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Abstract:

• Exponential-Gaussian distribution has already appeared in the literature and it is widely used in
many fields. In this paper, we study its application in time series through a model-based approach.
An autoregressive process of order one with exponential-Gaussian distribution as marginals is
introduced. Structural aspects of the innovation sequence is derived and analytical properties of
the process are studied. Estimation of the parameters is done and the application is established
through an illustration with real data.
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1. INTRODUCTION

Convolution based models are introduced in the literature as a combination of two
random variables. It is used in various fields like physics, engineering, biological studies,
etc. Radovic et al. [22] studied breakdown voltage distribution in neon using the convolution
of distributions. For applications of convolution models, one may refer to Burbeck and
Luce [6], Rosso et al. [23] and Golubev [11]. Fajriyah [10] noted that beta convolutions
and beta convoluted normal can be used in microarray experiments due to the presence
of some non-biological noises. Plancade et al. [20] introduced gamma-normal convolution
to model the background correction of the Illumina BeadArrays. Exponential-lognormal
convolution is found to be a good fit for microarray data. Several convolution models based
on different underlying distributions such as the exponential-gamma, the normal-gamma and
the exponential-normal were studied in the past and different estimation methods of the
parameters have been discussed and illustrated with real life data sets. Chen et al. [7] used
exponential-gamma distribution and its highly skewed behavior for the improved estimation
of the detection of differently expressed genes.

For the modeling and analysis of symmetrical and tailed peaks in the data, the exponen-
tial-Gaussian distribution has been used by several researchers in the past. The exponential-
Gaussian distribution discussed by Xie et al. [26], is a convolution distribution for the ob-
served gene expression intensities by assuming that the true signal intensities are exponen-
tially distributed and the noise intensity is normally distributed. Ding et al. [9] used the
exponential-normal convolution model to correct the background of the Illumina platform by
using Markov chain Monte Carlo simulation. With the name exponentially modified Gaus-
sian, the convolution of exponential and Gaussian distribution has been found as a good
model in modeling chromatographic peaks as seen in Naish and Hartwell [19]. This distribu-
tion is used to model residuals in Ament et al. [2]. Application of this distribution in flow
injection analysis, quantitation of chromatographic peaks etc. is explained in Jeansonne and
Foley [14]. A recent work on exponential-Gaussian distribution is also seen in Jehan et al.

[13].

Time series analysis using autoregressive models having non-normality assumptions had
been an interesting area of researchers of all times. See Lawrance [17], Lawrance and Lewis
[16], Popovici [21] and Billard [5] for the details of stationary autoregressive models under
the assumption that the marginal distribution is exponential, and refer Sim [24] for gamma
distributed marginals. The convolution distribution is relatively less explored in time series
data analysis. In the regression context, one may refer to Gori and Rioul [12], where they
estimated a linear bound in the presence of outliers under the assumption that the noise is
exponential-Gaussian distributed. Also, it is of interest to study time series models developed
under the assumption that data is exponential-Gaussian distributed. In this paper, we study
the first order autoregressive time series models having exponential-Gaussian as marginals.
The paper is systematically organized into various sections as follows.

In Section 2, we consider the probability density function (pdf) of the exponential-
Gaussian distribution and bring out its analytical properties. The autoregressive process of
order 1(AR(1)) with exponential-Gaussian distribution as marginals is introduced and the
distribution of the innovation random variable is identified in Section 3. Important properties
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of the proposed model are derived in Section 4. The parameters involved in the proposed
model are estimated using different methods and the performance of the same are verified
using a simulation study in Section 5. Section 6 is devoted to the analysis of real data of
GDP growth rate using the proposed model.

2. EXPONENTIAL-GAUSSIAN DISTRIBUTION

Let U ∈ R and V ∈ R+ be two independent and continuous random variables with pdfs
g(·) and h(·) respectively. Then the pdf of the random variable X = U + V is

f(x) = (g ∗ h)(x) =
∫ +∞
0 g(x− v)h(v)dv.(2.1)

With particular choice of U as Gaussian with parameters µ and σ and V as exponential with
mean λ in (2.1), the pdf of X is

f(x) =
1

λσ
√

2π

∫ ∞

0
e−

(x−µ−v)2

2σ2 e−
v
λ dv.

Using the erfc(·) function, Naish and Hartwell [19] expressed the above integral in a more
convenient form as

f(x) =
1
2λ

e
1
λ

�
σ2

2λ
+µ−x

�
erfc

(
1√
2σ

(
σ2

λ
+ µ− x

))
,(2.2)

−∞ < x < ∞, λ > 0, µ ∈ R, σ > 0,

where

erfc(x) =
2√
π

∫ ∞

x
e−

t2

2 dt.

We denote the exponential-Gaussian random variable having pdf (2.2) as EG(λ, µ, σ).
A striking feature of such a construction is that, the resultant distribution is capable of
capturing the skewed behaviour of the data. X being the sum of independent normal and
exponential random variables, it is obvious that

E(X) = µ + λ,(2.3)

Var(X) = σ2 + λ2,(2.4)

Skewness(X) =
2λ3

(σ2 + λ2)3/2
(2.5)

and

Kurtosis(X) = 3
(σ4 + 2λ2σ2 + 3λ4)

(σ2 + λ2)2
.(2.6)

When λ → 0, the exponential-Gaussian becomes a Normal distribution with skewness zero
and kurtosis value 3.
The characteristic function of the EG(λ, µ, σ) is given by

φX(t) =
eiµt− 1

2
t2σ2

1− λit
.(2.7)
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The shape of the pdf of EG(λ, µ, σ) random variable for various values of the parameter λ,
by taking µ = 0 and σ = 1, is depicted in Figure 1. The shape of EG(λ, µ, σ) is determined
by the value of k = σ

λ . When k → 0 the EG(λ, µ, σ) density function will be very close to
the exponential density, and when k is very large, the distribution is close to the Gaussian
distribution. The density plots reveal an apparent similarity in shape, but the peakedness
increases significantly and becomes heavy tailed as λ increases.
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Figure 1: Shape of the density function of exponential-Gaussian
for the different values of λ ∈ {0.5, 1, 1.5}, µ = 0, σ = 1.

To discuss its application in time series, we propose an AR(1) process with EG(λ, µ, σ)
distribution as marginals in the next section.

3. AR(1) MODEL WITH EXPONENTIAL-GAUSSIAN AS MARGINAL

Let {Xn} be a first order autoregressive process having the linear structure

Xn = aXn−1 + εn, |a| < 1.(3.1)

Assume that {Xn} is a stationary process with exponential-Gaussian distribution as marginals
and {εn} is a sequence of independent and identically distributed (i.i.d) random variables
independent of {Xt}, where t < n.
Since Xn’s are stationary, by using the characteristic function of Xn we can write

φεn(t) =
φX(t)
φX(at)

.(3.2)

Since Xn is following EG(λ, µ, σ) distribution, substituting (2.7) we obtain

φεn(t) = eitµ(1−a)−σ2t2(1−a2)
2

[
1− λiat

1− λit

]
.(3.3)
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Using the expression of φεn(t), we can represent the random variable {Xn} as

Xn = aXn−1 +

{
Zn, with probability a,

Wn, with probability 1− a,
(3.4)

where Zn ∼ N(µ(1− a), σ
√

1− a2) and Wn ∼ EG(λ, µ(1− a), σ
√

(1− a2)).
Alternatively (3.3) can be expressed as

φεn(t) = eitµ(1−a)−σ2t2(1−a2)
2

[
a + (1− a)

1
1− λit

]
.(3.5)

Further it may be noted that, using the tailed exponential random variable of Littlejohn [18],
Xn may be written as

Xn = aXn−1 + Y1n + Y2n,(3.6)

where Y1n ∼ N(µ(1− a), σ
√

1− a2) and

Y2n =

{
0, with probability a,

Exp(λ) with probability 1− a,
(3.7)

and Exp(λ) is the exponential distributed random variable with mean λ.

Now we define the first order exponential-Gaussian autoregressive process (EGAR(1))
as given below.

Definition 3.1. A Markovian sequence {Xn} defined according to (3.1), is said to
be an exponential-Gaussian autoregressive process of order 1 (EGAR(1)) with EG(λ, µ, σ)
distribution as marginals if and only if {εn} admits the following representation

εn =

{
Zn, with probability a,

Wn, with probability 1− a,
(3.8)

where Zn ∼ N(µ(1− a), σ
√

1− a2) and Wn ∼ EG(λ, µ(1− a), σ
√

(1− a2)).

From (3.8), the pdf of εn can be written as

fεn(x) = afZn(x) + (1− a)fWn(x),

where

fZn(x) =
1√

2πσ
√

1− a2
e

−1

2(1−a2)

�
x−µ(1−a)

σ

�2

,

fWn(x) =
1
2λ

e
1
λ

�
σ2(1−a2)

2λ
+µ(1−a)−x

�
erfc

(
1√

2(1− a2)σ

(
σ2(1− a2)

λ
+ µ(1− a)− x)

))
.

In the next section, we shall bring together the important properties of EGAR(1).
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4. PROPERTIES OF THE EGAR(1) PROCESS

Proposition 4.1. If X0 is distributed arbitrarily, the Markovian process (3.1) is again

exponential-Gaussian distributed asymptotically.

Proof: We can rewrite Xn = aXn−1 + εn, as

Xn = anX0 +
∑n−1

k=0 akεn−k.

Consequently, the characteristic function is

φXn(t) = φX0(a
nt)

n−1∏
k=0

φε(akt)

= φX0(a
nt)

[
exp

(
iµ(1− a)

n−1∑
k=0

akt− 1
2
σ2(1− a2)

n−1∑
k=0

a2kt2

)]
n−1∏
k=0

1− iak+1tλ

1− iaktλ
.

As n →∞,

φXn(t) → eiµt−σ2t2

2

[
1

1− itλ

]
,(4.1)

implying that Xn is asymptotically EG(λ, µ, σ) distributed.

Proposition 4.2. For the EGAR(1) process, the (k + 1) step ahead conditional mean

is given by

(4.2) E(Xn+k|Xn−1 = xn−1) = ak+1xn−1 + (1− ak+1)(λ + µ).

Proof: Using (3.1), we have

(4.3) Xn+k = ak+1Xn−1 + akεn + ak−1εn+1 + ···+ εn+k.

By taking expectation conditionally on Xn−1 = xn−1 on both sides, we obtain the desired
result.

Remark 4.1. When k →∞,

(4.4) E(Xn+k|Xn−1 = xn−1) → λ + µ,

which is the unconditional mean of the process.

Proposition 4.3. For the EGAR(1) process, the (k + 1) step ahead conditional vari-

ance is given by

(4.5) Var(Xn+k|Xn−1 = xn−1) = (1− a2(k+1))(σ2 + λ2).
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Remark 4.2. As k →∞,

(4.6) Var(Xn+k|Xn−1 = xn−1) → (σ2 + λ2).

Proposition 4.4. EGAR(1) process is not time-reversible.

Proof: The joint characteristic function of (Xn, Xn+1) is

φXn,Xn+1(t) = E
(
eit1Xn+it2Xn+1

)
= E

(
e(it1Xn+it2(aXn+εn+1)

)
= φXn(t1 + at2)φεn+1(t2)

= eiµ(t1+t2)−σ2

2
(t21+t22+2at1t2) 1− iaλt2

(1− iλt2)(1− iλ(t1 + at2))
,

which is not symmetric in t1 and t2. So the process EGAR(1) is not time reversible.

Remark 4.3. From the model defined in (3.1),

E(Xn|Xn−1 = x) = ax + (1− a)(λ + µ).

Therefore, we can see that regression in the forward direction is linear and the conditional
variance is constant.

Following the steps in Lawrance [17], the joint moment generating function (m.g.f)
of (Xn, Xn+1) is

(4.7) MXn,Xn+1(t1, t2) =
MX(t1 + at2)MX(t2)

MX(at2)
.

Differentiating this with respect to t1 and setting t1 = 0, t2 = t,

E(etXn+1E(Xn|Xn+1)) =
M ′

X(at)MX(t)
MX(at)

= M ′
X(at)Mε(t)

= etµ+σ2t2

2

[
λa + (1− λat)(µa + a2σ2t)

(1− λat)(1− λt)

]
.(4.8)

Also differentiating (4.7) with respect to t2 and setting t2 = 0, t1 = 0, we get E(Xn) = λ + µ.

Proposition 4.5. The characteristic function of the partial sums Sr = Xn + Xn+1 +
···+ Xn+r−1 is

φSr(t) =

[
exp

(
iµ

1− ar

1− a
t− σ2

2

(
1− ar

1− a

)2

t2

)]
1

1− λi
(

1−ar

1−a

)
t

·
r−1∏
j=1

[
exp

(
iµ(1− ar−j)t− σ2

2
(1− a2)

(
1− ar−j

1− a

)2

t2

)]
1− aλi

(
1−ar−j

1−a

)
t

1− λi
(

1−ar−j

1−a

)
t

.
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Proof:
Sr = Xn + Xn+1 + ···+ Xn+r−1

=
r−1∑
j=0

ajXn +
r−2∑
j=0

ajεn+1 +
r−3∑
j=0

ajεn+2 + ···+ εn+r−1

= Xn

(
1− ar

1− a

)
+

r−1∑
j=1

εn+j

(
1− ar−j

1− a

)
,

φSr(t) = φXn

(
1− ar

1− a
t

) r−1∏
j=1

φε

(
1− ar−j

1− a
t

)

=

[
exp

(
iµ

1− ar

1− a
t− σ2

2

(
1− ar

1− a

)2

t2

)]
1

1− λi
(

1−ar

1−a

)
t

r−1∏
j=1

[
exp

(
iµ(1− ar−j)t− σ2

2
(1− a2)

(
1− ar−j

1− a

)2

t2

)]
1− aλi

(
1−ar−j

1−a

)
t

1− λi
(

1−ar−j

1−a

)
t

.

On inverting the above expression of the characteristic function of Sr, one may obtain its
distribution.

5. ESTIMATION

In this section we will discuss the estimation of the parameters. The parameters in-
volved in the process are µ, a, σ and λ. Let (X1, ..., Xn) be the realizations from the EGAR(1)
process. Method of moments, conditional least square method, and Gaussian estimation
method are discussed in the following sections. A simulation study is also conducted.

5.1. Estimation using the Method of Moments

Using (2.3), (2.4), and (2.5), we can identify the estimates for the parameters µ, σ and λ

under the method of moments estimation. The autoregressive parameter a can be estimated
by the sample autocorrelation function (ACF), that is â = corr(Xn, Xn−1). Other moment
estimates are given by

µ̂ = m− s
(γ

2

)1/3
,(5.1)

σ̂2 = s2

[
1−

(γ

2

)2/3
]

(5.2)

and

λ̂ = s
(γ

2

)1/3
,(5.3)

where m is the sample mean, s is the sample standard deviation and γ is the skewness.

It may be noted that explicit expression for the mean and variance of the above esti-
mators are not available.
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5.2. Conditional Least Square Estimation

The conditional least square estimates of the parameters are obtained by minimizing
the conditional sum of squares function

Dn(a, µ, σ, λ) =
n∑

i=1

(xi − E(Xi|Xi−1 = xi−1))2.(5.4)

From the linearity of the regression of EGAR(1) process, we have

(5.5) E(Xi|Xi−1 = x) = axi−1 + (1− a)(λ + µ).

Therefore, (5.4) can be written as

(5.6) Dn(a, µ, σ, λ) =
n∑

i=1

[xi − axi−1 − (1− a)(λ + µ)]2.

Solving the normal equations obtained from (5.6) we obtain estimates of a and µ in terms of
λ̂ as

â =
n
∑

xixi−1 −
∑

xi
∑

xi−1

n
∑

x2
i−1 − (

∑
xi)2

,(5.7)

µ̂ =
∑

xi − â
∑

xi−1

n(1− â)
− λ̂.(5.8)

Estimates of σ and λ can be identified numerically through other methods, like maximizing
the conditional likelihood function, and also by making use of (5.7) and (5.8). The conditional
likelihood function is given by

L(x; a, µ, σ, λ) =

[
n∏

i=1

fXi|Xi−1
(xi|xi−1)

]
fX0(x0)

=

[
n∏

i=1

fXi|Xi−1
(xi|xi−1)

]
1
2λ

e
1
λ

�
σ2

2λ
+µ−x0

�

· erfc
(

1√
2σ

(
σ2

λ
+ µ− x0

))
,

where

fXi|Xi−1
(xi|xi−1) = afZn(xi − axi−1) + (1− a)fWn(xi − axi−1)

= a
1√
2π

1
σ
√

1− a2
e
−1
2

(xi−axi−1−µ(1−a))2

σ2(1−a2)

+ (1− a)
1
2λ

e
1
λ

�
σ2(1−a2)

2λ
+µ(1−a)−xi+axi−1

�

· erfc

(
1√

2(1− a2)σ

(
σ2(1− a2)

λ
+ µ(1− a)− xi + axi−1

))
.

Since EGAR(1) is a stationary process and the moments are finite, using the regularity
conditions of Klimko and Nelson [15], it is verified that the conditional least square estimators
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obtained are consistent and asymptotically normal. That is,
√

n
[
(â, λ̂)′ − (a, λ)′

]
→ N(0,Σ)

where N(0,Σ) is a bivariate normal distribution with mean 0 and dispersion matrix

Σ =
[
(1− a2) 0

0 1+a
1−aλ2

]
.

5.3. Gaussian Estimation Method

Whittle [25] introduced this method by taking, Gaussian likelihood function as the
baseline distribution for the estimation. Later, Crowder [8] used this method of estimation
for the analysis of correlated binomial data. Al-Nachawati et al. [1] and Alwasel et al. [3] used
the same estimation procedure in the context of first order autoregressive process. Although
this method has an approximate nature, this gives a good estimation to our model and also the
possibility to estimate all the parameters in the model. The conditional maximum likelihood
function is given by

(5.9) L = f(x1)
n∏

t=2

f(xt|xt−1).

Here f(xt|xt−1) and f(x1) are the conditional and marginal probability function of Xt|Xt−1

and Xt, respectively. We assume Gaussian pdf for f(x1) and f(xt|xt−1) with conditional
mean and conditional variance as the parameters. Then the log-likelihood function can be
written as

(5.10) log(L) = n log
1√
2π

− 1
2

n∑
t=2

(
log(σ2

xt−1
) +

(xt −mxt−1)
2

σ2
xt−1

)
,

where mxt−1=E(Xt|Xt−1) = axt−1+(1−a)(λ+µ) and σ2
xt−1

=Var(Xt|Xt−1) = (1−a2)(λ2+σ2).
So, the Gaussian log-likelihood function corresponding to EGAR(1) process becomes

log(L) = n log

(
1√
2π

)
− 1

2

n∑
t=2

[
log
(
(1− a2)(λ2 + σ2)

)
+

(xt − axt−1 − (1− a)(λ + µ))2

(1− a2)(λ2 + σ2)

]
.

(5.11)

The Gaussian estimators are, thus, obtained by maximising the above non linear equation.
But explicit expressions as the solution for the parameters a, λ, µ and σ are not available.
Therefore, we have used numerical methods for identifying the value for these parameters.
We use the nlminb() function in R with the Nelder–Mead method for this purpose. Crowder [8]
pointed out that under Gaussian method of estimation of the parameter θ,

√
n(θ̂ − θ) is

asymptotically normally distributed with mean zero and asymptotic variance [J(θ)]−1, where
J(θ) is the conditional expected information matrix. An approximation of the same can be
done using the observed conditional information matrix, see Bakouch and Popovic [4].
To check the performance of the estimates, we have conducted a simulation study and the
mean square error (MSE) is used for the comparison purpose.
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5.4. Simulation Study

For checking the validity of the model, we simulated 100 samples of sizes 100, 500, 1000,
5000 and 10000 for different values of the parameters. The values considered are:

(1) a = 0.1, λ = 1, µ = 2 and σ = 1;

(2) a = 0.2, λ = 3, µ = 5 and σ = 4;

(3) a = 0.5, λ = 8, µ = 10 and σ = 8.

We obtained the estimates of the parameters and corresponding MSE values and the results
are presented in Table 1. It can be seen from the table that the Gaussian estimators are very
close to the true value of the parameters and it shows better performance when the sample
size increases. Further it may be noted that the MSE values decrease as the sample size
increases for different parameter values.

Table 1: Estimated values of a, λ, µ and σ corresponding mean squared error (MSE).

True values are: a = 0.1, λ = 1, µ = 2, σ = 1

Sample
size

ba bλ bµ bσ MSE(ba) MSE(bλ) MSE(bµ) MSE(bσ)

100 0.1371 0.9158 1.8221 1.1812 0.0613 0.1514 0.1034 0.1588
500 0.1158 0.9821 1.9948 1.1609 0.0227 0.0863 0.0949 0.1368

1000 0.1117 0.9969 1.9951 1.2321 0.0184 0.0546 0.0602 0.1211
5000 0.1041 1.0028 1.9934 1.0860 0.0124 0.0299 0.0287 0.0947

10000 0.1030 1.0003 2.0002 1.0636 0.0055 0.0269 0.0272 0.0782

True values are: a = 0.2, λ = 3, µ = 5, σ = 4

Sample
size

ba bλ bµ bσ MSE(ba) MSE(bλ) MSE(bµ) MSE(bσ)

100 0.1895 3.1918 5.1041 3.7119 0.0629 0.4664 0.2149 0.5053
500 0.1908 2.9903 4.9784 3.7372 0.0369 0.3011 0.1347 0.4146

1000 0.1946 2.9960 4.9863 3.7753 0.0299 0.1769 0.0738 0.3238
5000 0.1980 2.9986 4.9975 3.8110 0.0261 0.1369 0.0573 0.3009

10000 0.2004 3.0001 4.9993 3.8410 0.0095 0.0605 0.0393 0.2363

True values are: a = 0.5, λ = 8, µ = 10, σ = 8

Sample
size

ba bλ bµ bσ MSE(ba) MSE(bλ) MSE(bµ) MSE(bσ)

100 0.4842 7.8667 10.1034 7.5170 0.0631 0.8189 0.5678 1.0678
500 0.4951 7.9766 9.9780 7.6179 0.0383 0.6861 0.4468 0.9906

1000 0.4973 7.9827 9.9863 7.8915 0.0288 0.4723 0.3221 0.8955
5000 0.4985 7.9930 9.9945 7.8955 0.0120 0.2179 0.1620 0.8915

10000 0.5001 7.9989 10.0005 7.9301 0.0080 0.1339 0.1059 0.8207

Next we shall look into the sample path behaviour of the EGAR(1) process. We sim-
ulated 500 observations from the proposed process by taking a = 0.5, µ = 0, σ = 1 and
λ = 0.2, 0.4, 0.6, 0.8, and the same is plotted in Figure 2. The sample path clearly shows
that the simulated data is stationary.
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Figure 2: Sample path for the values of lambda=0.2, 0.4, 0.6, 0.8, µ=0 and σ=1.

6. DATA ANALYSIS

For establishing the applicability of the model, we considered the US GDP growth rate
data for the period from 1961 to 2018 which is available in https://data.worldbank.org.
The exponential-Gaussian distribution is found to be a suitable distribution for the data
and the fitted density is ploted in Figure 3. We performed the Kolmogorov–Smirnov test of
goodness of fit for the data set to check the adequacy of the exponential-Gaussian distribution
and obtained the p-value as 0.28 > 0.05. Significantly high p-value indicates the acceptance
of the hypothesis that EG is a good fit to the data.
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Figure 3: Fitted Exponential-Gaussian distribution for the GDP data.
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Hence we tried to model the data using the proposed EGAR(1) model. The time
series plot, the plots of the ACF and the partial autocorrelation function (PACF) of the data
are presented in Figure 4. We can find that the ACF and PACF is significant only at lag 1.
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Figure 4: GDP data, ACF, PACF plots.
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Therefore, we use AR(1) model for this data. The Gaussian estimation discussed in Section 5.3
is performed and the values of the parameters of EGAR(1) process are obtained as â = 0.33,
λ̂ = 1.88, µ̂ = 1.18 and σ̂ = 0.19. Residual analysis has been carried out and the model ade-
quacy has been checked. The p-value of Ljung–Box test is 0.79 > 0.05, accepting the null hy-
pothesis that the residuals are white noise. Also, the ACF and PACF of the residual are within
the limits as represented in Figure 5. We have calculated the standard errors of the estimates
using the Hessian matrix and got the standard errors of a as 0.05, µ as 0.08 and λ as 0.08.
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Figure 5: ACF and PACF plots of residuals.

Due to the evaluation of the likelihood function outside the given range of the parameter
values, the standard error of σ is not evaluated correctly. We have predicted the GDP values
for the next years and plotted them in Figure 6. In particular, note that the predicted value
of GDP growth rate in the year 2019 was 2.32, where the actual value is 2.161.
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Figure 6: Prediction for the GDP data.
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7. CONCLUSION

In this paper, we studied exponential-Gaussian distribution as a suitable model for data
having symmetry or heavy tailed behaviour. The time series application of the EG distri-
bution has been explored using an AR(1) process. The estimation of the model parameters
and the problem of fitting of the model to real time series data and simulated data are pe-
rused. Application of the similar convolution model like Lindley-Gaussian, Gamma-Gaussian
etc. are themes for future works. It may be interesting to investigate non-linear time series
models and stochastic volatility models based on EG distribution.
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