.
Firstly, it was used to explore the pattern and the structure in the data graphically through
the wideness and tailedness concepts. The wideness reflected information about how much
the mean absolute function is away from the straight lines (vi−µ) and (µ− vi). This created
right, left and overall wideness measures. These measures reflected skewness in the data
and used to reflect the flatness and peakedness in symmetric distributions. The tailedness
reflected information about how long the right and left tails in the distribution of data via
the maximum of right and left mean absolute deviation functions. Secondly, a new method
based on Richardson extrapolation approach was proposed to estimate the population dis-
tribution function. In general, six approaches developed that included forward, backward,
central, mix and FC-Hermite interpolation and Richardson extrapolation approaches. Simu-
lation study was implemented using different distributions that represented different shapes
such as bell-shaped, separated-bimodal, strong-skewed, smooth-comb and outliers. Three
estimators showed improvement in terms of averaged squared errors over the classical empiri-
cal distribution function. The Richardson extrapolation approach had major improvement in
terms of average squared errors over classical empirical estimators and had comparable results
with smooth approaches such as cubic spline and constrained linear spline. Furthermore, the
Richardson approach applied for real data application and used to estimate the hazardous con-
centration five percent. Future studies may seek to examine smoothing approaches based on
Richardson extrapolation approach and investigate the superiority of non-smooth approaches
in estimating the distribution function compared with smooth approaches as suggested by
one of the reviewers.
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