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1. INTRODUCTION

The call function is a non-negative real-valued function of the form

fz(k) = (k − z)+ = max{k − z, 0}, for k ≥ 0 and z ≥ 0.(1.1)

It has been used in several areas of probability and statistics, for example, finance, risk theory,
and derivative pricing, among many others. In particular, it has been successfully applied to
the collateralized debt obligation (CDO). For more details, see Karoui and Jiao [5], Karoui et

al. [6], Hull and White [7], Neammanee and Yonghint [12], Yonghint et al. [17], and references
therein.

For a random variable (rv) W , the study of E[fz(W )] plays an important role in many
real-life applications. For example, if W is the sum of Bernoulli random variables (rvs) then
E[fz(W )] is used to compute the mean value of total percentage loss for each tranche in CDO
(see Neammanee and Yonghint [12], and Yonghint et al. [17] for details). Also, if W has a
complicated structure, for example, W is the sum of locally dependent or independent (but
non-identical) rvs, then E[fz(W )] becomes difficult to compute in practice. In such cases,
an approximation to standard and easy-to-use distribution is of interest. Approximation
to call function has been studied by several authors in the literature, for example, Poisson
approximation has been studied by Neammanee and Yonghint [12], and Yonghint et al. [17],
and Normal approximation has been studied by Karoui and Jiao [5], and Karoui et al. [6].

In this paper, we study negative binomial (NB) approximation to call function using
certain conditions on moments. The main advantage of NB distribution over Poisson dis-
tribution is the extra flexibility parameter that builds our bounds more shaper compare to
the existing bounds for Poisson approximation. Throughout this paper, let Nr,p follow NB
distribution with probability mass function

P(Nr,p = k) =
(

r + k − 1
k

)
prqk, k ∈ Z+,(1.2)

where r > 1, q = 1− p ∈ (0, 1) and Z+ = {0, 1, 2, ...}, the set of non-negative integers. From
Neammanee and Yonghint [12], and Yonghint et al. [17], We observe that the call function
can be studied under a locally dependent or independent setup. Therefore, we consider the
following locally dependent structure that can be used for both cases.

Let J be a finite subset of N = {1, 2, ...}, the set of all positive integers, and {ζi}i∈J be a
collection of non-negative rvs. For each i, let i ∈ Ai ⊆ Bi ⊂ J be such that ζi is independent
of ζAc

i
and ζAi is independent of ζBc

i
, where ζA is the collection of rvs {ζi}i∈A and Ac denotes

the complement of the set A. See Section 3 of Röllin [13] and Section 2 of Kumar [9] for a
similar type of locally dependent structure. Define

V =
∑
i∈J

ζi,(1.3)

the sum of locally dependent rvs. Note that if Ai = Bi = {i} then V is the sum of independent
rvs. Throughout this paper, we let ζA =

∑
i∈A ζi, for a set A ⊂ J , and D(W ) := 2dTV (W,W +

1), for a rv W , where dTV (X, Y ) denotes the total variation distance between X and Y .
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In this paper, our aim is to study the proximity between E[(V − z)+] and E[(Nr,p − z)+].
That is, our interest is to obtain the upper bound for∣∣E[(V − z)+]− E[(Nr,p − z)+]

∣∣.(1.4)

We use Stein’s method to obtain the bound for the above expression discussed in Section 2.

This paper is organized as follows. In Section 2, we develop Stein’s method for NB
distribution using the call function. In Section 3, we obtain uniform and non-uniform bounds
for the expression given in (1.4) and compare our results with the existing results. In Section 3,
we give an application of our results to CDO and give some numerical comparisons. Finally,
in Appendix A, we give some inequalities and their proofs that are useful to develop Stein’s
method for NB distribution.

2. STEIN’S METHOD

Stein’s method (Stein [14]) is a tool for obtaining error bounds between two probability
distributions. This method is mainly based on obtaining the solution of the Stein equation
given by

Ag(k) = f(k)− Ef(X), for k ∈ Z+,(2.1)

where A is a Stein operator for a rv X such that E[Ag(X)] = 0, f and g are real-valued
bounded functions on Z+. Stein’s method has been developed for NB distribution by Brown
and Phillips [4] and Barbour et al. [1] for total variation distance and Wasserstein distance,
respectively. In this section, we develop Stein’s method for NB distribution when f is a call
function, defined in (1.1), which is used to obtain upper bounds for the expression given in
(1.4). The NB approximation via Stein’s method has been studied by several authors such as
Barbour et al. [1], Brown and Phillips [4], Vellaisamy et al. [15], Wang and Xia [16], Kumar
and Upadhye [10], among many others.

Next, let X = Nr,p and f = fz, defined in (1.1), then the Stein equation (2.1) leads to

Ag(k) = (k − z)+ − E[(Nr,p − z)+], for k ∈ Z+ and z ≥ 0.(2.2)

Also, let g = gz be the solution of the above equation. Now, replacing k by V in (2.2) and
taking expectation, we get

|E[Agz(V )]| =
∣∣E[(V − z)+]− E[(Nr,p − z)+]

∣∣.(2.3)

Therefore, to obtain the upper bound for the expression given in (1.4), it is enough to obtain
the upper bound for |E[Agz(V )]|.

Next, the Stein operator of Nr,p is given by

Ag(k) = q(r + k)g(k + 1)− kg(k), for k ∈ Z+.(2.4)

See Lemma 1 of Brown and Phillips [4] for details. Substituting (2.4) in (2.2), we get

q(r + k)g(k + 1)− kg(k) = (k − z)+ − E[(Nr,p − z)+].(2.5)



28 A.N. Kumar

It can be easily verified that the solution of (2.5) is

gz(k) =


0 if k = 0;

−
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k

×[(j − z)+ − E[(Nr,p − z)+]] if k ≥ 1.

(2.6)

For more details, see Section 2 of Kumar et al. [11, p. 4] with appropriate changes. Now,
we move to obtain uniform and non-uniform upper bound for |gz(·)| and |∆gz(·)|, where
∆g(k) = g(k + 1)− g(k) denotes the first forward difference operator. Some of the proofs of
the following results are similar to the proofs given by Neammanee and Yonghint [12].

Lemma 2.1. For k ≥ 0 and z ≥ 0, gz defined in (2.6) satisfies the following:

(i) |gz(k)| ≤ p−(r+1).

(ii) |∆gz(k)| ≤ 2p−(r+1) − p−1.

Proof:

(i) As gz(0) = 0, it is enough to prove the result for k ≥ 1. Consider

0 <

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k(j − z)+(2.7)

≤ 1 +
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
(j − 1)!

qj−k

= 1 +
∞∑

j=k+1

(r + k) ··· (r + j − 1)
k(k + 1) ··· (j − 1)

qj−k

= 1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k − 1)

qj

≤ p−(r+1), (using Lemma A.2(i)).

Next, consider

0 <
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k(2.8)

≤ 1 +
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k

= 1 +
∞∑

j=k+1

(r + k) ··· (r + j − 1)
k(k + 1) ··· j

qj−k

= 1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k)

qj

≤ 1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
(k + 1) ··· (j + k)

qj

≤ p−r − 1
rq

, (using Lemma A.2(ii)).
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Therefore, from Lemma A.1(i), we have

0 <

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+](2.9)

≤ p−(r+1) − p−1.

Hence, from (2.6), (2.7), and (2.9), we get

|gz(k)| =

∣∣∣∣∣∣
∞∑

j=k

r(r+1) ··· (r+j−1)
r(r+1) ··· (r+k−1)

(k − 1)!
j!

qj−k[(j − z)+ − E[(Nr,p − z)+]]

∣∣∣∣∣∣
≤ p−(r+1).

This proves (i).

(ii) Note that, for k = 0,

|∆gz(0)| = |gz(1)| ≤ p−(r+1) ≤ 2p−(r+1) − p−1.

Now, we prove the result for k ≥ 1. Let

A1(k) =
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k(j − z)+

−
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
j!

qj−k−1(j − z)+

and

A2(k) =
∞∑

j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
j!

qj−k−1E[(Nr,p − z)+]

−
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+].

Then

∆gz(k) = gz(k + 1)− gz(k) = A1(k) + A2(k),

Hence, using (2.7) and (2.9), we have

|∆gz(k)| ≤ |A1(k)|+ |A2(k)| ≤ 2p−(r+1) − p−1.

This proves (ii).

Lemma 2.2. For k ≥ 1 and z > 1, gz defined in (2.6) satisfies the following:

|∆gz(k)| ≤



1
z

(
2p−(r+1) − p−1

)
if k ≥ z;

1
z

(
(1 + q−1)p−(r+2) − p−2

)
if 2 ≤ k < z;

(r + 1)
z

(
2p−(r+2) − p−2

)
if k = 1.
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Proof: Let k ≥ z. First, consider

A1(k) =
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j + 1)!

qj−k [(r+k)(j +1)(j−z)+ − k(r+ j)(j +1−z)+]

=
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j + 1)!

qj−k [(r+k)(j +1)(j−z)− k(r+ j)(j +1−z)].

Observe that

|(r + k)(j + 1)(j − z)− k(r + j)(j + 1− z)| = |r(j + 1)(j − k)− r(j − k)z − (k + r)z|

(2.10)

≤ |r(j + 1)(j − k)− r(j − k)z|+ (k + r)z

= r(j + 1)(j − k)− (r(j − k)− k − r)z

≤
{

(k + r)z if j = k;
r(j + 1)(j − k) if j > k.

Therefore,

|A1(k)| ≤ z

k(k + 1)
+ r

∞∑
j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!(j − k)
j!

qj−k(2.11)

≤ z

k(k + 1)
+

r

k

∞∑
j=k+1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
(j − 1)!

qj−k

=
z

k(k + 1)
+

rq

k
+

r

k

∞∑
j=k+2

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

k!
(j − 1)!

qj−k

=
z

k(k + 1)
+

rq

k
+

r

k

∞∑
j=k+2

(r + k + 1) ··· (r + j − 1)
(k + 1) ··· (j − 1)

qj−k

=
1
z

1 + rq + r

∞∑
j=2

(r + k + 1) ··· (r + j + k − 1)
(k + 1) ··· (j + k − 1)

qj


≤ p−(r+1)

z
, (using Lemma A.2(iii)).

Now, consider

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k =
1
k

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

k!
j!

qj−k

=
1
z

1 +
∞∑

j=k+1

(r + k) ··· (r + j − 1)
(k + 1) ··· j

qj−k


=

1
z

1 +
∞∑

j=1

(r + k) ··· (r + j + k − 1)
(k + 1) ··· (j + k)

qj


≤ p−r − 1

rqz
, (using Lemma A.2(ii)).
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Therefore, from Lemma A.1(i), we have

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+] ≤ p−(r+1) − p−1

z
.(2.12)

Hence, for k ≥ z, from (2.11) and (2.12), we have

|∆g(k)| ≤ |A1(k)|+ |A2(k)| ≤ 1
z

(
2p−(r+1) − p−1

)
.

Next, let k < z and consider

|A1(k)| ≤
∞∑

j=dze−1

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j + 1)!

qj−k

× |(r + k)(j + 1)(j − z)+ − k(r + j)(j + 1− z)+|

≤ r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

k!
(dze)!

(dze − z)qdze−1−k(2.13)

+
r

dze

∞∑
j=dze

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(j − 2)!

qj−k (using (2.10))

≤ r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

k!
(dze)!

(dze − z)qdze−1−k

+
r

z

r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

(k − 1)!
(dze − 2)!

qdze−k

+
r

z

∞∑
j=dze+1

(r + k + 1) ··· (r + j − 1)
k(k + 1) ··· (j − 2)

qj−k,

where dze is the smallest integer greater than or equal to z. At k = dze − 1, we have

|A1(k)| ≤ 1
z

1 + rq + r

∞∑
j=dze+1

(r + dze) ··· (r + j − 1)
(dze − 1)(dze) ··· (j − 2)

qj−dze+1

(2.14)

=
1
z

1 + rq + r

∞∑
j=dze+1−k

(r + dze) ··· (r + j + k − 1)
(dze − 1)(dze) ··· (j + k − 2)

qj+k−dze+1


=

1
z

1 + rq + r

∞∑
j=2

(r + k + 1) ··· (r + j + k − 1)
k(k + 1) ··· (j + k − 2)

qj


=

1
z

1 + rq + rq
∞∑

j=1

(r + k + 1) ··· (r + j + k)
k(k + 1) ··· (j + k − 1)

qj

(2.15)

≤ p−(r+2)

z
(using Lemma A.2(iv)).

Now, let k < dze − 1. From (2.13), we have

|A1(k)| ≤ r(r + 1) ··· (r + dze − 1)
r(r + 1) ··· (r + k)

k!
(dze)!

(dze − z)qdze−1−k(2.16)

+
r

dze

∞∑
j=dze

(r + k + 1) ··· (r + j − 1)
k(k + 1) ··· (j − 2)

qj−k
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≤ 1
z

(r + k + 1) ··· (r + dze − 1)
k(k + 1) ··· (dze − 2)

(dze − z)qdze−1−k

+
r + 1

z

∞∑
j=dze

(r + k + 1) ··· (r + j)
k(k + 1) ··· (j − 1)

qj−k

≤ r + 1
z

∞∑
j=dze−1

(r + k + 1) ··· (r + j)
k(k + 1) ··· (j − 1)

qj−k

≤ r + 1
z

∞∑
j=k+1

(r + k + 1) ··· (r + j)
k(k + 1) ··· (j − 1)

qj−k

≤ r + 1
z

∞∑
j=1

(r + k + 1) ··· (r + j + k)
k(k + 1) ··· (j + k − 1)

qj(2.17)

≤ p−(r+2)

qz
, (using Lemma A.2(iv)).

Next, for k ≥ 2, consider
∞∑

j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−k =
1
k

+
∞∑

j=k+1

(r + k) ··· (r + j − 1)
k(k + 1) ··· j

qj−k(2.18)

≤ 1
2

+
∞∑

j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k)

qj

≤ p−r − 1
r(r + 1)q2

, (using Lemma A.2(v)).

Therefore, from Lemma A.1(ii) and (2.18), we get

∞∑
j=k

r(r + 1) ··· (r + j − 1)
r(r + 1) ··· (r + k − 1)

(k − 1)!
j!

qj−kE[(Nr,p − z)+] ≤ p−(r+2) − p−2

z
.(2.19)

Hence, for k < z, from (2.14), (2.16), and (2.19), we have

|∆g(k)| ≤ |A1(k)|+ |A2(k)| ≤ 1
z

(
(1 + q−1)p−(r+2) − p−2

)
.

Next, at k = 1, from (2.15), we have

|A1(1)| ≤ 1
z

1 + rq + rq
∞∑

j=1

(
r + j + 1

j

)
qj

(2.20)

≤ 1
z

(
1 + rqp−(r+2)

)
≤ (r + 1)p−(r+2)

z

and, at k = 1, from (2.17), we have

|A1(1)| ≤ r + 1
z

∞∑
j=1

(
r + j + 1

j

)
qj =

(r + 1)
(
p−(r+2) − 1

)
z

≤ (r + 1)p−(r+2)

z
.(2.21)

Also, using Lemma A.1(ii), it can be easily verified that

|A2(1)| ≤ 1
r

∞∑
j=1

r(r + 1) ··· (r + j − 1)
j!

qj−1E[(Nr,p − z)+] ≤
(r + 1)

(
p−(r+2) − p−2

)
z

.

(2.22)
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Hence, at k = 1, from (2.20), (2.21), and (2.22), we have

|∆g(1)| ≤ |A1(1)|+ |A2(1)| ≤ (r + 1)
z

(
2p−(r+2) − p−2

)
.

This proves the result.

Remark 2.1. From Lemma 2.2, a rather crude uniform bound is given by

‖∆gz‖ ≤ ϑr,p,z :=
r + 1

z

(
(1 + q−1)p−(r+2) − p−2

)
, for k ≥ 1 and z > 1.(2.23)

3. BOUNDS FOR NB APPROXIMATION

In this section, we obtain error bounds between E[(Nr,p − z)+] and E[(V − z)+] such
that Nr,p follows NB distribution and V =

∑
i∈J ζi, where {ζi}i∈J is a collection of Z+-valued

rvs. Throughout this section, let µX and σX denote the mean and variance for the rv X.
The following theorem gives the bound for the locally dependent setup.

Theorem 3.1. Let E(ζ3
i ) < ∞ and V be the sum of locally dependent rvs as defined

in (1.3). Then

1. (uniform bound) supz≥0 |E[Agz(V )]| ≤
(
2p−(r+1) − p−1

)
UJ

2. (non-uniform bound) |E[Agz(V )]| ≤ ϑr,p,zUJ , for all z > 1,

where

UJ =



∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi) + E(ζi(ζAi − 1))] if µNr,p = µV ;

p
∑
i∈J

E(ζi)E[ζAi(2ζBi − ζAi − 1)D(V |ζAi , ζBi)] if µNr,p = µV and

+q
∑
i∈J

E[ζiζAi(2ζBi − ζAi − 1)D(V |ζi, ζAi , ζBi)] σNr,p = σV .

+
∑
i∈J

E[ζi(ζAi − 1)(2ζBi − ζAi − 2)D(V |ζi, ζAi , ζBi)]

+
∑
i∈J

|pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))|

×E[ζBiD(V |ζBi)]

and ϑr,p,z is defined in (2.23).

Proof: Consider the Stein operator given in (2.4) and taking expectation with respect
to V , we get

E[Agz(V )] = rqE[gz(V + 1)] + qE[V gz(V + 1)]− E[V gz(V )](3.1)

= p
∑
i∈J

E(ζi)E[gz(V + 1)] + q
∑
i∈J

E[ζigz(V + 1)]−
∑
i∈J

E[ζigz(V )],
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where the last expression is obtained by using µNr,p = µV . Now, let Vi = V − ζAi then ζi and
Vi are independent rvs. Also, note that

p
∑
i∈J

E(ζi)E[gz(Vi + 1)] + q
∑
i∈J

E[ζigz(Vi + 1)]−
∑
i∈J

E[ζigz(Vi + 1)] = 0.(3.2)

Using (3.2) in (3.1), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E[gz(V + 1)− gz(Vi + 1)](3.3)

+ q
∑
i∈J

E[ζi(gz(V + 1)− gz(Vi + 1))]

−
∑
i∈J

E[ζi(gz(V )− gz(Vi + 1))]

= p
∑
i∈J

E(ζi)E

 ζAi∑
j=1

∆gz(Vi + j)

 + q
∑
i∈J

E

ζi

ζAi∑
j=1

∆gz(Vi + j)


−

∑
i∈J

E

ζi

ζAi
−1∑

j=1

∆gz(Vi + j)

.

Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖
∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi) + E(ζi(ζAi − 1))].

Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV .
Next, using µNr,p = µV and σNr,p = σV , it can be easily verified that[

p
∑
i∈J

E(ζi)E[ζAi ] + q
∑
i∈J

E[ζiζAi ]−
∑
i∈J

E[ζi(ζAi − 1)]

]
E[gz(V + 1)] = 0.(3.4)

Let V ∗
i = V − ζBi then ζi and ζAi are independent of V ∗

i . Now, using (3.4) in (3.3), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E

 ζAi∑
j=1

(∆gz(Vi + j)−∆gz(V ∗
i + 1))

(3.5)

+ q
∑
i∈J

E

ζi

ζAi∑
j=1

(∆gz(Vi + j)−∆gz(V ∗
i + 1))


−

∑
i∈J

E

ζi

ζAi
−1∑

j=1

(∆gz(Vi + j)−∆gz(V ∗
i + 1))


−

∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))]

× E[gz(V + 1)− gz(V ∗
i + 1)]

= p
∑
i∈J

E(ζi)E

 ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

∆2gz(Vi + `)


+ q

∑
i∈J

E

ζi

ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

∆2gz(Vi + `)
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−
∑
i∈J

E

ζi

ζAi
−1∑

j=1

ζBi\Ai+j−1∑
`=1

∆2gz(Vi + `)


−

∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))]

× E

 ζBi∑
`=1

∆2gz(Vi + `)


= p

∑
i∈J

E(ζi)E

 ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

E[∆2gz(Vi + `)|ζAi , ζBi ]


+ q

∑
i∈J

E

ζi

ζAi∑
j=1

ζBi\Ai+j−1∑
`=1

E[∆2gz(Vi + `)|ζi, ζAi , ζBi ]


−

∑
i∈J

E

ζi

ζAi
−1∑

j=1

ζBi\Ai+j−1∑
`=1

E[∆2gz(Vi + `)|ζi, ζAi , ζBi ]


−

∑
i∈J

[pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))]

× E

 ζBi∑
`=1

E[∆2gz(Vi + `)|ζBi ]

.

Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖

{
p

∑
i∈J

E(ζi)E[ζAi(2ζBi − ζAi − 1)D(V |ζAi , ζBi)]

+ q
∑
i∈J

E[ζiζAi(2ζBi − ζAi − 1)D(V |ζi, ζAi , ζBi)]

+
∑
i∈J

|pE(ζi)E(ζAi) + qE(ζiζAi)− E(ζi(ζAi − 1))|E[ζBiD(V |ζBi)]

+
∑
i∈J

E[ζi(ζAi − 1)(2ζBi − ζAi − 2)D(V |ζi, ζAi , ζBi)]

}
.

Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV and σNr,p = σV .

Corollary 3.1. Let V1 =
∑

i∈J ζi with pi = P(ζi = 1) and pi,j = P(ζi = 1, ζj = 1).
Then, for µNr,p = µV1 , we have

sup
z≥0

|E[Agz(V1)]| ≤
(
2p−(r+1) − p−1

) ∑
i∈J

(1 + q)
∑
j∈Ai

pi,j + pi

p
∑
j∈Ai

pj − 1

.(3.6)

Remark 3.1.

(i) In Theorem 3.1, note that we have the flexibility to choose one parameter (either r or
p) of our choice when µNr,p = µV . Also, the bound is valid only if E(V ) < Var(V ) when
µNr,p = µV and σNr,p = σV .
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(ii) Observe that V can be expressed as a conditional sum of independent rvs and hence,
Subsections 5.3 and 5.4 of Röllin [13] can be used to obtain the bound of D(V |·). For
more details, see Remark 3.1(ii) of Kumar et al. [11].

Next, the following theorem gives the bound for independent setup.

Theorem 3.2. Let E(ζ3
i ) < ∞ and V be the sum of independent rvs. Then

1. (uniform bound) supz≥0 |E[Agz(V )]| ≤
(
2p−(r+1) − p−1

)
U∗

J

2. (non-uniform bound) |E[Agz(V )]| ≤ ϑr,p,zU
∗
J , for all z > 1,

where

U∗
J =



∑
i∈J

∞∑
k=1

k|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1| if µNr,p = µV ;

√
2
π

1
4

+
∑
j∈J

δj − δ∗

− 1
2

if µNr,p = µV{∑
i∈J

E(ζi)|pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))| and σNr,p = σV

+
∑
i∈J

∞∑
k=2

k(k − 1)
2

|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1|

}
,

ϑr,p,z is defined in (2.23), γi,k = P(ζi = k), δj = min{1
2 , 1−dTV (ζj , ζj +1)}, and δ∗ = maxj∈J δj .

Proof: Substituting Ai = {i} in (3.3), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E

 ζi∑
j=1

∆gz(Vi + j)

 + q
∑
i∈J

E

ζi

ζi∑
j=1

∆gz(Vi + j)


−

∑
i∈J

E

ζi

ζi−1∑
j=1

∆gz(Vi + j)


= p

∑
i∈J

∞∑
k=1

k∑
j=1

E(ζi)E[∆gz(Vi + j)]γi,k

+ q
∑
i∈J

∞∑
k=1

k∑
j=1

kE[∆gz(Vi + j)]γi,k

−
∑
i∈J

∞∑
k=2

k−1∑
j=1

kE[∆gz(Vi + j)]γi,k

=
∑
i∈J

∞∑
k=1

[(pE(ζi) + qk)γi,k − (k + 1)γi,k+1]
k∑

j=1

E[∆gz(Vi + j)].
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Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖
∑
i∈J

∞∑
k=1

k|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1|.

Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV .
Next, substituting Ai = Bi = {i} in (3.5), we get

E[Agz(V )] = p
∑
i∈J

E(ζi)E

 ζi∑
j=1

j−1∑
`=1

E[∆2gz(Vi + `)|ζi]


+ q

∑
i∈J

E

ζi

ζi∑
j=1

j−1∑
`=1

E[∆2gz(Vi + `)|ζi]


−

∑
i∈J

[pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))]E

[
ζi∑

`=1

E[∆2gz(Vi + `)|ζi]

]

−
∑
i∈J

E

ζi

ζi−1∑
j=1

j−1∑
`=1

E[∆2gz(Vi + `)|ζi]


= p

∑
i∈J

∞∑
k=1

k∑
j=1

j−1∑
`=1

E(ζi)E[∆2gz(Vi + `)]γi,k

+ q
∑
i∈J

∞∑
k=1

k∑
j=1

j−1∑
`=1

kE[∆2gz(Vi + `)]γi,k

−
∑
i∈J

∞∑
k=1

k∑
`=1

[pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))]E[∆2gz(Vi + `)]γi,k

−
∑
i∈J

∞∑
k=2

k−1∑
j=1

j−1∑
`=1

kE[∆2gz(Vi + `)]γi,k

=
∑
i∈J

∞∑
k=1

k∑
j=1

j−1∑
`=1

[(pE(ζi) + qk)γi,k − (k + 1)γi,k+1]E[∆2gz(Vi + `)]

−
∑
i∈J

∞∑
k=1

k∑
`=1

[pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))]E[∆2gz(Vi + `)]γi,k.

Note that |E(∆2gz(Vi + ·))| ≤ δ‖∆gz‖, where δ = 2 maxi∈J dTV (Vi, Vi + 1) (see Barbour and
Xia [3], and Barbour and Čekanavičius [2, p. 517])). Also, from Corollary 1.6 of Brown and

Phillips [4] (see alsoRemark 4.1 ofVellaisamy et al. [15]), we have δ≤
√

2
π

(
1
4 +

∑
j∈J δj−δ∗

)−1/2

with δj = min{1
2 , 1− dTV (ζj , ζj + 1)} and δ∗ = maxj∈J δj . Therefore,

|E[Agz(V )]| ≤ ‖∆gz‖
√

2
π

1
4

+
∑
j∈J

δj − δ∗

− 1
2

(3.7)

×

{∑
i∈J

E(ζi)|pE(ζi)2 + qE(ζ2
i )− E(ζi(ζi − 1))|

+
∑
i∈J

∞∑
k=2

k(k − 1)
2

|(pE(ζi) + qk)γi,k − (k + 1)γi,k+1|

}
.
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Hence, using Lemma 2.1(ii) and (2.23), the result follows when µNr,p = µV and σNr,p = σV .

Next, for J = {1, 2, ..., n}, we present and compare our results for the sum of Bernoulli
and geometric rvs as special cases.

Remark 3.2.

(i) Note that the expression U∗
J in Theorem 3.2 is similar to the expression given in

Theorems 3.1 and 4.1 of Vellaisamy et al. [15]. Also, for total variation distance
(‖∆g‖ ≤ 1/rq), the bound given in (3.7) is an improvement over Theorem 4.1 of Kadu
[8].

(ii) For J = {1, 2, ..., n}, the bounds given in Theorem 3.2 are of O(np−n) when µNr,p = µV

and O(
√

np−n) when µNr,p = µV and σNr,p = σV . These bounds improved the existing
bounds given by Neammanee and Yonghint [12] which is of O(nen). Moreover, our
bounds are more suitable for sufficiently large values of p.

(iii) Let V2 =
∑n

i=1 ζi be the sum of independent Bernoulli rvs. Then, from Theorem 3.2,
we have

sup
z≥0

|E[Agz(V2)]| ≤
(
2p−(r+1) − p−1

) n∑
i=1

pi(1− pqi),(3.8)

where pi = 1− qi = P(ζi = 1) and r(1− p) = p
∑n

i=1 pi. Note that we can not obtain
the bound by matching mean and variance as E(V2) > Var(V2). From Corollary 1 of
Neammanee and Yonghint [12], we have

sup
z≥0

|E[Agz(V2)]| ≤ (2eλ − 1)
n∑

i=1

p2
i ,(3.9)

where λ =
∑n

i=1 pi. Observe that the bound given in (3.8) is either comparable to or an
improvement over the bound given in (3.9), for example, some numerical comparisons
are given in Table 2.

(iv) Let V3 =
∑n

i=1 ζi be the sum of independent geometric rvs with P(ζi = k) = qk
i pi, for

k ∈ Z+, and qi ≤ 1/2. Then, from Theorem 3.2, we have

sup
z≥0

|E[Agz(V2)]| ≤



(
2p−(r+1) − p−1

) n∑
i=1

|p− pi|qi

p2
i

if µNr,p = µV3 ;

3
(
2p−(r+1) − p−1

)
if µNr,p = µV3

×
√

2
π

(∑n
j=1 qj − 1

4

)−1/2
and σNr,p = σV3 ,

×
n∑

i=1

|p− pi|q2
i

p3
i

(3.10)

where
∑n

i=1 qi > 1/4 when µNr,p = µV3 and σNr,p = σV3 . Note that if pi = p, for all
1 ≤ i ≤ n, then supz≥0 |E[Agz(V2)]| = 0, as expected. From Theorem 1 and Corollary
2 of Neammanee and Yonghint [12], we have

sup
z≥0

|E[Agz(V2)]| ≤ (2eλ − 1)
n∑

i=1

(8− 7pi)q2
i

p3
i

,(3.11)
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where λ =
∑n

i=1(qi/pi). The above bound is better than the bound given by Jiao
and Karoui [5] (shown in Remark 1(1) by Neammanee and Yonghint [12]). Note that
our bound is better than the bound given in (3.11). For instance, let n = 75 and qi,
1 ≤ i ≤ 75, be defined as follows:

Table 1: The values of qi.

i qi i qi i qi i qi i qi i qi

0–10 0.05 11–20 0.10 21–30 0.15 31–40 0.20 41–50 0.25 51–75 0.30

Then, choose r = n if µNr,p = µV , the following table gives a comparison between our
bounds and the existing bounds under Bernoulli and geometric setup.

Table 2: Comparison of bounds.

n

For Bernoulli setup For geometric setup

From (3.9) From (3.8) From (3.11)
From (3.10) From (3.10)

(µNr,p = µV ) (µNr,p = µV and
σNr,p = σV )

10 21.5280 22.2920 0.09390 9.47× 10−17 9.07× 10−17

20 158.986 161.239 2.53041 0.41416 0.06280
30 1438.02 1348.40 60.4516 7.17325 1.23534
40 22467.0 17633.1 2117.84 195.211 27.7360
50 745974 423881 142995 7902.23 1079.63

For large values of n, note that our bounds are an improvement over the existing
bounds for various values of qi. Moreover, for the geometric setup, the bounds are
much sharper than the existing bounds as NB and the sum of geometric rvs consists
of similar properties. Also, observe that the bounds computed by matching mean and
variance are better than the bounds computed by matching mean only, as expected.

4. AN APPLICATION TO CDO

The CDO is a financial tool that transfers a pool of assets such as auto loans, credit
card debt, mortgages, and corporate debt, among many others, into a product and sold to
investors. The assets are divided into several tranches, that is, the set of repayment. Each
tranche has various credit quality and risk levels. The primary tranches in CDOs are senior,
mezzanine, and equity. The investors can opt for multiple tranches to invest as per their
interest. For more details, see Neammanee and Yonghint [12], Yonghint et al. [17], Kumar
[9], and reference therein.
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It is known that the CDO occurs in both, locally dependent and independent setup (see
Yonghint et al. [17] and Neammanee and Yonghint [12] for more details), and therefore, the
results obtained in this paper are useful in applications. Consider the similar type of CDO
discussed by Yonghint et al. [17]. Suppose there are N assets that have a constant recovery
rate R then the percentage cumulative loss in CDO up to time T is

L(T ) =
1−R

N

N∑
i=1

ξi,(4.1)

where ξi = 1{τi≤T}, τi is the default time of the ith asset, and 1A denotes the indicator
function of A. The expression in (4.1) can be rewritten as

E[(L(T )− z∗)+] =
1−R

N
E[(V4 − z∗)+],(4.2)

where z∗ = (1−R)z/N > 0 is the attachment or the detachment point of the tranche and
V4 =

∑N
i=1 ξi. Therefore, the problem is reduced to obtain error bounds for E[(V4 − z∗)+],

and hence, Corollary 3.1 and Remark 3.2(iii) are useful in applications. For more details, we
refer the reader to Yonghint et al. [17], Kumar [9], and reference therein.

Next, we compare our results with the existing results under the locally dependent
and independent setup. For the independent setup, Neammanee and Yonghint [12] gives the
bound discussed in (3.9) and, for the locally dependent setup, from Theorem 2 of Yonghint
et al. [17], we have

sup
z≥0

|E[Agz(V ∗)]| ≤
(
2eλ − 1

) n∑
i=1

 ∑
j∈Ai\{i}

p∗i,j +
∑
j∈Ai

p∗i p
∗
j

,(4.3)

where λ =
∑n

i=1 p∗i , p∗i = P(ξi = 1), and p∗i,j = P(ξi = 1, ξj = 1). Note that our bound given
in (3.6) is better than the bound given in (4.3). For instance, let r = n, p∗i,j = p∗, 1 ≤ i, j ≤ n,
Ai = {i− 1, i, i + 1}, and qi as defined in Table 1, 1 ≤ i ≤ 75, then, the following table gives
a comparison between the upper bounds given in (3.8), (3.9), (3.6), and (4.3) for different
values of p∗ and qi.

Table 3: Comparison for the locally dependent and independent setup.

n
For independent setup For locally dependent setup

From (3.9) From (3.8) p∗ From (4.3) From (3.6)

15 64.0726 65.9832
0.4

247.274 206.347
35 5747.39 4964.44 22958.3 15690.1

55 6.79× 106 3.00× 106

0.7
3.37× 107 1.39× 107

75 4.49× 1010 6.22× 109 2.31× 1011 3.00× 1010

For large values of n, note that our bounds are better than the existing bounds for various
values of p∗ and qi.
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A. APPENDIX: SOME USEFUL INEQUALITIES

Here we give some inequalities and their proofs that have used in Lemmas 2.1 and
2.2. Recall that fz is a call function, defined in (1.1), and Nr,p follows the negative binomial
distribution, defined in (1.2). The following lemma gives uniform and non-uniform upper
bounds for E[fz(Nr,p)] = E[(Nr,p − z)+].

Lemma A.1. The following inequalities hold:

(i) E[(Nr,p − z)+] ≤ rq
p , for z ≥ 0.

(ii) E[(Nr,p − z)+] ≤ r(r+1)q2

zp2 , for z > 1.

Proof:

(i) For z ≥ 0, we have

E[(Nr,p − z)+] =
∞∑

k=1

(k − z)+
(

r + k − 1
k

)
prqk

≤ rpr
∞∑

k=1

(
r + k − 1

k − 1

)
qk =

rq

p
.

This proves (i).

(ii) For z > 1, we have

E[(Nr,p − z)+] =
∞∑

k=dze

(k − z)
(

r + k − 1
k

)
prqk

≤ pr

dze

∞∑
k=dze

r(r + 1) ··· (r + k − 1)
(k − z)
(k − 1)!

qk

≤ pr

z

∞∑
k=dze

r(r + 1) ··· (r + k − 1)
(k − 2)!

qk

≤ r(r + 1)pr

z

∞∑
k=2

(
r + k − 1

k − 2

)
qk =

r(r + 1)q2

zp2
.

This proves (ii).

Next, the following lemma gives some inequalities related to the parameters r and p of Nr,p.
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Lemma A.2. The following inequalities hold:

(i)

∞∑
j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k − 1)

qj ≤ p−(r+1) − 1, for k ≥ 1.

(ii)

∞∑
j=1

(r + k) ··· (r + j + k − 1)
(k + 1) ··· (j + k)

qj ≤ p−r − 1
rq

− 1, for all k ≥ 1.

(iii)

∞∑
j=2

(r + k + 1) ··· (r + j + k − 1)
(k + 1) ··· (j + k − 1)

qj ≤ p−(r+1) − 1
r

− q, for k ≥ 1.

(iv)

∞∑
j=1

(r + k + 1) ··· (r + j + k)
k(k + 1) ··· (j + k − 1)

qj ≤ p−(r+2) − 1
(r + 1)q

− 1, for k ≥ 2.

(v)

∞∑
j=1

(r + k) ··· (r + j + k − 1)
k(k + 1) ··· (j + k)

qj ≤ p−r − 1
r(r + 1)q2

− 1
2
, for k ≥ 2.

Proof: Note that, for k = 1,
∞∑

j=1

(r + 1) ··· (r + j)
1 · 2 ··· j

qj =
∞∑

j=1

(
r + j

j

)
qj = p−(r+1) − 1.

Therefore, the inequality (i) holds for k = 1. Now, suppose it holds for k = m, that is,
∞∑

j=1

(r + m) ··· (r + j + m− 1)
m(m + 1) ··· (j + m− 1)

qj ≤ p−(r+1) − 1.(A.1)

Observe that
∞∑

j=1

(r + m + 1) ··· (r + j + m)
(m + 1) ··· (j + m)

qj

=
∞∑

j=1

m(r + j + m)
(r + m)(m + j)

(r + m) ··· (r + m + j − 1)
m(m + 1) ··· (j + m− 1)

qj

≤
∞∑

j=1

(r + m) ··· (r + m + j − 1)
m(m + 1) ··· (j + m− 1)

qj

≤ p−(r+1) − 1 (using (A.1)).

This implies that the inequality (i) holds for k = m + 1, and hence it holds for all k ≥ 1.
Following similar steps, the inequalities (ii)-(v) can be easily proved.
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