
REVSTAT – Statistical Journal
Volume 22, Number 1, January 2024, 1–24

https://doi.org/10.57805/revstat.v22i1.436

A Study on Zografos-Balakrishnan Log-Normal Distribution:
Properties and Application to Cancer Dataset

Authors: D.S. Shibu
– Department of Statistics, University College,

Thiruvananthapuram, India – 695034
statshibu@gmail.com

S.L. Nitin �

– Department of Statistics, University College,
Thiruvananthapuram, India – 695034
nitinstat24@gmail.com

M.R. Irshad
– Department of Statistics, CUSAT,

Cochin, India – 682022
irshadm24@gmail.com

Received: October 2020 Revised: March 2022 Accepted: March 2022

Abstract:

• In this article, we studied a generalization of the log-normal distribution called Zografos-Balakrishnan
log-normal distribution, and investigate its various important properties and functions including
moments, quantile function, various reliability measures, Rényi entropy, and some inequality mea-
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1. INTRODUCTION

Recently, an increasing interest can be observed for the art of adding parameters to
some well-known existing distributions for getting different shapes of hazard rate or failure
rate functions for applying it in various real-life situations and also for analyzing data with
a high degree of skewness and kurtosis. In principle, the log-normal distribution is defined
as the continuous probability distribution of a random variable whose logarithm is normally
distributed. It is one of the most widely used distributions for asymmetric datasets. Thus, it
has been widely applied in many different aspects of life sciences, including biology, geology,
ecology, and meteorology as well as in economics, finance, and risk analysis (see [15]), and also
attracts attention quite often in environmental sciences, physics, astrophysics, and cosmology
(see [3], [4], [22]).

On many occasions, the significance of the LN distribution in biological science has
been acknowledged. Bentley (1954) ([9]) provides numerous generic resources for statistical
data generated from biological and agricultural sources. A study on the complexities of
the biochemical mechanisms associated with gene expression has created an emergent LN
distribution of expression levels, according to [2]. Carvalho (2018) ([5]) found that a form of
the LN distribution fits the postpartum blood loss data from numerous geographical areas
quite well, suggesting that the LN distribution may fit postpartum blood loss generally.
Hence, in this article, we utilize a cancer dataset as an application that is related to biological
science.

The probability density function (pdf) for a log-normal random variable W is given by

q(w) =
1√

2πσw
exp
[
−(logw − µ)2

2σ2

]
, w > 0, µ ∈ R, σ > 0.

Zografos and Balakrishnan (2009) (see [26]) proposed a novel family of univariate distributions
generated by gamma random variables. Further Nadarajah et al. (2015) (see [20]) provides
a comprehensive treatment of the general mathematical properties of this family and denote
it with the prefix “Zografos-Balakrishnan-G” or “ZB-G” distributions. They discuss the esti-
mation of parameters by maximum likelihood and provide an application to a real dataset
and also propose a bivariate generalization. For any baseline cumulative distribution function
(cdf) G(x), and x ∈ R, Zografos and Balakrishnan (2009) ([26]) defined a distribution with
pdf f(x) and cumulative distribution function (cdf) F (x) given by

(1.1) f(x) =
1

Γ(α)
{− log[1−G(x)]}α−1g(x),

and

(1.2) F (x) =
γ(α,− log[1−G(x)])

Γ(α)
=

1
Γ(α)

∫ − log[1−G(x)]

0
tα−1 exp(−t)dt,

respectively for α > 0, where g(x) = dG(x)/dx, Γ(α) =
∫∞
0 tα−1 exp(−t)dt denotes the gamma

function, and γ(α, z) =
∫∞
0 tα−1 exp(−t)dt denotes the incomplete gamma function. The cor-

responding hazard rate function (hrf) is

h(x) =
{− log[1−G(x)]}α−1g(x)

Γ(α,− log[1−G(x)])
,

where Γ(α, z) =
∫ z
0 t

α−1 exp(−t)dt denotes the complementary incomplete gamma function.
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Moreover, using the generalization in (1.1) and considering the immense applicability of
the log-normal distribution, Nadarajah et al. (2015) ([20]) also suggests the generalization of
log-normal distribution called Zografos-Balakrishnan log-normal (ZBLN) distribution. How-
ever, little is known in terms of general mathematical properties and in terms of application
for this generalization.

The aim of this article is to derive some mathematical properties of Zografos-
-Balakrishnan log-normal distribution in the most simple, explicit and general forms and
apply it to biological sciences and other reliability analyses. The main motivation for con-
sidering this lifetime model is to study the flexibility of the distribution that can be used to
model lifetime data in a wider class of biological data and reliability problems.

The rest of the paper is organized as follows. In Section 2, we present the definition of
the ZBLN distribution and obtain the weighted form of the same. The moments of the distri-
bution are obtained in Section 3. The quantile function and some of its associated measures
are obtained in Section 4. The various functions and the moments related to the reliability
measures are discussed in Section 5. Section 6 deals with the derivation of the Rényi en-
tropy, and Section 7 deals with the discussion of some inequality measures associated with
the ZBLN distribution. The distributions of order statistics are derived in Section 8. In order
to estimate the unknown parameters of the ZBLN model, the method of maximum likeli-
hood estimation, and the Bayesian estimation procedure are employed, and also a parametric
bootstrap method of simulation is presented in Section 9. To analyze the longstanding per-
formances of maximum likelihood estimators, and the Bayesian estimators of the parameters,
a simulation study has been conducted in Section 10. To illustrate the potentiality of the
ZBLN distribution over competing distributions, one real dataset is analyzed in Section 11.
The final concluding remarks are given in Section 12.

2. DEFINITION OF THE DISTRIBUTION

In this section, we present the definition and some important features of the ZBLN
distribution.

Definition 2.1. Let X be a random variable which follows ZBLN distribution (see
[20]) with parameters α, µ and σ, then its pdf is given by

(2.1) f(x) =
1

σ x Γ(α)

{
− log

[
1− Φ

(
log x− µ

σ

)]}α−1

φ

(
log x− µ

σ

)
,

and the cdf is given by

F (x) =
γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)])
Γ(α)

=
1

Γ(α)

∫ − log[1−Φ( log x−µ
σ )]

0
tα−1 exp(−t)dt,(2.2)

where x > 0, µ ∈ R and α, σ > 0. Also, Φ(.) and φ(.) are respectively the cdf and pdf of the
standard normal distribution.
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Note that, ZBLN distribution reduces to the two-parameter log-normal if α = 1. The
plot in Figure 1 portrays the pdf of ZBLN distribution, and we observe that the pdf may
be decreasing and unimodal with a certain flexibility in the mode and tails. It is, however,
mainly right-skewed or almost symmetrical.
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Figure 1: Plots of pdf of the ZBLN distribution.

2.1. Expansions for pdf and cdf

Nadarajah et al. (2015) ([20]) derived some useful expansions for (1.1) and (1.2) using
the concept of exponentiated distributions. For an arbitrary baseline cdf G(x), a random
variable is said to have the exponentiated-G distribution with parameter α > 0, say X ∼
exp-G(α), if its pdf and cdf are respectively given by

f∗α(x) = αGα−1(x)g(x), and F ∗α(x) = Gα(x).

The important properties of exponentiated distributions have been studied by several au-
thors; for examples, see [18] for exponentiated Weibull, [10] for exponentiated Pareto, [12] for
exponentiated exponential, [19] for exponentiated Gumbel and [21] for exponentiated gamma
distributions.

Note that, for any real parameter α > 0, the following formula holds.

{− log[1−G(x)]}α−1 = (α− 1)
∞∑

k=0

(
k+1−α

k

) k∑
j=0

(
k
j

)(−1)j+k pj,k

(α− 1− j)
{G(x)}α+k−1,

where the constants pj,k can be calculated recursively through the relation,

pj,k =
1
k

k∑
m=1

[k −m(j + 1)]cm pj,k−m,
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for k = 1, 2, ... with pj,0 = 1 and ck = (−1)k+1(k+ 1)−1. Thus, Nadarajah et al. (2015) ([20])
demonstrated that (1.1), and the corresponding (1.2) can be expressed as

f(x) =
∞∑

k=0

bk f
∗
α+k(x), and F (x) =

∞∑
k=0

bk F
∗
α+k(x),

where f∗α+k(x) and F ∗α+k(x) respectively denotes the corresponding pdf and cdf of the exp-
G(α+ k) distribution and for any real parameter α > 0, and

(2.3) bk =

(
k+1−α

k

)
(α+ k)Γ(α− 1)

k∑
j=0

(
k

j

)
(−1)j+k pj,k

(α− 1− j)
.

Thus, the cdf and pdf of the ZBLN distribution respectively obtained as

(2.4) F (x) =
∞∑

k=0

bk

[
Φ
(

log x− µ

σ

)]α+k

,

and

(2.5) f(x) =
∞∑

k=0

bk
(α+ k)
σx

φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

.

Thus, ZBLN distribution can be expressed as the infinite weighted sum of Exponentiated
log-normal distributions indexed by power parameter α+ k.

3. MOMENTS

In this section, we derive the expression for the rth raw moment of ZBLN distribution.
From Equation (2.5), the moments of the ZBLN distribution can be written as the weighted
sum of probability-weighted moments of the log-normal distribution. Thus, the rth raw
moment of the distribution is given by

µ′r = E(Xr) =
∞∑

k=0

(α+ k)bk µ′r,α+k,

where

µ′r,α+k = E

{
Xr

[
Φ
(

log x− µ

σ

)]α+k−1
}

⇒ µ′r,α+k =
∫ ∞

0

xr

σx
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx,

is the probability weighted moments of the log-normal distribution.
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4. QUANTILE FUNCTION AND ASSOCIATED MEASURES

Generally, a probability distribution can be specified either in terms of the distribution
function or by the quantile function. Quantile functions have several interesting properties
that are not shared by distributions, which makes them more convenient and flexible for
analysis. Moreover, the random numbers from any distribution can be generated using ap-
propriate quantile functions. So, in this section, we derive an explicit expression for the
quantile function of ZBLN distribution and some of its associated measures.

Theorem 4.1. If X follows ZBLN distribution as given in (2.2), then the pth quantile,

Qp = F−1(p) of the distribution is given by

Qp = exp
{
µ+ σ Φ−1

[
1− exp

(
−Q−1(α, 1− p)

)]}
,

where Φ−1(.) is the quantile function of standard normal variate.

Proof: For the ZBLN distribution, Qp is the solution of the equation

Q

(
α,− log

[
1− Φ

(
log(Qp)− µ

σ

)])
= 1− u, p ∈ (0, 1)

⇒ − log
[
1− Φ

(
log(Qp)− µ

σ

)]
= Q−1(α, 1− p)(4.1)

On simplifications, (4.1) reduces to

Φ
(

log(Qp)− µ

σ

)
= 1− exp

(
−Q−1(α, 1− p)

)
⇒ log(Qp)− µ

σ
= Φ−1

[
1− exp

(
−Q−1(α, 1− p)

)]

(4.2) ⇒ Qp = exp
{
µ+ σ Φ−1

[
1− exp

(
−Q−1(α, 1− p)

)]}
.

Remark 4.1. Since Φ−1(.) is the quantile function of standard normal variate, Qp in
Equation (4.2) also written in the form

(4.3) Qp = exp
{
µ+ σ

√
2 erf−1

[
1− 2 exp

(
−Q−1(α, 1− p)

)]}
,

where erf−1(.) is the inverse error function.

Now, by putting p = 0.5, in Equation (4.3), we get the median (M) of ZBLN distribution
and is given by

M = Q0.5 = exp
{
µ+ σ

√
2 erf−1

[
1− 2 exp

(
−Q−1(α, 1/2)

)]}
.

For p = 1/4 and p = 3/4, Equation (4.3) respectively gives first and third quartiles of the
ZBLN distribution.
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5. RELIABILITY MEASURES

Many domains of practical studies, such as physics, engineering, psychology, and others,
rely heavily on reliability measures. As a reason, providing expressions for various reliability
measures is critical. Due to these facts, in this section, we derive expressions for various
measures of reliability.

5.1. Hazard rate function

The hazard rate provides the instantaneous risk that the event of interest happens,
within a very narrow time frame. As a function of age x, the hazard rate function is also
referred to as the failure rate function, instantaneous death rate, force of mortality, and
intensity function in other areas of study like survival analysis, actuarial science, biosciences,
demography, and extreme value theory. Thus, it also plays a substantial role in lifetime data
analysis, mainly in survival and reliability studies. Indeed, the mathematical characterization
of a lifetime distribution for a certain life phenomenon can be made on the basis of its failure
rate pattern. Most commonly, the hazard function can be increasing, decreasing, upside-down
bathtub or bathtub shaped.

By definition, the hazard function h(x) can be defined as h(x) = f(x)/S(x), where
S(x) = 1− F (x) is the survival function. Obviously, the survival function of ZBLN distribu-
tion is given as

S(x) = 1−
γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)])
Γ(α)

.

Thus, the hazard function of ZBLN distribution is obtained as

h(x) =
φ
(

log x−µ
σ

){
− log

[
1− Φ

(
log x−µ

σ

)]}α−1

σx Γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)]) ,

where Γ(α, z) =
∫∞
z tα−1 exp(−t)dt denotes the complementary incomplete gamma function.

Also, plots in Figure 3 refers the hazard rate function and observed that ZBLN distribution
possess increasing, decreasing, bathtub, and upside-down bathtub shapes. In this scenario,
the capability of our model to construct a bathtub-shaped failure rate function with a signif-
icantly longer flat region is one of its unique advantages. Nonetheless, this region is crucial
in real-world applications, underscoring the importance of effective flat region modeling (see
[14]). Again, from Figure 2, it can be seen in further detail that the hazard rate func-
tion graph for the shape bathtub happens when α = 0.0001, µ = 1.5, 0.2 ≤ σ ≤ 0.31. When
α ≥ 0.1, µ = 0.01, and σ = 1.1, the shapes also change from decreasing to increasing via an
upside-down bathtub.
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Figure 2: Plots of the hazard rate function of the ZBLN distribution.

5.2. Cumulative hazard rate function

The cumulative hazard rate function, also known as the integrated hazard function, is
the overall number of failures or deaths over a period of time. Like the hazard function, the
cumulative hazard function H(x) is not a probability, but still a measure of risk. The greater
the value of H(x), the greater the risk of failure by time x.

By definition, H(x) = − log{S(x)}. Thus, the cumulative hazard rate function of ZBLN
distribution is given by

(5.1) H(x) = − log

1−
γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)])
Γ(α)

.
Note that, log(1− x) = −

∑∞
n=1

xn

n , and also from Equation (2.4), H(x) in Equation (5.1)
can be simplified as

H(x) =
∞∑

n=1

1
n

{ ∞∑
k=0

bk

[
Φ
(

log x− µ

σ

)]α+k
}n

.
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5.3. Reversed hazard rate function

Reversed hazard rate (RHR) function is an important measure as a tool in the analysis
of the reliability of both natural and man-made systems. Recently, the properties of the RHR
have attracted considerable interest from researchers (see for examples [6] and [11]). The
RHR function is defined as r(x) = f(x)/F (x). Thus, the RHR function of ZBLN distribution
is given by

r(x) =
φ
(

log x−µ
σ

){
− log

[
1− Φ

(
log x−µ

σ

)]}α−1

σx γ
(
α,− log

[
1− Φ

(
log x−µ

σ

)]) .

5.4. Conditional moments

For lifetime distributions, it is of greater interest to know the conditional moments
which are important in prediction. The conditional moments of any distribution is defined as

E(Xr|X > t) =
1

S(t)

∫ ∞

t
xrf(x)dx.

Thus, the conditional moments of ZBLN distribution is given by

(5.2) E(Xr|X > t) =
1

S(t)

∞∑
k=0

(
α+ k

σ

)
bk I1(r, k),

where S(.) is the survival function, bk is given in Equation (2.3) and I1(r, k) is given as

(5.3) I1(r, k) =
∫ ∞

t
xr−1 φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

5.5. Vitality function

In modeling lifetime data, the vitality function is a very valuable tool. This function
plays important role in reliability engineering, biomedical science, and survival analysis. It
is worth mentioning that the rapid aging of a component needs to low vitality relatively,
whereas high vitality implies relatively slow aging during the given time period. For more
details on the vitality function see [16].

For r = 1, in Equation (5.2), gives the vitality function of ZBLN distribution, and is
given by

(5.4) V (t) = E(X|X > t) =
1

S(t)

∫ ∞

t
xf(x)dx =

1
S(t)

∞∑
k=0

(
α+ k

σ

)
bk I1(1, k),

where I1(1, k) is obtained by putting r = 1 in Equation (5.3), and is given by

I1(1, k) =
∫ ∞

t
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.
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5.6. Geometric vitality function

The concept of geometric vitality function is based on the geometric mean of the resid-
ual lifetime. If X be a random variable that represents the lifetime of a component, then
logG(t) = E(logX|X > t) represents the geometric mean of lifetimes of components that
have survived up to time t. For a non-negative random variable X follows an absolutely con-
tinuous distribution function, with E(logX) < 1, the geometric vitality function is defined
as

logG(t) = E(logX|X > t) =
1

S(t)

∫ ∞

t
log x f(x)dx.

Now, the geometric vitality function of the ZBLN distribution is given by

logG(t) =
1

S(t)

∞∑
k=0

(α+ k) bk I2(k),

where I2(k) can be expressed as

I2(k) =
∫ ∞

t

(
log x
σx

)
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

5.7. Moments of residual life

In reliability theory, the concept of residual life is very noteworthy. It represents the
life remaining in a unit after it has attained age t.

The rth order moment of the residual life of the ZBLN distribution is given as

µr(t) = E[(X − t)r|X > t] =
1

S(t)

∫ ∞

t
(x− t)r f(x)dx

=
1

S(t)

r∑
i=0

(
r

i

)
(−1)r−i tr−i

∫ ∞

t
xi f(x)dx,

which can be simplified as

µr(t) =
1

S(t)

r∑
i=0

∞∑
k=0

(
r

i

)
(−1)r−i tr−i

(
α+ k

σ

)
bk I1(i, k),

where I1(r, k) is given in Equation (5.3). Now, for r = 1 and using Equation (2.5), we get
the expression for mean residual life (MRL) function, and is given by

µ1(t) = E(X − t|X > t) =
1

S(t)

∫ ∞

t
(x− t) f(x)dx

=
1

S(t)

∞∑
k=0

(
α+ k

σ

)
bk I3(k),

where

I3(k) =
∫ ∞

t

(x− t)
x

φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.
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Hence, µ1(t) also gets the form, µ1(t) = V (t)− t, where V (t) is given in Equation (5.4).
Similarly, the second moment of the residual lifetime of the ZBLN distribution is given by

µ2(t) =
1

S(t)

∞∑
k=0

(
α+ k

σ

)
bk I1(2, k)−

2t V (t)
S(t)

+ t2,

where I1(2, k) is given as

I1(2, k) =
∫ ∞

t
x φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

Thus, the variance of the residual life function of the ZBLN distribution can be obtained
using µ1(t) and µ2(t).

5.8. Moments of reversed residual life

The rth order moment of the reversed residual life of the ZBLN distribution is given by

mr(t) = E[(t−X)r|X ≤ t] =
1

F (t)

∫ t

0
(t− x)r f(x)dx

=
1

F (t)

r∑
i=0

(
r

i

)
(−1)i tr−i

∫ t

0
xi f(x)dx.

On simplification, mr(t) gets the form

(5.5) mr(t) =
1

F (t)

r∑
i=0

∞∑
k=0

(
r

i

)
(−1)r−i tr−i

(
α+ k

σ

)
bk I4(, k),

where I4(i, k) is given as

I4(i, k) =
∫ t

0
xi−1 φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

dx.

Now, the mean (m1(t)) and second moment (m2(t)) of the reversed residual life of the ZBLN
distribution can be obtained by setting r = 1, 2; respectively in Equation (5.5). Again, using
m1(t) and m2(t), one can obtain the variance of the reversed residual life function of the
distribution.

6. RÉNYI ENTROPY

Entropy is considered to be the measure of uncertainty of a system and it is typically
used in physical sciences. The study of entropy has gained momentum in the theoretical
perspective as well as in terms of its applications in the field of applied research. Among the
number of entropies available in the literature, one of the most popular entropy measures is
Rényi entropy (see [23]).
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By definition, for any random variable Y with pdf g(y), the Rényi entropy is defined as

Hγ(y) =
1

1− γ
log
∫

R
gγ(y)dy; for γ > 0 and γ 6= 1.

Let f(x) be the density function of the ZBLN distribution, then standard calculations
show that the Rényi entropy of the distribution can be written as

Hγ(x) =
1

1− γ
log
∫ ∞

0
fγ(x)dx

in which, by using (2.1), ∫ ∞

0
fγ(x)dx =

(
1

σ Γ(α)

)γ ∫ ∞

0
τγ(x)dx,

where

τγ(x) =

{
1
x
φ

(
log x− µ

σ

){
− log

[
1− Φ

(
log x− µ

σ

)]}α−1
}γ

.

On simplification, the Rényi entropy of ZBLN distribution gets the expression

Hγ(x) = (1− γ)−1 log
∫ ∞

0
τγ(x)dx− γ(1− γ)−1 log(σ)− γ(1− γ)−1 log(Γ(α)).

7. INEQUALITY MEASURES

Lorenz and Bonferroni curves are income inequality measures that are widely useful and
applicable to some other areas including reliability, demography, medicine, and insurance.
Also, the Zenga curve introduced by Zenga (2007) (see [25]) is another widely used inequality
measure. The Lorenz, Bonferroni, and Zenga curves for the ZBLN distribution will be derived
in this section. The Lorenz curve is defined by

LF (x) =
1

E(X)

∫ x

0
t f(t)dt.

Simple algebra provides the Lorenz curve for ZBLN distribution, and is given by

LF (x) =

∞∑
k1=0

(α+ k1) bk1 I4(k1)

∞∑
k2=0

(α+ k2) bk2 I5(k2)
,

where bk is given in equation (2.3),

I4(k1) =
∫ x

0
φ

(
log t− µ

σ

)[
Φ
(

log t− µ

σ

)]α+k1−1

, and

I5(k2) =
∫ ∞

0
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k2−1

.
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Also, the Bonferroni curve is defined by

BF (x) =
1

E(X)F (x)

∫ x

0
t f(t)dt.

Thus, the Bonferroni curve of ZBLN distribution gets expression given by

BF (x) =

∞∑
k1=0

(α+ k1) bk1 I4(k1){
∞∑

k2=0

(α+ k2) bk2 I5(k2)

}{∑∞
k=0 bk

[
Φ
(

log x−µ
σ

)]α+k
} .

Now, the Zenga curve is defined as

(7.1) AF (x) = 1− µ−(x)
µ+(x)

,

where

µ−(x) =
1

F (x)

∫ x

0
t f(t)dt, and µ+(x) =

1
S(x)

∫ ∞

x
t f(t)dt.

Therefore, µ−(x) and µ+(x) of ZBLN distribution are respectively given by

µ−(x) =

∞∑
k1=0

(
α+k1

σ

)
bk1 I4(k1)

∞∑
k=0

bk

[
Φ
(

log x−µ
σ

)]α+k
, and µ+(x) = V (x),

where V (x) is the vitality function of ZBLN distribution in x, such that the expression for
vitality function of the distribution is given in (5.4). Substituting the values of µ−(x) and
µ+(x) in (7.1), gets the expression of AF (x) for the ZBLN distribution.

8. ORDER STATISTICS

Let X1, X2, ..., Xn be a random sample from the ZBLN distribution and its order statis-
tics is X1:n, X2:n, ..., Xn:n. Let Fi:n(x) and fi:n(x) denote the cdf and pdf of the ith order
statistic Xi:n, respectively. Hence, using the standard expressions of order statistics, Fi:n(x)
and fi:n(x) of ZBLN distribution is respectively given by

Fi:n(x) =
n∑

j=i

(
n

j

)
F j(x) [1− F (x)]n−j ,
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and

fi:n(x) =
n!

(i− 1)! (n− i)!
[F (x)]i−1 [1− F (x)]n−i f(x)

=
1

B(i, n− i+ 1)

n−i∑
k3=0

(−1)k3

(
n− i

k3

)
[F (x)]k3+i−1f(x)

=
1

B(i, n− i+ 1)

n−i∑
k3=0

(−1)k3

(
n− i

k3

)

×

{ ∞∑
k=0

bk

[
Φ
(

log x− µ

σ

)]α+k
}k3+i−1

×
∞∑

k=0

bk
(α+ k)
σx

φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α+k−1

,

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the Beta function. Now, for i = 1 and n, one can get the
pdf of X(1) = min{X1, X2, ..., Xn} and X(n) = max{X1, X2, ..., Xn} for ZBLN distribution,
respectively.

9. ESTIMATION OF PARAMETERS

In this section, we’ll look at how to estimate the parameters of the ZBLN distribution
using two widely used methods: maximum likelihood (ML) and Bayesian methods.

9.1. Maximum likelihood estimation

This subsection considers the maximum likelihood estimation for the ZBLN model
parameters α, µ, and σ. Let X1, X2, ..., Xn be a random sample taken from the ZBLN dis-
tribution, and x1, x2, ..., xn are the corresponding observed values. Then the log-likelihood
function can be expressed as

Ln =− n log(σ)− n log(Γ(α))−
n∑

i=1

log(xi) +
n∑

i=1

log
[
φ

(
log(xi)− µ

σ

)]

+ (α− 1)
n∑

i=1

log
{
− log

[
1− Φ

(
log x− µ

σ

)]}
.

The score function associated with the log-likelihood function is

U =
(
∂Ln

∂α
,
∂Ln

∂µ
,
∂Ln

∂σ

)T

.

Now, by solving ∂Ln
∂α = 0, ∂Ln

∂µ = 0 and ∂Ln
∂σ = 0, we get the associated nonlinear log-likelihood

equations and are respectively given by

(9.1)
n∑

i=1

log
{
− log

[
1− Φ

(
log x− µ

σ

)]}
− n ψ(α) = 0,



Zografos-Balakrishnan log-normal distribution 15

(9.2)
n∑

i=1

log(xi)− µ

σ2
+
(
α− 1
σ

) n∑
i=1

φ
(

log(xi)−µ
σ

)
[
1− Φ

(
log(xi)−µ

σ

)]
log
[
1− Φ

(
log x−µ

σ

)] = 0,

(9.3)
−n
σ

+
n∑

i=1

(log(xi)− µ)2

σ3
+

n∑
i=1

(α− 1)
(

log(xi)−µ
σ

)
φ
(

log(xi)−µ
σ

)
[
1− Φ

(
log(xi)−µ

σ

)]
log
[
1− Φ

(
log x−µ

σ

)] = 0,

where ψ(α) = d{log Γ(α)}/dα is the digamma function. Now, by solving the equations (9.1),
(9.2) and (9.3) simultaneously, we obtain the maximum likelihood estimators (MLEs) (α̂, µ̂, σ̂)
of the model parameters (α, µ, σ).

Now, we construct the asymptotic confidence intervals for parameters α, µ and σ. On
taking the second partial derivatives of equations (9.1), (9.2) and (9.3), the Hessian matrix
of ZBLN distribution can be obtained, and denoted as H(Θ), where Θ = {α, µ, σ}. Now, the
observed Fisher’s information matrix J(Θ) can be obtained by taking the negative of Hessian
matrix. That is, J(Θ) = −H(Θ). Hence, the inverse of observed Fisher’s information matrix
will provide the variance-covariance matrix of the MLEs, which is given by

Σ = J−1(Θ) =
{
Σij , i, j = 1, 2, 3

}
,

and Σij = Σji for i 6= j = 1, 2, 3. Again, it is well established that the MLEs are asymptoti-
cally normally distributed. That is,

√
n(Θ− Θ̂) ∼ N3(0,Σ), where n is the sample size and

Θ̂ is the MLEs of Θ.

Thus, we obtain 100× (1− δ)% asymptotic confidence intervals of the parameters using
the following formulae:

α ∈
{
α̂∓ Zδ/2

√
Σ11

}
, µ ∈

{
µ̂∓ Zδ/2

√
Σ22

}
, and σ ∈

{
σ̂ ∓ Zδ/2

√
Σ33

}
,

where Zδ is the upper δth percentile of the standard normal distribution.

9.2. Bayesian estimation

The Bayesian analysis for the ZBLN model parameters is performed in this subsection.
Each parameter should have a prior density in order to do so. For this, we utilize two types
of priors: half-Cauchy (HC) and normal (N) priors. The pdf of the HC distribution with
scale parameter a is defined as

fHC(x∗) =
2a

π(x2
∗ + a2)

, x∗ > 0, a > 0.

The HC distribution has no mean or variance. Meanwhile, its mode is equal to 0. Since
the pdf of the HC is virtually flat but not totally flat at scale value equals 25, which verges
on acquiring adequate information for the numerical approximation algorithm to continue
looking at the target posterior pdf, the HC distribution with a = 25 is recommended as a
noninformative prior. Gelman and Hill (2006) ([8]) suggested that the uniform distribution,
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or whether more information is required, is a superior alternative to the HC distribution.
As a result, for the parameters α and σ, the HC distribution with a = 25 is chosen as a
noninformative prior distribution in this article. Thus, we set the prior distributions of the
parameters to be µ ∼ N(0, 1000), and α, σ ∼ HC(25). Thus, we obtain the joint posterior
pdf as given by

(9.4) π(µ, α, σ|x) ∝ Ln × π(µ)× π(α)× π(σ),

where Ln is the likelihood funtion for ZBLN distribution. From Equation (9.4), it is obvious
that there is no analytical solution to find out the Bayesian estimates. Thus, we use a
remarkable method of simulation, namely the Metropolis-Hastings algorithm of the Markov
Chain Monte Carlo (MCMC) method.

9.3. Bootstrap confidence intervals

In this subsection, we use the parametric bootstrap method to approximate the dis-
tribution of the maximum likelihood estimators of the ZBLN parameters. Then, we can
use the bootstrap distribution to estimate the confidence intervals on each parameter of the
fitted ZBLN distribution. Let Θ̂ = Θ(X) be a ML estimator of the set of parameters of
interest Θ = {α, µ, σ} using a given dataset X = {x1, x2, ..., xn}. The bootstrap is a method
to estimate the distribution of the statistic Θ̂ by getting a random sample Θ∗

1,Θ
∗
2, ...,Θ

∗
B

for Θ based on B random samples that are drawn with replacement from the original data
X = {x1, x2, ..., xn} (see [24]). The bootstrap sample Θ∗

1,Θ
∗
2, ...,Θ

∗
B can be used to construct

bootstrap confidence intervals for the parametric set Θ = {α, µ, σ} of ZBLN distribution.

Thus, we obtain 100× (1− δ)% bootstrap confidence intervals of the parameters using
the following formulae:

α ∈
{
α̂∓ zδ/2 ŝeα,boot

}
, µ ∈

{
µ̂∓ zδ/2 ŝeµ,boot

}
, and σ ∈

{
σ̂ ∓ zδ/2 ŝeσ,boot

}
,

where zδ denotes the δth percentile of the bootstrap sample and for Θ = {α, µ, σ}

ŝeΘ,boot =

√√√√ 1
B

B∑
b=1

(
Θ∗

b −
1
B

B∑
b=1

Θ∗
b

)2

.

10. PERFORMANCE OF THE ESTIMATORS USING SIMULATION STUDY

In this section, we conduct simulation experiments to assess the long-run performances
of MLEs and Bayesian estimates of the ZBLN parameters for some finite sample sizes. We
have simulated datasets of sizes n = 50, 100, and 250 from the ZBLN distribution for the
parameter values α = 0.2, µ = 3.5, σ = 0.5 and iterated each sample for 500 times. Then,
we compute the average biases and MSEs for the MLEs to all replications in the relevant
sample sizes.

That is, the analysis computes the values by the given formulae. The equation for
average bias of the simulated estimates equals 1

500

∑500
i=1(Θ̂i−Θ), and the equation for average
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MSE of the simulated estimates equals 1
500

∑500
i=1(Θ̂i−Θ)2 , where Θ̂ = (α̂, µ̂, σ̂) are estimates

of the parameter vector Θ = (α, µ, σ). The results to the simulation for MLEs are reported
in Table 1. It can be concluded that the M.S.E of all the estimators decreases with increasing
sample size. This shows the consistency of the estimators.

Table 1: Estimates, Average bias and MSE values of MLEs from simu-
lation of the ZBLN distribution.

Parameters Sample Size Estimates Bias M.S.E

50 0.6892 0.4892 1.9199
α 100 0.4514 0.2514 0.7520

250 0.2597 0.0597 0.0384

50 3.0965 −0.4035 1.1623
µ 100 3.2030 −0.2970 0.7376

250 3.3702 −0.1298 0.2029

50 0.5418 0.0418 0.0385
σ 100 0.5345 0.0345 0.0297

250 0.5215 0.0215 0.0112

Now, in the case of Bayesian simulation, we consider the prior distributions for the
ZBLN parameters as given in Subsection 9.2. For the respective sample sizes, the posterior
summary results such as mean, standard deviation (SD), Monte Carlo error (MCE), 95%
confidence interval (CI), and median are presented in Table 2. It is observed that the SD
and MCE decrease as the sample size increases, which predicts the consistency of Bayesian
estimates of the ZBLN distribution parameters.

Table 2: Posterior summary results for Bayesian simulation.

Parameters n Mean SD MCE 95% CI Median

α
50 1.6267 1.5925 1.0016 (0.4615, 5.0629) 1.4301

100 0.5894 0.2646 0.1755 (0.1748, 0.8089) 0.7889
250 0.2115 0.0919 0.0458 (0.1748, 0.4371) 0.1931

µ
50 2.5282 0.7701 0.5653 (1.1535, 3.4592) 2.3215

100 2.9731 0.3274 0.2064 (2.7282, 3.5331) 2.8252
250 3.4679 0.1632 0.0813 (3.0676, 3.5331) 3.4131

σ
50 0.6999 0.1494 0.0667 (0.4728, 0.8246) 0.7105

100 0.6444 0.1065 0.0591 (0.4704, 0.7237) 0.6218
250 0.4959 0.0640 0.0319 (0.4704, 0.6530) 0.5715

11. APPLICATION AND EMPIRICAL STUDY

To demonstrate the applicability of the ZBLN distribution, we consider a real dataset
based on a cancer survival study, and the parameters are estimated by using maximum
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likelihood, and the Bayesian estimation methods to compare the data modeling ability of the
ZBLN distribution over some competitive distributions. The dataset is taken from Lee &
Wang (2003) (see [17]), which corresponds to the remission times (in months) of a random
sample of 128 bladder cancer patients. The summary statistics of the dataset is given in
Table 3.

Table 3: Summary statistics of real dataset.

n M Md SD Sk Ku min max

128 9.2094 6.28 10.4026 3.3987 16.3942 0.08 79.05

Now, we study the empirical hazard function of the datasets using the concept of total
time on test (TTT) plot. The TTT plot is a graph that mainly serves to discriminate between
different types of aging represented in hazard rate shapes. For details, the readers are referred
to [1]. The TTT plot is drawn by plotting

T

(
i

n

)
=

i∑
r=1

xr:n + (n− i)xi:n

n∑
r=1

xr:n

against i/n, where i = 1, 2, ..., n and xr:n, r = 1, 2, ..., n are the order statistics of the sample.
Figure 3 indicates that the above-given dataset has an upside-down bathtub shape for the
empirical hazard function. Therefore, the ZBLN distribution can be a credible pick for the
given dataset, since its hazard function satisfies the upside-down bathtub shape.
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0
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i/n

T
(i/

n)

Data set 1

Figure 3: The TTT plot of real dataset.
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11.1. Maximum likelihood estimation

To illustrate the potentiality of the ZBLN distribution, the following distributions are
considered for comparison.

• The two-parameter Log-normal (LN) distribution with pdf

f(x) =
1√

2π σx
exp
[
−(log x− µ)2

2σ2

]
, x > 0, µ ∈ R, σ > 0.

• The Exponentiated Log-normal (ELN) distribution with pdf

f(x) =
α

xσ
φ

(
log x− µ

σ

)[
Φ
(

log x− µ

σ

)]α−1

, x > 0, µ ∈ R, α, σ > 0.

• The Weibull distribution with pdf

f(x) =
α

σ

(x
σ

)α−1
e−(x/σ)α

, x > 0, α, σ > 0.

• The New Generalized Lindley distribution (NGLD) (see [7]) with pdf

f(x) =
e−µx

1 + µ

(
µα+1xα−1

Γ(α)
+
µσxσ−1

Γ(σ)

)
, x > 0, α, µ, σ > 0.

• The Zografos-Balakrishnan Lindley distribution (ZBLD) (see [13]) with pdf

f(x) =
1

Γ(α)

[
log
(

1 + θ

1 + θ + θx
eθx

)]α−1 θ2

θ + 1
(1 + x)e−θx, x > 0, α, σ > 0.

We apply the following statistical tools in order to find out the goodness-of-fit of dis-
tributions to the real dataset; log-likelihood (LL), Kolmogorov-Smirnov (KS ), Cramér-von
Misses (W*), Anderson-Darling (A*) statistics, Akaike Information Criterion (AIC ), and
Bayesian Information Criterion (BIC ) values, and are presented in Table 4. We use the
RStudio software for numerical evaluations.

Moreover, Table 4 shows the MLEs and goodness-of-fit statistics of the distributions
for the corresponding dataset. It can be seen that the KS, W*, A*, AIC, and BIC values of
the ZBLN distribution are smaller than that of other distributions. We also present other
important graphs which consist of empirical density plot, empirical cdf plot, Q-Q, and P-P
plots for the real dataset in Figure 4. It again gives some superimposed curves of those fitted
and empirical functions. Thus, we conclude that the ZBLN is the most suitable distribution
for the given dataset while comparing other distributions.

We also utilized the likelihood ratio (LR) test for comparing ZBLN distribution having
additional parameter α with LN distribution. That is, we test H0 : LN against HA : ZBLN
and obtain critical values for the LR test statistics for the cancer dataset. Thus we get
the LR test statistic value as 6.663 and the corresponding p-value as 0.0098 for the given
dataset. Given the value of the test statistics and the associated p-value, we reject the null
hypotheses for the dataset and conclude that the ZBLN model provides a significantly better
representation for the dataset than the LN distribution.
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Table 4: Maximum-likelihood estimates, goodness-of-fit statistics, AIC
and BIC values based on the bladder cancer dataset.

Estimates LN ELN Weibull NGLD ZBLD ZBLN

α̂ — 0.1516 1.0514 1.1852 0.7353 0.2425
µ̂ 1.7422 3.0494 — 0.1287 — 2.9666
σ̂ 1.0646 0.5404 9.4172 1.1850 0.1569 0.6730

LL −412.6565 −410.0441 −411.8925 −411.0846 −413.5513 −409.3414
KS 0.0644 0.0562 0.0721 0.0760 0.0901 0.0542

W* 0.1313 0.0846 0.1666 0.1416 0.2230 0.0736

A* 0.8708 0.5589 1.0488 0.8235 1.2465 0.4828
AIC 829.3131 826.0883 827.7849 828.1691 831.1025 824.6828
BIC 835.0171 834.6444 833.4890 836.7252 836.8066 833.2389
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Figure 4: Various empirical plots of bladder cancer dataset.
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Now, the Hessian matrix corresponding to real dataset is obtained as

H(Θ) =

 2330.9119 794.1654 −1451.9253
794.1654 131391.5635 −191.6978
−1451.9253 −191.6978 132403.6280

.
Hence, the asymptotic variance-covariance matrix for real dataset is obtained as

Σ =

 0.0793 −0.0065 0.0118
−0.0065 0.0189 −0.0005
0.0118 −0.0005 0.0189

.
Again, the 95% asymptotic confidence intervals of the ZBLN parameters are given in Table 5.

Table 5: The 95% asymptotic confidence intervals of the ZBLN parameters
based on bladder cancer dataset.

Parameter Lower Upper

α 0.2017 0.2833
µ 2.9612 2.9720
σ 0.6676 0.6784

Now, we use the obtained MLEs to derive the 95% bootstrap confidence intervals for
the parameters α, µ, and σ. We simulate 1001 samples of size as in the real dataset we
studied, from ZBLN distribution with true values of the parameters taken as MLEs of the
parameters. For each obtained sample, we have estimated the MLEs α̂∗b , µ̂

∗
b , and σ̂∗b , for

b ∈ {1, 2, ..., 1001}. The median and 95% bootstrap confidence interval for parameters α, µ,
and σ of the given dataset is presented in Table 6. It is also interesting to look at the joint
distribution of the bootstrapped values in a matrix of scatter plots in order to understand the
potential structural correlation between parameters. The plots in Figure 5 consist of matrix
scatterplots of the bootstrapped values of ZBLN parameters providing a representation of
the joint uncertainty distribution of the fitted parameters.

Table 6: The median and 95% bootstrap confidence interval for ZBLN parameters
of the bladder cancer dataset.

Parameter Median Bootstrap CI

α 0.2294 (0.1203, 3.9249)
µ 2.9653 (−0.4722, 3.3680)
σ 0.6549 (0.4867, 1.2079)
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Figure 5: Matrix scatter plots of bootstrappped values of ZBLN param-
eters due to the bladder cancer dataset.

11.2. Bayesian estimation

Here, we focus on estimating the parameters of the ZBLN distribution using the
Bayesian procedure based on the same univariate bladder cancer survival dataset which we
discussed in the above subsection. In the context of Bayesian estimation, the analysis was
performed using the Metropolis-Hastings algorithm of the MCMC method with 1001 iter-
ations. For comparing Bayes estimates with the MLEs, both the estimates of the ZBLN
parameters with corresponding standard error (SE) and Monte Carlo standard error (MCSE)
for the real dataset are given in Table 7. The numerical computations on Bayesian estimation
are also done using RStudio software.

Table 7: MLEs and Bayesian estimates of the ZBLN parameters
on bladder cancer dataset.

Parameter MLE (SE) Bayes (MCSE)

α 0.2425 (0.0208) 0.2471 (0.0402)
µ 2.9666 (0.0028) 3.0206 (0.10003)
σ 0.6730 (0.0028) 0.7127 (0.0343)
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12. CONCLUDING REMARKS

In this paper, we studied a distribution that generalizes the log-normal distribution. We
refer to the model as the Zografos-Balakrishnan log-normal (ZBLN) distribution and study
its mathematical and statistical properties. We provide explicit expressions for the moments,
quantile function, various reliability measures, Rényi entropy, and some inequality measures
associated with the ZBLN distribution. It is worth noting that the hazard rate function
supports all of the standard shapes, including increasing, decreasing, bathtub, and upside-
down bathtub. The model parameters are estimated by using the Bayesian technique, and
the method of maximum likelihood, and also, the observed information matrix is presented.
Further, we adopt the parametric bootstrap technique to obtain confidence intervals for the
model parameters. Moreover, the simulation studies based on the defined estimation methods
are also done to confirm the parameter consistencies. The usefulness of the new model
is illustrated by an application to the real dataset based on a cancer survival study using
goodness-of-fit tests. The model provides a consistently better fit than other models available
in the literature. We hope the model may attract wider applications for modeling positive real
datasets in many areas such as physics, engineering, medicine, survival analysis, hydrology,
economics, and so on.
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