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1. INTRODUCTION

The power (P ) model for a probability density function (pdf), say f , was discussed by
Lehmann [18] for the case α ∈ N and later by Durrans [5] for α ∈ R+, the shape parameter.
If a random variable Z is distributed according to this class of distributions, we use the
notation Z ∼ Pf (α).

Its probability density function (pdf) is given by

g(z;α) = αf(z)F (z)α−1, z ∈ Z,(1.1)

where Z is the sample space defined for f and F is the cumulative distribution function (cdf)
related to f . Durrans [5] considers f = φ(·), the density function of the normal distribution
with location and scale parameters, which we will refer to as power normal (PN) distribution.
The case when f is symmetrical is discussed by Gupta and Gupta [10], including some
fundamental properties of this family; Pewsey et al. [38] show that the information matrix is
not singular when the symmetrical case is recovered (α = 1).

Based on this representation, there are some extensions in the literature and we refer
to Table 1 for a few references.

Table 1: Some extensions for the Power family.

Authors Distribution F

Gupta and Kundu EE Exponential
[11, 12]

Mudholkar et al. Exponentiated Weibull Weibull
[32, 33] (WE)

Gupta et al. Exponentiated-Pareto Pareto
[9] (EP)

Nadarajah Exponentiated Gumbel Gumbel
[35] (EG)

Kakde and Shirke Exponentiated lognormal Lognormal
[14] (ELN)

Nadarajah and Gupta Exponentiated gamma Gamma
[36] (EG)

Mart́ınez-Flórez et al. Skew-normal alpha power Skew-normal
[25] (SNAP)

Mart́ınez-Flórez et al. Power Birnbaum-Saunders Birbaum-Saunders
[26] (PBS)

Gómez and Bolfarine Power half-normal Half-normal
[7] (PHN)

Zhao and Kim Power t t-Student
[42] (PT)

Gómez et al. Power piecewise exponential Piecewise exponential
[8] (PPE)

Another important property of the Pf (α) class is its interpretability for α ∈ N. In this
case, the Pf (α) model can be interpreted as the distribution of the maximum of X1, X2, ..., Xα,
where the Xi’s are independent, identically distributed random variables from X ∼ f .
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A similar interpretation is given by Durrans [5] for the extended case α ∈ R+ using frac-
tional order statistics.

Other extensions related to this model are presented in Mart́ınez-Flórez et al. [23], intro-
ducing a multivariate version of the model; Mart́ınez-Flórez et al. [24], performing applications
in regression models; Mart́ınez-Flórez et al. [27], studying the exponential transformation of
the model; in [28], studying a version of the doubly censored model with inflation in a regres-
sion context. In one of the references in Table 1, Gupta and Kundu [12] reported a simulation
study for the EE model in which an overestimation problem for the shape parameter in small
sample sizes was observed. Based on this, we propose a bias correction methodology which
should be useful not only for this distribution, but for the whole P family. To motivate our
discussion, we start our presentation with two special cases from this class of models. Later,
in the simulation studies, we add another case; and in the applications we also add another
member of this family. This is done to ensure that our bias correction method works with
different distributions, not just certain carefully selected distributions.

The first case is the EE model with shape and rate parameters α and λ respectively
(which we denote as EE(α, λ)). The second case is the PHN model with shape and scale
parameters α and σ (which we denote as PHN(α, σ)).

For Z ∼EE(α, λ), the pdf is

g(z;α, λ) = αλe−λz[1− e−λz]α−1, z > 0,(1.2)

and for Z ∼ PHN(α, σ), the pdf is given by

g(z;α, σ) =
2α

σ
φ
( z

σ

)[
2Φ
( z

σ

)
− 1
]α−1

, z > 0,(1.3)

where φ(·) and Φ(·) are the pdf and the cdf for the standard normal distribution.

When dealing with these cases, it is important to study the associated bias in parameter
estimation, if we use maximum likelihood estimation methods for instance. Although the
unbiased property of these estimators is well known in asymptotic condition, we need to
be careful when using this estimation method for small sample sizes. For applications of
recent mean bias reduction methodology in different contexts, see for instance Kosmidis et

al. [15], Melo et al. [31], Maity et al. [22], Magalhães et al. [20] and Mazucheli et al. [30].
An alternative method is the median bias reduction methodology recently proposed in Pagui
et al. [37] and applied in different contexts in Kyriakou et al. [16] and Ioannis et al. [13], for
example.

For the Pf (α) class of distributions, a simple simulation study can be set up to identify
some weaknesses of the maximum likelihood estimators (MLE’s) for different values of each
parameter and different sample sizes, considering the cases of the exponentiated exponential
and the power-half normal models. In Figures 1 and 2 we report the estimated bias based on
10,000 replicates for the EE and PHN models for the MLEs.

Note that in both models, the observed average bias of the estimator of α is considerably
greater (in relative terms) when compared with the average bias for the other parameters.
This fact motivates the study of a method for reducing the mean bias for the MLE of α in
the general class of model defined in (1.1), which can be applied to any member of the class.
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Figure 1: Estimated bias for the MLE of λ and α in the EE(α, λ) under
different scenarios based on 10,000 replicates.

Initially, considering only the shape parameter α, it is possible not only to study the
bias, but also to define an unbiased estimator, namely the UMVUE. This result is also related
to the method proposed by Firth [6] for prevention of bias in maximum likelihood estimation.
Moreover, when there are more parameters in this class of distributions, the approach used
in Sartori [41] for skew normal models provides a convenient scheme to focus our attention
on the bias for α, while also maximizing the likelihood for the other parameters; it has been
applied more recently in Arrué et al. [1] and Magalhães et al. [21] in the study of bias for
skew-normal, modified skew-normal and Marshall-Olkin models respectively.

This paper is organized as follows. Section 2 defines the bias for the shape parameter
and presents the UMVUE for α in the general class of power models. Section 3 discusses the
method to prevent bias to the shape parameter, while also obtaining maximum likelihood
estimates for the other parameters, where we describe an iterative algorithm to find these
estimates. Section 4 shows a simulation study, where we consider the cases not only of the
exponentiated exponential and the power-half models, but also the power piecewise expo-
nential, to illustrate the superior performance of the modified estimator. In Section 5, we
highlight the improvements provided by the methods proposed here with three applications,
which are known in the literature for this type of data.
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Figure 2: Estimated bias for the MLE of σ and α in the PHN(α, σ) under
different scenarios based on 10,000 replicates.

2. CASE I: F (·) IS FREE OF PARAMETERS

The likelihood for a random sample z = (z1, z2, ..., zn) from Pf (α) is given by

L(α) =
n∏

i=1

f(zi)× αn exp

{
(α− 1)

(
n∑

i=1

log F (zi)

)}
.(2.1)

Theorem 2.1. For the Pf (α) model, T (z) = −
∑n

i=1 log F (zi) is a complete statistic.

Proof: Note that the likelihood function in (2.1) can be broken down as

L(α) =
n∏

i=1

f(zi)︸ ︷︷ ︸
h(z)

×αn exp

{
−(α− 1)

(
−

n∑
i=1

log F (zi)

)}
︸ ︷︷ ︸

gα

(
−

n∑
i=1

log F (zi)

)
.
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According to the Neyman factorization theorem, T = T (z) = −
∑n

i=1 log F (zi) is a sufficient
statistic for α. It is possible to verify that − log F (Zi) ∼ E(α), where E(α) denotes the
exponential distribution with rate α. As the Zi’s are independent, then T ∼ G(n, α), with
G(a, b) the gamma distribution with shape and rate parameters a and b respectively. Let g

be a measurable function in the interval (0,∞). Therefore,

E(g(T )) = 0 ⇔
∫ ∞

0
g(t)tn−1e−αtdt = 0.

As α > 0 and n ≥ 1, then tn−1e−αt > 0, ∀t > 0. Thus, E(g(T )) = 0 ⇔ g(T ) = 0, implying
that T is a complete statistic.

On the other hand, the log-likelihood function is given by

`(α) = n log α +
n∑

i=1

[log f(zi) + (α− 1) log F (zi)].

It is direct that the MLE of α is given by

α̂ =
n

−
n∑

i=1

log F (zi)

.

Theorem 2.2. α̂ is a biased estimator for α.

Proof: As −
∑n

i=1 log F (Zi) ∼ G(n, α), we have that

E(α̂) =
nα

n− 1
, n > 1.

Remark 2.1. Note that bias(α̂) = α/(n− 1), so that the bias can be“too large”when
α is increased and the sample size is small. Clearly, for n →∞, α̂ is unbiased.

Theorem 2.3. α̂M = (n− 1)/(−
∑n

i=1 log F (zi)) is the UMVUE for α.

Proof: It is clear that α̂M is an unbiased estimator for α. As α̂M depends on a
complete statistic, by the Lehmann-Scheffé theorem α̂M is the UMVUE for α.

2.1. Connection with the Firth method

A popular method to reduce the bias of an estimator is the Firth method [6]. For the
univariate case, the method consists in modifying the score function, say S(α), by

SM (α) = S(α) + M(α),
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where M(α) = 1
2I(α)−1(να,α,α + να,αα), I(α) the information matrix for the model, να,α,α =

E
[(

∂`(α)
∂α

)3]
and να,αα = E

[
∂`(α)
∂α

∂2`(α)
∂α2

]
. The solution of the modified score equation SM (α) = 0

produces the modified MLE, say α̂M . Firth [6] shows that the bias of α̂M is reduced from
O(n−1) to O(n−2) when compared with the ordinary MLE. Moreover, the asymptotic distri-
bution of α̂M coincides with that of α̂, i.e.

√
n(α̂M − α) → N

(
0, I(α)−1

)
, as n →∞.

Note that for the Pf (α) model

∂`(α)
∂α

=
n

α
+

n∑
i=1

log F (zi) and
∂2`(α)
∂α2

= −n2

α2
.

As −
∑n

i=1 log F (Zi) ∼ G(n, α), it can be verified that

I(α) =
n2

α2
, να,α,α = −2n

α3
and να,αα = 0.

Then, for the Pf (α) model we have that M(α) = −α−1. Therefore, SM (α) = n−1
α +∑n

i=1 log F (zi). Solving SM (α) = 0, we obtain newly

α̂M = (n− 1)/

(
−

n∑
i=1

log F (zi)

)
,

as the solution.

3. CASE II: F (·) DEPENDS OF ψ, A VECTOR OF PARAMETERS

Consider that F (·) is indexed by a vector of parameters ψ. In this case, the log-
likelihood function for θ = (ψ, α) is given by

`(θ) = n log α +
n∑

i=1

[
log f(zi;ψ) + (α− 1) log F (zi;ψ)

]
.

Our proposal is to consider the bias correction only for α and not for ψ. This is justifiable in
some models such as EE and PHN because the bias for α is considerable in small and median
sample sizes and lower for the components of ψ as presented in Figures 1 and 2.
Following the approach used in Sartori [41], we first compute the constrained MLE ψ̂(α) for
fixed α, and then we apply Firth’s method to the profile score function of α, which produces
the modified estimator

α̂M =
n− 1

−
n∑

i=1

log F (xi; ψ̂)

.

In short, the estimation procedure can be described as:

• Step 0: Choose an initial value for θ = (ψ, α), say θ̂
(0)

. A possible value can be

θ̂
(0)

= (ψ̂
(0)

, 1), where ψ̂
(0)

is the MLE for ψ considering that X1, ..., Xn are iid
from F (·;ψ).
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• Step 1: For k = 1, 2, ..., choose ψ̂
(k)

as the vector that maximizes

`p(ψ; α̂(k−1))

in relation to ψ.

• Step 2: For k = 1, 2, ..., do

α̂
(k)
M =

n− 1

−
n∑

i=1

log F
(
xi; ψ̂

(k)
) .

Although we apply the bias correction only for α, we will see in the next section that
this procedure also provides better estimates for ψ.

Remark 3.1. Given the MLE of ψ, say, ψ̂ and considering Remark 2.1, we can com-
pute the corrective method of Cox–Snell for α. This estimator will be denoted as α̂C and is
given by

α̂C =
n− 1

−
∑n

i=1 log F (zi; ψ̂)
.

Note that in this procedure ψ̂ is not recomputed and matched directly with the MLE es-
timator. However, to avoid confusion in the simulation study, we consider the notation
θ̂C = (ψ̂C , α̂C) to refer to the estimators obtained by this method.

4. SIMULATION STUDY

In this section, we illustrate the method discussed in Section 3 for the EE, PHN and
PPE models (see Gómez et al. [8]). All the computational programs were developed in R
Core Team [39] and are available upon request. Random samples for those distributions can
be obtained using the inverse transformation method, considering that the inverse of the cdf
for the basal models are implemented in R. We consider sample sizes ranging from 10 to 100,
taking one sample for every 5 units. For the EE model, we consider all combinations among
the sets A = {0.25, 0.5, 1, 2, 5, 10} and L = {0.1, 0.5, 2} for α and λ, respectively. In a similar
manner, for the PHN model we consider all combinations among the sets A = {0.5, 2, 5, 10}
and S = {5, 30, 50} for α and σ, respectively. For the PPE models we choose a different way
to select the parameters. We consider the case L = 2, which includes three parameters for
the model. For a given time partition a and α, we take λ1 = −(1/a) log(1− 0.61/α), which
guarantees that each observation belongs to the intervals (0, a) and (a,∞) with probabilities
0.6 and 0.4, respectively. We consider α in A = {0.5, 2, 5, 10}, a in {6, 10} and λ2 = 1 for all
combinations.

We consider 10,000 replicates for each combination between n, the sample size, α and
λ, σ or (λ1, λ2) (depending on the model). In each replication we compute the ordinary
MLEs, the estimators considering the Cox–Snell corrective method, and the proposed modi-
fied MLEs. For each scenario, we present the relative bias and the relative root mean squared
error

√
MSE. In Figure 3 we can find the bias, and in Figure 4 we see the

√
MSE for one
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case in the EE distribution. The remaining combinations for the EE, PHN and PPE models
are presented as supplementary material.
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Figure 3: Estimated bias for the MLE and the modified MLE in the EE(α, λ) model
under different scenarios based on 10,000 replicates.

Note that the bias of α̂M is reduced considerably when compared with α̂ and α̂C in the
three models, EE, PHN and PPE, especially for small sample sizes (say n ≤ 20). Specifically,
for the EE and PHN distributions in all the cases considered for n = 10 (the smallest sample
size), the bias reduction is at least 10% when α̂ is compared with α̂M and at least 5% when
is compared α̂C with α̂M . For the PPE distribution in all the cases considered for n = 10,
the bias reduction is at least 40% when α̂ is compared with α̂M and at least 30% when α̂C is
compared with α̂M . In all the models, the difference is even greater when the true value of α

is increased. On the other hand and as expected, this difference is reduced when the sample
size is increased.
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Figure 4: Estimated root MSE for the MLE and the modified MLE in the EE(α = 0.5, λ = 0.05)
model under different scenarios based on 10,000 replicates.

The components of the vector ψ also are benefited in terms of bias, although the bias
reduction is only proposed for α. For the EE model in all the cases considered and n = 10,
the bias reduction is at least 10% when λ̂ or λ̂C is compared with λ̂M . For the PHN and
PPE models, in all the cases considered the bias reduction for λ and (λ1, λ2) exists, but is
marginal.

Additionally,
√

MSE related to α̂M is also lower when compared with α̂ and α̂C . For
the EE and PHN distributions, in all the cases considered for n = 10 the

√
MSE is reduced

by at least around 5% when α̂ or α̂C is compared with α̂M , whereas for the PPE model in
all the cases considered for n = 10 this reduction is at least around 20%. On the other hand,
for the EE and PPE models in all the cases considered for n = 10, the

√
MSE is reduced by

at least around 10% when the modified estimator is compared with the traditional estimator
or the Cox–Snell estimator; whereas for the PHN distribution, in all the considered models
the reduction for

√
MSE is marginal. Again, in all the models, the difference is even greater

when the true value for α is increased and as expected, the difference between the different
estimators is reduced when the sample size is increased.

These simulation results are encouraging since they show, for these three particular
members of the class of power models, that even though we focus this bias prevention method
on the shape parameter, α, we still observe better bias results for the other parameters.

5. APPLICATIONS

In this section, we illustrate the methods in three real data sets for the EE, PPE and
PN models. All data sets are already known in the literature and we wish to compare the
performance of the modified MLE against the ordinary MLE and also using the Cox–Snell
correction method. We examine not only how well they both fit the data, but also the bias,
which could be estimated through bootstrap. Additional applications for the PHN and PBS
models are presented as supplementary material.
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5.1. Illustration 1

In this first application, we consider data on the number of million revolutions before
failure for each of 23 ball bearings in a life test. More details about the data are presented
in Lawless [17]. This data set was analyzed in Gupta and Kundu [12] using the EE model.
The estimates considering the ordinary MLE’s and the modified MLEs for this model are
presented in Table 2, with respective s.e. and confidence intervals.

Table 2: MLE and modified MLE for the EE model in the ball bearings data set.

Parameter bλ bα bλM bαM

Estimate 0.0323 5.2832 0.0302 4.5379
s.e. 0.0064 2.0492 0.0060 1.6566

95% C.I. (0.0197 ; 0.0449) (1.2667 ; 9.2998) (0.0206 ; 0.0440) (2.0363 ; 8.5302)

Note that the confidence intervals when we consider the modified MLEs are more
accurate for both parameters, since they have a smaller length compared to the confidence
intervals obtained with the estimates of the ordinary MLEs. The histogram of the data and
the estimated density functions of both estimates are presented in Figure 5a.
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Figure 5: Comparisons for the ordinary and modified MLEs in the ball bearings data set.
Left panel: Histogram for EE model and respective density estimate for each proposal.
Right panel: Estimated bias via 10,000 bootstrap samples for each estimator.

The estimated density for the modified MLEs presents a better fit with the data, if
we note that this density better represents the peak of values around 50 million revolutions
before failure. Furthermore, if we take 10,000 bootstrap samples to estimate the bias, we have
Figure 5b, where we are able to compare these two estimators empirically. The ordinary MLE
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present an estimated bias, via bootstrap, equal to 1.4774, while this value for the modified
bias is 1.0626. The bootstrap standard errors are equal to 3.8744 and 2.7440 for the ordinary
and modified MLE, respectively. These results are confirmed by the analysis of Figure 5b,
where the estimated density for the modified MLE is clearly more concentrated around zero,
further evidence of the superior performance of the modified method.

5.2. Illustration 2

This data set is available in Murthy et al. [34] (data set 6.1 in Section 6.6.5). The
data set represents the failure time of 20 components. We propose to analyze this data set
based on the PPE model with L = 2 in order to illustrate the advantage of our methodol-
ogy to reduce the bias for parameters. Table 3 shows the ordinary, corrected and modified
MLEs for the PPE distribution in this data set. The main differences between the three
methods are given in the estimates for λ1 and α. We also highlight that the standard errors
are lower for the modified MLEs, which also provides more accurate confidence intervals.

Table 3: Ordinary, corrected and modified MLE for the PPE model in failure time data set.

Parameter Estimate s.e. 95% C.I.

bλ1 0.8766 0.2643 (0.4855 ; 1.5829)
bλ2 3.8663 1.1347 (2.1751 ; 6.8725)
bα 5.1751 2.6060 (1.9287 ; 13.8856)

bλ1C 0.8766 0.2477 (0.4967 ; 1.5472)
bλ2C 3.8663 1.1394 (2.1759 ; 6.8699)
bαC 4.9163 2.2601 (1.8781 ; 12.8693)

bλ1M 0.7600 0.2366 (0.3893 ; 1.4836)
bλ2M 3.8379 1.1303 (2.1542 ; 6.8376)
bαM 4.0096 1.8634 (1.4397 ; 11.1671)
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Figure 6: Cumulative distribution function for failure time data set using PPE model
for ordinary MLE, corrected MLE and modified MLE.
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Figure 6 shows the empirical cdf and the estimated cdf for the three methods. The main
difference between the curves is given before the median of the distribution (approximately
2.2 units). Finally, Figure 7 shows the estimated distribution for the bias of the estimators of
λ1, λ2 and α for the three methods, which are computed based on 10,000 bootstrap samples.
Again, the main differences are given for the estimators for λ1 and α. For this last term, the
estimators provided by the ordinary and corrected MLEs have an evident and considerable
bias, in contrast to the modified MLE where the bias is negligible.
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Figure 7: Estimated distribution for the bias for MLEs, corrected MLEs
and modified MLEs based on 10,000 bootstrap samples.
Dashed lines represents the respective average bias.

5.3. Illustration 3

This data set is related to 3,848 observations of the variable “density” in the data
available at http://lib.stat.cmu.edu/datasets/pollen.data and was analyzed by Pewsey
et al. [38] using the PN distribution. Although the PN distribution was not considered in
the simulation studies, we decided to include this example using the PN model in order to
demonstrate the effectiveness of our modified MLE for the parameters in a class of location-
scale (µ and σ, respectively) within the power models. Evidently, as the sample size is large,
it is to be expected that the ordinary MLE and their corrections will be closer. However,
in order to illustrate our proposal, we considered a subsample of n = 30 from the original
data. Table 4 presents the results. Note that the estimates for α are closer for the ordinary
MLE and the Cox–Snell corrective method, but differ strongly from the modified MLE. The
impact of this can be assessed by the huge reduction in the bias of α̂M in comparison with
the bias of α̂ and α̂C . In addition, Figure 8 shows the histogram with the estimated density
function based on the PN model for the three estimation methods.

http://lib.stat.cmu.edu/datasets/pollen.data
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Table 4: Ordinary, corrected, modified MLE and estimated bias
based on 1,000 non-parametric bootstrap samples for
the PN model in the pollen data set.

Parameter Estimate s.e. 95% C.I. bias

bµ −16.3238 36.7854 (−53.1092 ; 20.4616) 10.6265
bσ 6.8207 6.5279 (0.2928 ; 13.3486) −2.8944
bα 115.1611 970.8617 (0.0000 ; 1086.0228) 265.4226

bµC −16.3238 5.3937 (−21.7175 ; −10.9301) 10.6265
bσC 6.8207 1.3255 (5.4952 ; 8.1462) −2.8944
bαC 111.3105 117.7705 (0.0000 ; 229.0813) 256.5461

bµM 4.7456 1.6875 (3.0581 ; 6.4331) 1.1611
bσM 1.7058 0.5620 (1.1438 ; 2.2678) −0.4343
bαM 0.1838 0.1674 (0.0163 ; 0.3512) −0.0601
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Figure 8: Estimated pdf for pollen data set using PN model for ordinary MLE,
corrected MLE and modified MLE.

6. CONCLUSIONS

In this paper, we considered the problem of estimation of the shape parameter in the
general class of power models; we recognize empirically the difficulties in this task, especially
for small sample sizes. For the case where we have only α to estimate, we present the unbiased
estimator as a function of a complete statistic for this class of models, obtaining the UMVUE
for α. We discuss the connection of these results with the bias prevention method proposed by
Firth [6]. We also propose an estimation method for the case when there are more parameters,
limiting the bias correction to α.
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Although our results are valid for all members of the general class of power models,
we selected some members of this class of models, namely EE, PN, PPE, PHN and PBS, in
order to demonstrate and compare the results between the ordinary MLE and the modified
MLE proposed in this paper. The simulation studies confirm the bias reduction for the
shape parameter, but they also show that there is an improvement related to bias for the
other parameters involved, for each distribution considered here. According to our simulation
results, the improvements are not only related to bias, as we also noticed lower root mean
squared errors when we use the modified estimator. Although we do not consider families of
bimodal distributions belonging to this family (as presented in Bolfarine et al. [4]), we see no
reason why the method should not work in families of this type.

We illustrate our findings with three known data sets from the literature, for each
distribution. Although this is a large number of examples, we thought it was important to
make sure our method was tested with different members of this class, and not just some
selected cases. We show that our modified estimator gives a better fit with the data in each
case, and also we estimate the bias via bootstrap, validating that our proposal performs
better.
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