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1. INTRODUCTION

The major breakthrough concerning integer-valued autoregressive (INAR) processes
was made, independently of each other, by [16] and [1]. In the period that followed, many
generalizations and modifications of these models were published, and many authors were
trying to create their own models in order to better describe the data obtained from some
natural processes. Some of them introduced new thinning operators dependent of a single
parameter, as it was done by [12], [22, 23] and [13]. More recently, a thinning operator
with two parameters has appeared in [15]. On contrary to this, others researchers discussed
marginal distributions, as given in [2] and [3]. In recent years, authors have been trying to
model some specific count data. Thus, data sets with excess zeros and excess ones are modeled
in [20], while a model for modeling heavily-tailed count data is proposed in [21]. Most of the
introduced models were applied to non-negative data, although in many real-life situations
there are processes which may consist of integer values including both positive and negative
numbers. A step forward in this direction was made by [9], who introduced a true integer-
valued process, defined in distribution as a difference of two non-negative, independent INAR
processes with Poisson marginal distributions. In the same way, [17] introduced an INAR
model with discrete Laplace marginal distributions (DLINAR(1)), defined in distribution
as a difference of two non-negative, independent INAR processes with the same geometric
marginal distributions. Some generalizations of this idea emerged in the work of [4] and
[7]. Lately, [6] and [14] have also come up with innovative ideas for creating models on Z.
Although each of these models deserves attention, the DLINAR(1) model introduced by [17]
is of particular importance for this paper.

All the processes mentioned here are stationary, since stationarity simplifies the calcu-
lation when describing the model and determining the estimates of model parameters. But,
we can say that stationary processes are rigid, since some of their properties are conserved
in time. Nevertheless, the real data are not usually like that. The first non-stationary model
appeared in [18] and is flexible towards the environment conditions changes. Namely, quan-
titative properties of phenomena from nature depend on environment, so it’s logical, as well,
to assume the distribution to depend on environment. It is supposed that environment condi-
tions can be divided into r different types, called states. Each state is associated with a fixed
distribution, and an element of the process has the distribution of its state. Various authors
have tried to generalize or modify this idea in recent years. They assumed that the order
of the model, or even the thinning parameter value, are also determined by the environment
state at a particular moment, as it was done by [11] and [19].

Although the DLINAR(1) model successfully estimates the data it was tested on, due
to its property of stationarity, the model shows substantial difficulties in adjusting to the
elements that deviate significantly from zero. In particular, the model is struggling to esti-
mate the highest and the lowest peaks, with a large difference between real values and their
estimated values. This fact leaves room for model improvement. The main goal of this article
is to make the DLINAR(1) model more flexible, using the idea given in [18]. In other words,
the goal is to construct the DLINAR(1) process dependent on the environment states. Neve-
rtheless, the idea mentioned in [18] cannot be fully taken over and certain adaptations have
to be made. So, in Section 2 of this article, the construction of such a process, which over-
comes problems mentioned above, is given alongside with its main distributional properties.
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Section 3 provides the k-step ahead conditional expectation and a correlation structure.
Yule-Walker (YW) estimates of the parameters of the defined model are given in Section 4.
In Section 5, the quality of YW estimates is examined on simulated data. Section 6 deals with
forecasting and provides a criterion to compare the prediction results between different mod-
els. An application of the introduced model to some real-life data is presented in Section 7,
and results are compared for different models.

2. CONSTRUCTION OF THE PROCESS

As mentioned in the previous section, the first attempt to increase the flexibility of
the DLINAR(1) process followed the idea given in [18]. An attempt to construct such an
improved process brought some difficulties, because the newly acquired process had the same
shape of one-step ahead conditional expectation as it was the case with DLINAR(1) process.
To avoid this issue, the flexibility of the DLINAR(1) process is improved using the concept
given in [11], although in a bit simpler form. Namely, it is assumed that information about
the environment state is not only carried by the marginal distribution parameter, but it can
also be expressed through the thinning parameter value. In other words, we assume that
the value of the marginal distribution parameter and the value of the thinning parameter,
both in moment n, depend on environment state in the same moment. A new INAR process
with discrete Laplace marginal distributions, that meets the aforementioned assumptions, is
defined in this section and some of its properties are discussed.

In order to make the reading of the manuscript easygoing, definitions of
RrNGINAR(M,A,P) and DLINAR(1) processes are given, since the paper relies heavily
on those. As mentioned in [11], we call {Xn(zn)} the RrNGINAR(M,A,P) process if its
element Xn(zn) at moment n ∈ N is determined by the recursive relation

Xn =


αzn ∗Xn−1(zn−1) + εn(zn, zn − 1) w.p. φzn

1,Pn
,

αzn ∗Xn−2(zn−2) + εn(zn, zn − 2) w.p. φzn
2,Pn

,
...
αzn ∗Xn−Pn(zn−Pn) + εn(zn, zn − Pn) w.p. φzn

Pn,Pn
,

where {zn}∞n=1 is the realization of the random environment process {Zn}∞n=1 (which is a
Markov chain) whose elements take values in Er = {1, ..., r}, r ∈ N, for r being the num-
ber of different environment states. Probabilities φzn

i,Pn
, i = 1, 2, ..., Pn, are all in [0, 1] and∑Pn

i=1 φzn
i,Pn

= 1. In addition, “α ∗”, α ∈ (0, 1), denotes the negative binomial thinning operator
defined as α ∗X =

∑X
i=1 Ui. Such defined thinning operator assigns to each integer-valued

random variable X the sum of X independent random variables having the same geometric
distribution with the mean α. Sets M = {µ1, ..., µr}, A = {α1, ..., αr}, P = {p1, ..., pr} con-
tain parameter values of the model, µzn is the mean of the marginal geometric distribution of
Xn(zn), αzn is the thinning parameter value and pzn represents the maximal value that the
order Pn may take for a fixed state zn ∈ {1, ..., r}.

Now, let us define the thinning operator “α�” as it was done in [17]. Let Y be a
random variable with discrete Laplace distribution DL(µ/(1 + µ)), µ > 0, with probability
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mass function given by

P (Y = y) =
1

1 + 2µ

(
µ

1 + µ

)|y|
, y = 0,±1,±2, ...,

and let X(1) and X(2) be two independent random variables with the same Geom (µ/(1 + µ))
distribution. In that case, operator “α�” is defined as

(2.1) α� Y |Y d=
(
α ∗X(1) − α ∗X(2)

)
|
(
X(1) −X(2)

)
,

where “α ∗”, α ∈ (0, 1), represents the negative binomial thinning operator. In addition, the
counting sequences involved in α ∗X(1) and α ∗X(2) are mutually independent and indepen-
dent of random variables X(1) and X(2).

Using this newly defined thinning operator, [17] defined the DLINAR(1) process in the
following way:

Yn = α� Yn−1 + en, n ∈ N,

where {Yn} represents a discrete Laplace distributed process, while {en} is an innovation
sequence of independent and identically distributed (i.i.d.) random variables, such that en

and Yn−l are mutually independent for all l > 0.

For the purpose of better understanding the content which follows, it is convenient to
introduce here as well the skewed discrete Laplace distribution SDL(µ/(1 + µ), ν/(1 + ν)),
µ > 0, ν > 0, with probability mass function given by

P (Y = y) =


1

1 + µ + ν

(
µ

1 + µ

)y

, y ≥ 0,

1
1 + µ + ν

(
ν

1 + ν

)−y

, y < 0.

Following notations given in the definition of RrNGINAR(M,A,P), let Er = {1, 2, ..., r}
be the set of all possible environment states, where r ∈ N, and let {zn}, n ∈ N0, be a real-
ization of the r states random environment process {Zn}. For i, j ∈ Er, let {en(i, j), n ∈ N}
be the sequences of i.i.d. random variables. Notation Yn(zn) will be used to tag an element
of a new process, where zn represents the realized value of the random environment process
in moment n ≥ 0. Regarding this, let us introduce the following notations:

Yn(Zn) =
r∑

z=1

Yn(z)I{Zn=z},

en(Zn−1, Zn) =
r∑

z1=1

r∑
z2=1

en(z1, z2)I{Zn−1=z1,Zn=z2},

αZn =
r∑

z=1

αzI{Zn=z},

whereby I{Zn=z} represents an indicator random variable associated with the event Zn = z.

Before introducing the definition of a new process that will be in the focus of this
research, it is necessary to define a random environment INAR process based on the thinning
operator “α�”, with variable marginal distribution and inconstant thinning parameter value.
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Definition 2.1. Let {Zn} be a random environment process with r possible states
from the set Er = {1, 2, ..., r}, r ∈ N. Let M = {µ1, µ2, ..., µr} and A = {α1, α2, ..., αr}, with
µi > 0 and αi ∈ (0, 1), for all i ∈ Er. We say that {Yn(Zn)} is a random environment INAR
process of order 1 based on the thinning operator“α�”, with r states, distribution parameters
set M and thinning parameters set A (RrINAR1(M,A)), if the random variable Yn(Zn) is
defined for n ≥ 1 as

(2.2) Yn(Zn) = αZn � Yn−1(Zn−1) + en(Zn−1, Zn),

where “αZn �” is defined by (2.1) and the following conditions are satisfied:

1. For fixed i, j ∈ Er, the sequence {en(i, j)}n∈N is a sequence of i.i.d. random vari-
ables;

2. The sequences of random variables {Zn}, {en(1, 1)}, {en(1, 2)}, ..., {en(r, r)} are mu-
tually independent;

3. Random variables Zm and em(i, j) are independent of Yn(l) for all n < m and all
i, j, l ∈ Er.

It is convenient now to define a random environment INAR process of order 1 with
discrete Laplace marginals. In order to simplify the process, we can assume we know a
realization {zn} of the random environment process {Zn}. This assumption is plausible, since
the estimate of {zn} can be easily obtained by applying the appropriate clustering procedure.

Definition 2.2. Let {zn} be a realization of the random environment process {Zn}
with r possible states from the set Er = {1, 2, ..., r}, r ∈ N, and let M = {µ1, µ2, ..., µr} and
A = {α1, α2, ..., αr}, with µi > 0 and αi ∈ (0, 1), for all i ∈ Er. We say that {Yn(zn)} is a
random environment discrete Laplace INAR process of order 1 with r states, distribution pa-
rameters set M and thinning parameters set A (RrDLINAR1(M,A)), if the random variable
Yn(zn) satisfies

(2.3) Yn(zn) = αzn � Yn−1(zn−1) + en(zn−1, zn),

for n ≥ 1, where conditions 1-3 from Definition 2.1 are satisfied and the random variable
Yn(zn) has DL(µzn/(1 + µzn)) distribution, for all n ∈ N0.

The introduced process is fully determined if the distributions of random variables
en(i, j) are known for all n ≥ 1 and all i, j ∈ Er. The following theorem reveals distributions
of these random variables.

Theorem 2.1. Let {Yn(zn)} be a RrDLINAR1(M,A) process. Let us suppose that

zn = j and zn−1 = k for some k and j ∈ Er. If 0 < αj ≤ µj

1+maxi∈Er µi
, then the distribution

of the random variable en(k, j) can be written as a mixture of discrete Laplace and skewed

discrete Laplace distributed random variables in the following form:

(2.4) en(k, j) d=



DL

(
µj

1 + µj

)
, w.p.

(
1− αjµk

µj − αj

)2

,

SDL

(
µj

1 + µj
,

αj

1 + αj

)
, w.p.

αjµk

µj − αj

(
1− αjµk

µj − αj

)
,

SDL

(
αj

1 + αj
,

µj

1 + µj
,

)
, w.p.

αjµk

µj − αj

(
1− αjµk

µj − αj

)
,

DL

(
αj

1 + αj

)
, w.p.

(
αjµk

µj − αj

)2

.
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Proof: Let ϕen(k,j)(t) represents the characteristic function of the random variable
en(k, j). Based on the definition and properties of the process and the assumption that
zn−1 = k and zn = j, it holds

ϕen(k,j)(t) =
ϕYn(j)(t)

ϕαj�Yn−1(k)(t)
.

As can be seen in [17],

ϕYn(j)(t) =
1

(1 + µj − µjeit)(1 + µj − µje−it)
,

ϕαj�Yn−1(k)(t) =
(1 + αj − αje

it)(1 + αj − αje
−it)

(1 + αj(1 + µk)− αj(1 + µk)eit)(1 + αj(1 + µk)− αj(1 + µk)e−it)
.

Using these facts, we obtain that

ϕen(k,j)(t) =
[1 + αj(1 + µk)− αj(1 + µk)eit][1 + αj(1 + µk)− αj(1 + µk)e−it]
(1 + αj − αjeit)(1 + αj − αje−it)(1 + µj − µjeit)(1 + µj − µje−it)

=
A

(1 + αj − αjeit)(1 + αj − αje−it)
+

B

(1 + αj − αjeit)(1 + µj − µje−it)

+
C

(1 + µj − µjeit)(1 + µj − µje−it)
+

D

(1 + µj − µjeit)(1 + αj − αje−it)
.

By solving the system

AM2 + BKM + CK2 + DMK = (1 + αj(1 + µk))2,

AMµj + BKµj + CKαj + DMαj = αj(1 + µk)(1 + αj(1 + µk)),

AMµj + BMαj + CKαj + DKµj = αj(1 + µk)(1 + αj(1 + µk)),

Aµ2
j + Bαjµj + Cα2

j + Dαjµj = (αj(1 + µk))2,

where K = 1 + αj and M = 1 + µj , we obtain that

A =
(

αjµk

µj − αj

)2

, B = D =
αjµk

µj − αj

(
1− αjµk

µj − αj

)
, C =

(
1− αjµk

µj − αj

)2

.

Knowing that the characteristic functions of random variables with DL
(

µj

1+µj

)
,

SDL
(

µj

1+µj
,

αj

1+αj

)
, SDL

(
αj

1+αj
,

µj

1+µj

)
and DL

(
αj

1+αj

)
distributions are of the form

ϕ1(t) =
1

(1 + µj − µjeit)(1 + µj − µje−it)
, ϕ2(t) =

1
(1 + µj − µjeit)(1 + αj − αje−it)

,

ϕ3(t) =
1

(1 + αj − αjeit)(1 + µj − µje−it)
, ϕ4(t) =

1
(1 + αj − αjeit)(1 + αj − αje−it)

respectively, it becomes obvious that (2.4) holds.

It is left to provide that A,B, C and D are probabilities, i.e. that A + B + C + D = 1
and all of them belong to [0, 1]. First condition is easily confirmable. To provide the second
one, it is enough to confirm that 0 ≤ αjµk

µj−αj
≤ 1. By solving this double inequality, we get

αj ≤ µj

1+µk
. Since this condition must hold for an arbitrary k and j, and αj ∈ (0, 1), we have

that 0 < αj ≤ µj

1+maxi∈Er µi
. This fact completes the proof.
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According to the previous theorem and the fact that discrete Laplace and skewed dis-
crete Laplace distributed random variables can be represented as a difference of two random
variables with geometric distributions, it is possible to make an interesting conclusion.

Corollary 2.1. If 0<αj≤ µj

1+maxi∈Er µi
, then en(i,j) d=εn(i,j)− ηn(i,j), where εn(i,j)

and ηn(i, j) are two i.i.d. random variables with the distribution given as

(2.5)


Geom

(
µj

1 + µj

)
, w.p.

(
1− αjµi

µj − αj

)
,

Geom

(
αj

1 + αj

)
, w.p.

αjµi

µj − αj
.

Presenting the distribution of the innovation time series {en(i, j)}, n ∈ N, in this shape
may simplify the calculation of many properties of the process itself, as can be seen in the
following corollary.

Corollary 2.2. Let us suppose that zn = j and zn−1 = i, for some i and j ∈ Er. Then,

we have:

E(en(i, j)) = 0,

Var(en(i, j)) = 2(µj(1 + µj)− αjµi(1 + 2αj + αjµi)).

Proof: The proof of the first equality is trivial, given that εn(i, j) and ηn(i, j) have
the same distribution.
Bearing in mind the shape of the distribution of εn(i, j) and ηn(i, j) and using properties of
the probability generating function (p.g.f.), it is easy to prove that

Var(ηn(i, j)) = Var(εn(i, j)) = Φ′′
εn(i,j)(1) + Φ′

εn(i,j)(1)−
[
Φ′

εn(i,j)(1)
]2

= µj(1 + µj)− αjµi(1 + 2αj + αjµi).

Now, it is obvious that

Var(en(i, j)) = Var(εn(i, j)) + Var(ηn(i, j)) = 2(µj(1 + µj)− αjµi(1 + 2αj + αjµi)).

Remark 2.1. Let us highlight here two interesting facts:

• For zn = j and zn−1 = i, εn(i, j) and ηn(i, j) have the same distribution as an inno-
vation process given in RrNGINAR(M,A,P) model (see [11]);

• For j = i, the distribution of the innovation process {en(i, j)} coincides with the
distribution of the innovation process of the DLINAR(1) model (see [17]).
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3. PROPERTIES OF THE PROCESS

In this section, the most important properties of the RrDLINAR1(M,A) model will be
derived and analyzed. It is interesting to notice that many properties can be derived by ob-
serving RrDLINAR1(M,A) process as a difference of two independent RrNGINAR(M,A,P)
processes, in case of P = {1}.

To that purpose, for given setsM,A and P={1}, let us define two RrNGINAR(M,A,P)
time series

X(1)
n (zn) = αzn ∗X

(1)
n−1(zn−1) + εn(zn−1, zn), n ≥ 1,

X(2)
n (zn) = αzn ∗X

(2)
n−1(zn−1) + ηn(zn−1, zn), n ≥ 1.

Time series {X(1)
n (zn)} and {X(2)

n (zn)} are mutually independent and, for fixed zn = j,
X

(1)
n (j) and X

(2)
n (j) have the same Geom

(
µj

1+µj

)
, µj ∈ M, distribution. Also, for fixed

values zn = j and zn−1 = i, {εn(i, j)} and {ηn(i, j)} are two mutually independent time se-
ries with the same marginal distribution given in Corollary 2.1. Based on the definition of
the RrNGINAR(M,A,P) process, X

(1)
n−l(k) and εn(i, j), as well as X

(2)
n−l(k) and ηn(i, j), are

mutually independent for all l ≥ 1 and for all i, j, i ∈ Er.

Let Yn(zn) be a RrDLINAR1(M,A) process with DL
(

µj

1+µj

)
marginals, given zn = j.

Now, using Corollary 2.1 and Corollary 2.1 from [17], we have

X(1)
n (zn)−X(2)

n (zn) =
(
αzn ∗X

(1)
n−1(zn−1)− αzn ∗X

(2)
n−1(zn−1)

)
+ (εn(zn−1, zn)− ηn(zn−1, zn))

d= αzn � Yn−1(zn−1) + en(zn−1, zn) = Yn(zn).(3.1)

Now, it is easy to prove that E(Yn(zn)) = 0 and

Var(Yn(zn)) = 2 Var
(
X(1)

n (zn)
)

= 2µzn(1 + µzn).

One important property holds for RrDLINAR1(M,A) process. Namely, according to
the Theorem 2.4 given in [17],

α� Y
d= sgn(Y )(α ∗ |Y |) +

min(X(1),X(2))∑
j=1

Dj ,

whereby the following conditions are satisfied:

a) Y ∼ DL
(

µ
1+µ

)
, X(1) ∼ Geom

(
µ

1+µ

)
, X(2) ∼ Geom

(
µ

1+µ

)
;

b) Dj ∼ DL
(

α
1+α

)
;

c) random variables Y, X(1), X(2), Dj , j ≥ 1, and random variables involved in “α∗”
are independent.

For RrDLINAR1(M,A) process, the following result holds.
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Theorem 3.1. The RrDLINAR1(M,A) process {Yn(zn)} is a Markov process.

Proof: Let us define sets A and B as A = {Ys(zs) = ys, s = 0, 1, ..., n− 2} and B =
A ∪ {Yn−1(zn−1) = yn−1}. According to the property of “α�” mentioned above, it holds

αzn � Yn−1(zn−1) = sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|)

+

min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn),

whereby X
(1)
n−1(zn−1) and X

(2)
n−1(zn−1) have the same Geom

(
µzn−1

1+µzn−1

)
distribution and Dj(zn)

has the DL
(

αzn
1+αzn

)
distribution. Now, we have

P (Yn(zn) = yn|B) = P

(
sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|)

+

min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn) + en(zn−1, zn) = yn

∣∣B).

Bearing in mind property (c) mentioned above and condition (3) of the Definition 2.1, it
becomes obvious that

P (Yn(zn) = yn|B) =
+∞∑

j=−∞
P (sgn(Yn−1(zn−1))(αzn ∗ |Yn−1(zn−1)|) = j|B)

× P

(min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn) + en(zn−1, zn) = yn − j

)

=
+∞∑

j=−∞

(
|yn−1|+ |j| − 1

|j|

)
α
|j|
zn

(1 + αzn)|yn−1|+|j|

× P

(min
�
X

(1)
n−1(zn−1),X

(2)
n−1(zn−1)

�∑
j=1

Dj(zn) + en(zn−1, zn) = yn − j

)
.

As the last expression depends only on yn−1, it is obvious that RrDLINAR1(M,A) is a
Markov process.

3.1. The k-step ahead conditional expectation

Theorem 3.2. Let {Yn(zn)} be a RrDLINAR1(M,A) process. Then for k ≥ 1,

(3.2) E(Yn+k(zn+k)|Yn(zn)) =

 k∏
j=1

αzn+j

Yn(zn).
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Proof: The proof will be derived by induction. Let k = 1. Using Theorem 2.3 from
[17], we have

E(Yn+1(zn+1)|Yn(zn)) = E(αzn+1 � Yn(zn)|Yn(zn)) + E(en+1(zn, zn+1))(3.3)

= αzn+1Yn(zn).

Suppose the equality (3.2) holds for k < m. Bearing in mind the Markov property of the
RrDLINAR1(M,A) process, we will prove that (3.2) holds for k = m as well. Namely,

E(Yn+m(zn+m)|Yn(zn)) = E
[
E(Yn+m(zn+m)|Yn+m−1(zn+m−1), ..., Yn(zn))|Yn(zn)

]
= E

[
E(Yn+m(zn+m)|Yn+m−1(zn+m−1))|Yn(zn)

]
= E(αzn+mYn+m−1(zn+m−1)|Yn(zn))

= αzn+m

m−1∏
j=1

αzn+j

Yn(zn)

=

 m∏
j=1

αzn+j

Yn(zn).

This completes the proof of this theorem.

3.2. Correlation structure

Theorem 3.3. A RrDLINAR1(M,A) process {Yn(zn)} given by (2.3) is the correlated

process with

(3.4) Corr(Yn(zn), Yn−k(zn−k)) =



k−1∏
j=0

αzn−j

√µzn−k
(1 + µzn−k

)
µzn(1 + µzn)

, k ≥ 0,

−k∏
j=1

αzn+j

√ µzn(1 + µzn)
µzn−k

(1 + µzn−k
)
, k < 0.

Proof: Since {Yn(zn)} is a process with the k-step ahead conditional expectation of the
form E(Yn+k(zn+k)|Yn(zn)) =

(∏k
j=1 αzn+j

)
Yn(zn), unconditional expectation E(Yn(zn)) = 0

and finite variance Var(Yn(zn)) = 2µzn(1 + µzn), for k ≥ 0 it becomes easy to obtain

Cov(Yn(zn), Yn−k(zn−k)) = Cov(E(Yn(zn)|Yn−k(zn−k)), Yn−k(zn−k))

= Cov

k−1∏
j=0

αzn−j

Yn−k(zn−k), Yn−k(zn−k)


=

k−1∏
j=0

αzn−j

Var(Yn−k(zn−k))

= 2

k−1∏
j=0

αzn−j

µzn−k
(1 + µzn−k

),
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whence we have

Corr(Yn(zn), Yn−k(zn−k)) =

2

(
k−1∏
j=0

αzn−j

)
µzn−k

(1 + µzn−k
)√

2µzn(1 + µzn)2µzn−k
(1 + µzn−k

)

=

k−1∏
j=0

αzn−j

√µzn−k
(1 + µzn−k

)
µzn(1 + µzn)

.

Similar to this, for k < 0 we obtain

Cov(Yn(zn), Yn−k(zn−k)) = E(Yn(zn) · Yn−k(zn−k))

= E[E(Yn(zn)Yn−k(zn−k)|Yn(zn))]

= E

Yn(zn)

−k∏
j=1

αzn+j

Yn(zn)


=

−k∏
j=1

αzn+j

Var(Yn(zn))

=

−k∏
j=1

αzn+j

2µzn(1 + µzn),

whence we have

Corr(Yn(zn), Yn−k(zn−k)) =

−k∏
j=1

αzn+j

√ µzn(1 + µzn)
µzn−k

(1 + µzn−k
)
.

Remark 3.1. If zn =zn−1 = ···=zn−k =j, then it holds that Corr(Yn(zn), Yn−k(zn−k))
= α

|k|
j , which matches with correlation function of the DLINAR(1) process.

Bearing in mind the equality (3.4) and the facts that µzn−k
> 0, µzn > 0 and αzn−j > 0

for all j = 0, 1, ..., k− 1, it is obvious that in case of k ≥ 0, Corr(Yn(zn), Yn−k(zn−k)) > 0. Let
us prove now the validity of the relation Corr(Yn(zn), Yn−k(zn−k)) < 1.

For all j = 0, 1, ..., k − 1, αzn−j ≤
µzn−j

1+maxi∈Er µzi
, so, obviously

αzn−j ≤
µzn−j

1 + µzn−j−1

<
µzn−j

µzn−j−1

<
1 + µzn−j

µzn−j−1

.

Then,

α2
zn−j

<
µzn−j

1 + µzn−j−1

·
1 + µzn−j

µzn−j−1

,

so we can conclude that αzn−j <

√
µzn−j (1+µzn−j )

µzn−j−1 (1+µzn−j−1 ) , and further, that

k−1∏
j=0

αzn−j <

√
µzn(1 + µzn)

µzn−1(1 + µzn−1)

√
µzn−1(1 + µzn−1)
µzn−2(1 + µzn−2)

···

√
µzn−k+1

(1 + µzn−k+1
)

µzn−k
(1 + µzn−k

)

=

√
µzn(1 + µzn)

µzn−k
(1 + µzn−k

)
.
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Finally, it holds

Corr(Yn(zn), Yn−k(zn−k)) <

√
µzn(1 + µzn)

µzn−k
(1 + µzn−k

)

√
µzn−k

(1 + µzn−k
)

µzn(1 + µzn)
= 1.

Similarly, it can be shown that 0 < Corr(Yn(zn), Yn−k(zn−k)) < 1, for k < 0.

4. YULE-WALKER ESTIMATION

In this section, the YW estimators will be provided and their strong consistency will
be proven. To that purpose, we will use procedure similar to the one described in [18].

Thus, let Y1(z1), Y2(z2), ..., YN (zN ) be a sample of the RrDLINAR1(M,A) process
{Yn(zn)} of size N . The main idea of the procedure described in [18] is to estimate pa-
rameters µk and αk only by using elements corresponding to the state k. Thus, let us divide
the initial sample into r subsamples Sk, k = 1, 2, ..., r, where Sk is a subsample which contains
all the elements corresponding to the state k and doesn’t contain elements corresponding to
any other state. This division can be performed in the following way:

Ik = {i ∈ {1, 2, ..., N}|zi = k}, k ∈ {1, 2, ..., r},
r⋃

k=1

Ik = {1, 2, ..., N}, |Ik| = nk, n1 + n2 + ···+ nr = N,

Sk = {Yk1(k), Yk2(k), ..., Yknk
(k)}, kj ∈ Ik, kj < kj+1, ∀j ∈ {1, 2, ..., nk − 1}.

In more detail, each Sk, k = 1, 2, ..., r, represents a disjoint union of subsamples
Sk,1, Sk,2, ..., Sk,ik , which we call ‘maximal’ subsamples. For an arbitrary subsample Sk,l,
l = 1, 2, ..., ik, we can find natural numbers ml and nl, ml < nl, such that zml

6= k,
zml+1 = zml+2 = ··· = znl

= k, znl+1 6= k. In that case, the subsample Sk,l = {Yml+1(zml+1),
Yml+2(zml+2), ..., Ynl

(znl
)} corresponds to the state k and is maximal in the sense that it can-

not be expanded neither to the left nor right side in the way that all of its elements correspond
to the state k. Now, each of those maximal subsamples Sk,l, l = 1, 2, ..., ik may be observed
as a sample of some DLINAR(1) process with the marginal distribution parameter µk. Let
us introduce the following notation: Jk,l = {i ∈ {1, 2, ..., N}|Yi(zi) ∈ Sk,l}, |Jk,l| = nk,l for all
l = 1, 2, ..., ik and nk,1 + nk,2 + ···+ nk,ik = nk. As shown in [17], the DLINAR(1) process
is stationary and ergodic, and the corresponding sample variance and the first-order sample
covariance are strongly consistent estimates of the variance and the first-order covariance of
the process. Finally, in case of subsample Sk,l, these estimators are of the form

γ̂
(k)
0,l =

1
nk,l

∑
i∈Jk,l

Y 2
i (k) and γ̂

(k)
1,l =

1
nk,l

∑
i,i+1∈Jk,l

Yi(k)Yi+1(k).

Let us define now the corresponding estimators without taking maximal subsamples into
account.

Definition 4.1. Estimators obtained from the subsample Sk corresponding to the
state k are defined as

(4.1) γ̂
(k)
0 =

1
nk

∑
i∈Ik

Y 2
i (k), γ̂

(k)
1 =

1
nk

∑
i,i+1∈Ik

Yi(k)Yi+1(k).
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Theorem 4.1. Estimators γ̂
(k)
0 and γ̂

(k)
1 from Definition 4.1 are strongly consistent.

Proof: This theorem shall be proven in a similar way as it was done by [18]. First
of all, the strong consistency property for γ̂

(k)
0 shall be proven. Because γ̂

(k)
0,l is strongly

consistent for all l ∈ {1, 2, ..., ik} it holds that γ̂
(k)
0,l → γk

0 , nk,l →∞ everywhere except on the
set Ωk,l, where P (Ωk,l) = 0. Now, it holds that

γ̂
(k)
0 =

1
nk

∑
i∈Ik

Y 2
i (k) =

1
nk

ik∑
l=1

∑
i∈Jk,l

Y 2
i (k) =

ik∑
l=1

nk,l

nk

1
nk,l

∑
i∈Jk,l

Y 2
i (k) =

ik∑
l=1

nk,l

nk
γ̂

(k)
0,l .

Let nk →∞. Following the technique introduced by [18], it is easy to show that

lim
nk→∞

γ̂
(k)
0 = lim

nk→∞

d∑
l=1

nk,l

nk
γ̂

(k)
0,l ,

where nk,l, l = 1, 2, ..., d, represent those maximal sample sizes which approach infinity when
nk does so. Thus, we have

lim
nk→∞

γ̂
(k)
0 = lim

nk,l→∞, ∀l∈{1,2,...,d}

d∑
l=1

nk,l

nk
γ̂

(k)
0,l

= γ
(k)
0 lim

nk,l→∞, ∀l∈{1,2,...,d}

d∑
l=1

nk,l

nk
= γ

(k)
0 .(4.2)

We mentioned earlier that lim
nk,l→∞

γ̂
(k)
0,l = γ

(k)
0 everywhere except on the set Ωk,l, where

P (Ωk,l) = 0. Thus, the equality (4.2) holds everywhere except on the set Ωk =
⋃d

l=1 Ωk,l,
where

P (Ωk) = P

(
d⋃

l=1

Ωk,l

)
≤

d∑
l=1

P (Ωk,l) = 0.

From the non-negativity of the probability, it follows that P (Ωk) = 0. Hence, γ̂
(k)
0 is a strongly

consistent estimator of the variance γ
(k)
0 .

Proof for γ̂
(k)
1 is analogous to the one proposed for γ̂

(k)
0 .

It has remained to estimate parameters µk and αk on the subsample Sk. According to
Theorem 3.3 from [17], it holds

γ
(k)
0 = 2µk(1 + µk), γ

(k)
1 = 2αkµk(1 + µk).

It follows that

µ̂Y W
k = −1

2
+

1
2

√
1 + 2γ̂

(k)
0 , α̂Y W

k =
γ̂

(k)
1

γ̂
(k)
0

.

Now, it is obvious that f(x) = −1
2 + 1

2

√
1 + 2x, x ≥ 0 is a continuous function.

According to Proposition 6.3.4 provided by [5], we conclude that µ̂Y W
k is strongly consistent.

The strong consistency of α̂Y W
k follows from the Theorem 4.1 given in [8].
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5. MODEL SIMULATIONS

We now focus on the YW estimating procedures on simulated data series, in order to
clarify the utility of the observed non-stationary modeling and to justify the quality of the
presented estimation method. Both processes, the random environment process {Zn} and the
RrDLINAR1(M,A) process {Yn(zn)} have been simultaneously simulated in 100 replicates,
each of size 10000. Sequences {Yn(zn)} are simulated using the fact that the newly defined
process is distributed the same as a difference between two independent RrNGINAR(M,A,P)
processes {X(1)

n (zn)} and {X(2)
n (zn)}, with P = {1}. Thus, first we simulated {X(1)

n (zn)}, and
independently of it, {X(2)

n (zn)} and derive {Yn(zn)} as Yn(zn) = X
(1)
n (zn)−X

(2)
n (zn), n ≥ 1.

Considering the number of possible random states, we have decided to discuss, in our opinion,
two of the most plausible cases in practice, as follows.

5.1. The case of two states

Here we have assumed that the random environment process is performed in two dif-
ferent states. Also, we have considered two different combinations of the model parameter
values. Bearing in mind that αj ∈

(
0,

µj

1+maxi∈Er µi

]
, first of all we have analyzed the case

when parameters αj , j = 1, 2, were close to their upper limits. So, we have used the fol-
lowing true values: µ = (1, 3) and α = (0.25, 0.7). It has been assumed that the choice of
the initial random state is fair, which led us to have pvec = (0.5, 0.5). It has remained for us
to set the random environment process transition probability matrix. In order to preserve
the simulated RrDLINAR1(M,A) process in one state as long as possible, we have chosen to
prefer the present state of the random environment process, i.e. probabilities that the random

environment process changes its state are significantly smaller. Thus, pmat =
[

0.6 0.4
0.2 0.8

]
.

In the second case, we have chosen parameters αj , j = 1, 2, to be smaller than the

midpoints of intervals
(
0,

µj

1+maxi∈Er µi

]
, j = 1, 2. In order not to shrink these intervals too

much, parameters µj , j = 1, 2, must have relatively close values. In that manner, we have
chosen the following true parameter values: µ = (2, 3) and α = (0.2, 0.3). An initial state
is nearly fair, due to the value of its distribution pvec = (0.45, 0.55), and the random states

transition probabilities are given as pmat =
[

0.7 0.3
0.3 0.7

]
.

5.2. The case of three states

Similarly, as aforementioned, in the case of three different random states we have also
considered two different combinations of the true parameter values. And yet again, the case
when parameters αj , j =1, 2, 3, approach their upper limits has been analyzed in the first place.
The following true parameter values have been used: µ = (1, 2, 5) and α = (0.1, 0.25, 0.7).
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An initial state is nearly fair, due to the value of its distribution pvec = (0.3, 0.4, 0.3), and the

random environment process transition probability matrix is pmat =

 0.7 0.2 0.1
0.1 0.7 0.2
0.2 0.1 0.7

.

At the very end, the second case represents the simulation when parameters αj , j =1, 2, 3,

are smaller than the midpoints of corresponding intervals
(
0,

µj

1+maxi∈Er µi

]
, j = 1, 2, 3.

Thus, we have chosen the following true parameter values: µ = (2, 3, 5) and α = (0.1, 0.2, 0.4).
An initial state is fair, due to the value of its distribution pvec = (0.33, 0.34, 0.33) and the

random environment process transition probability matrix is pmat =

 0.8 0.1 0.1
0.1 0.7 0.2
0.1 0.1 0.8

.

5.3. Estimation results

Forbothpresented cases, r = 2 and r = 3, we estimateparameters µj and αj , j =1, 2, ..., r,
of the RrDLINAR1(M,A) model using the YW method. Compared to the DLINAR(1)
model, the newly defined model has a greater number of unknown parameters, which leads
to better fitting to the data, because it is more “flexible”. However, since each state has its
own parameters that can be estimated only based on the part of the sample corresponding
to that state, it is expected to need a bigger sample for the same precision of the estimation.

Table 1: The case of 2 states.

a) True values µ = (1, 3), α = (0.25, 0.7), pvec = (0.5, 0.5), pmat =

�
0.6 0.4
0.2 0.8

�
.

N1 bµY W
1 bµY W

2 bαY W
1 bαY W

2

200 0.967 2.865 0.229 0.662
St. errors (0.164) (0.498) (0.136) (0.114)

500 0.980 2.943 0.236 0.686
St. errors (0.113) (0.350) (0.092) (0.068)

1000 0.984 3.003 0.241 0.700
St. errors (0.082) (0.238) (0.066) (0.052)

5000 0.997 3.002 0.249 0.700
St. errors (0.038) (0.117) (0.033) (0.023)

10000 0.990 2.998 0.250 0.700
St. errors (0.025) (0.087) (0.024) (0.015)

b) True values µ = (2, 3), α = (0.2, 0.3), pvec = (0.45, 0.55), pmat =

�
0.7 0.3
0.3 0.7

�
.

N1 bµY W
1 bµY W

2 bαY W
1 bαY W

2

200 2.052 3.033 0.210 0.291
St. errors (0.274) (0.368) (0.114) (0.121)

500 2.026 2.992 0.197 0.294
St. errors (0.166) (0.256) (0.080) (0.073)

1000 2.024 2.992 0.202 0.298
St. errors (0.108) (0.209) (0.057) (0.056)

5000 2.000 3.002 0.198 0.298
St. errors (0.055) (0.082) (0.027) (0.023)

10000 2.000 3.002 0.198 0.298
St. errors (0.041) (0.056) (0.017) (0.017)
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Thus, parameter estimates are derived for subsamples of sizes 200, 500, 1000, 5000 and 10000.
In each mentioned case, 100 simulated data series are used, and the corresponding standard
errors are calculated. With the sample size increment, all estimates are convergent with the
standard errors decreasing towards 0. It is also visible that the standard errors for µj are
smaller for smaller values of µj . These results are presented in Table 1 and Table 2, corre-
sponding to the cases of two and three random states, respectively. Transition probabilities
are not estimated this time, since those are not parameters of the RrDLINAR1(M,A) model
itself.

Table 2: The case of 3 states.

a) True values µ = (1, 2, 5), α = (0.1, 0.25, 0.7), pvec = (0.3, 0.4, 0.3), pmat =

2
4 0.7 0.2 0.1

0.1 0.7 0.2
0.2 0.1 0.7

3
5.

N1 bµY W
1 bµY W

2 bµY W
3 bαY W

1 bαY W
2 bαY W

3

200 1.030 2.103 4.957 0.115 0.263 0.695
St. errors (0.202) (0.407) (0.945) (0.130) (0.130) (0.141)

500 1.007 2.038 5.051 0.107 0.259 0.705
St. errors (0.133) (0.250) (0.696) (0.085) (0.092) (0.104)

1000 0.993 2.037 5.018 0.104 0.259 0.705
St. errors (0.090) (0.174) (0.521) (0.062) (0.061) (0.078)

5000 1.000 2.010 5.009 0.103 0.250 0.701
St. errors (0.035) (0.073) (0.216) (0.030) (0.030) (0.034)

10000 1.000 2.004 4.995 0.103 0.250 0.700
St. errors (0.025) (0.053) (0.164) (0.020) (0.020) (0.026)

b) True values µ = (2, 3, 5), α = (0.1, 0.2, 0.4), pvec = (0.33, 0.34, 0.33), pmat =

2
4 0.8 0.1 0.1

0.1 0.7 0.2
0.1 0.1 0.8

3
5.

N1 bµY W
1 bµY W

2 bµY W
3 bαY W

1 bαY W
2 bαY W

3

200 1.978 3.016 4.937 0.110 0.181 0.390
St. errors (0.359) (0.652) (0.737) (0.122) (0.141) (0.119)

500 2.016 3.016 4.946 0.103 0.207 0.390
St. errors (0.216) (0.366) (0.471) (0.083) (0.121) (0.083)

1000 1.991 2.994 4.954 0.103 0.201 0.393
St. errors (0.157) (0.248) (0.312) (0.060) (0.080) (0.054)

5000 1.991 3.006 4.989 0.099 0.199 0.396
St. errors (0.078) (0.120) (0.146) (0.028) (0.036) (0.027)

10000 1.991 3.006 4.991 0.099 0.201 0.399
St. errors (0.048) (0.087) (0.112) (0.018) (0.023) (0.018)

6. FORECASTING

Accuracy of forecasting in real-life data analysis is as important as evaluating the fit
of the model. We introduce here a criterion suitable to compare the prediction results of
different models. However, before we introduce the criterion itself, the forecasting proce-
dure will be described in brief. At the beginning, the data sample of size N = n1 + n2 is
divided into two sets, the training set and the prediction set. The training set contains the
first n1 sample elements and the prediction set contains the last n2 elements of the sample.
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We use training set to estimate model parameters and evaluate the fitting quality. In order
to evaluate the forecasting accuracy, we generate m sequences of predictions from the esti-
mated model parameters, each of size n2. Using the proposed criterion, we compare generated
predictions with the prediction set and finally determine the accuracy of forecasting.

We decided to use the forecasting log-score criterion (FLSC) already introduced in [14].
The criterion represents a modification of the log-score criterion (LSC) proposed by [10].
The FLSC criterion is given by the formula

FLSC =
n2∑

h=1

log p̂n1+h(xn1+h),

where h = 1, 2, ..., n2 and p̂n1+h(xn1+h) represents the estimated probability of correctly pre-
dicting the value xn1+h from the prediction set, that is,

p̂n1+h(xn1+h) =
number of correct predictions

m
.

Hihger values of the FLSC imply better forecasting.

7. APPLICATION

Regarding the application to the real-life data, we want to examine whether there is any
progress compared to other INAR models that deal with both positive and negative values.
For that purpose, we consider the number of motor vehicle thefts reported on a monthly
basis to police stations number 1608 and 2811, in Pittsburgh, Pennsylvania, USA, between
January 1990. and December 2001. The data were collected by the City of Pittsburgh Bureau
of Police and reported under the FBI Uniform Crime Report. The differences between motor
vehicle thefts on a monthly basis reported to these two police stations are calculated and
provided in Table 3.

Table 3: Differences between motor vehicle thefts reported on a monthly
basis to police stations number 1608 and 2811.

12 −1 2 3 8 −2 −3 4 4 6 5 5 5 4 4
5 4 5 4 0 1 0 1 2 3 −6 0 −1 −1 1
0 2 −1 0 1 −4 −5 −13 −4 −4 −5 −4 −6 −5 −8
−5 −5 −4 −4 −6 −5 0 1 −3 3 0 1 −2 0 0
−3 −1 −3 −3 −1 3 1 −1 0 0 −1 −1 2 1 1

1 3 0 2 1 0 0 2 1 1 −2 −2 −1 0 1
0 0 −3 0 1 −2 0 −2 2 −2 −3 2 2 2 3
2 1 −2 0 0 2 3 −3 0 −2 3 3 1 0 0
2 3 1 0 −3 −2 1 −3 −3 −3 2 3 −2 −2 1
3 1 2 0 3 2 3 2 −3

Based on the sample size of N =144, the sample mean of the differences between motor
vehicle thefts in police stations number 1608 and 2811 is y = 0.048, which proves the fact that the
mean values of the number of motor vehicle thefts in both stations are approximately the same.
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This condition is crucial here, since it had been claimed earlier that both processes {X(1)
n (zn)}

and {X(2)
n (zn)} must have the same distribution.

The usual first step in standard INAR modeling is to obtain the plots of autocor-
relation and partial autocorrelation functions. Those are given in Figure 1 and success-
fully justify the usage of the INAR(1) modeling. Bearing that in mind, we decide to com-
pare our RrDLINAR1(M,A) model on the training set with TINAR(1) (introduced by [9]),
DLINAR(1) (proposed by [17]) and STINAR(1) (given in [4]). All mentioned models involve
two i.i.d. latent AR components and are therefore suitable to compete with the
RrDLINAR1(M,A) model. As the criteria of the model validity, we take the following
goodness-of-fit statistics: the root mean square error (RMSE), the mean absolute error (MAE)
and the median absolute error (MdAE). Here, errors are defined as differences between ob-
served values and corresponding predictions. In general, the model that provides better fitting
to the data is expected to show lower values of these statistics.

Figure 1: Autocorrelations and partial autocorrelations.

In the next step, the observed data values are clustered. This is how we actually obtain
realized values of the corresponding random environment process. For all n ∈ {1, 2, ..., 144}, if
the theft difference in the n-th month is in the i-th cluster (where i ∈ Er and Er = {1, 2, ..., r}
is a set of possible random states), then zn = i is a n-th realized value of the corresponding
r states random environment process. In that way, realizations zn are determined. In this
particular case, we decided to divide the theft difference realizations into two clusters, using
the K-means clustering technique. These clustering results are given in Figure 2. Based
on this figure, the decision to divide the theft difference realizations into two clusters is
justified. As can be noticed, the differences that do not deviate too much from zero are
located in the first cluster (triangles). The second cluster mainly consists of realizations
from two time intervals (August 1990–July 1991 and December 1993–March 1995). These
realizations deviate significantly from zero (circles), indicating that changes in environment
state may have occurred. With each additional increase in the number of clusters, at least
one cluster with very few realizations in it is created. This leads to frequent state changes,
which is ruinous to any model in a random environment, including RrDLINAR1(M,A).
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Hence, RrDLINAR1(M,A) models with more than 2 environment states should not be con-
sidered for this data series.

Figure 2: Clustering results obtained by applying the K-means technique
to the motor vehicle theft differences.

The data set was divided into two parts, the training set with the first 120 sample
elements and the prediction set with the last 24 sample elements. Based on the training set,
we are able to construct the R2DLINAR1(M,A) process {Yn(zn)}, of which arbitrary element
Yn(zn) has the DL

( bµzn
1+bµzn

)
distribution, where µ̂1, µ̂2 and α̂1, α̂2 are previously obtained from

the training set using corresponding YW estimates.

Furthermore, we perform on training set the fitting quality comparison of all applied
models by calculating RMSE, MAE and MdAE for each particular model. These values,
together with the Yule-Walker parameter estimates, are presented in Table 4. Obviously, the
R2DLINAR1(M,A) model based on two states random environment process showed the best
performance when fitting this kind of real-life data sequences, providing the smallest values
of all goodness-of-fit statistics. Regarding other competitors, STINAR(1) performed slightly
better. However, even for this model, goodness-of-fit statistics are significantly higher then
corresponding counterparts calculated for the R2DLINAR1(M,A) model. One more fact is
noticeable. Compared to the parameter α2, parameter α1 from R2DLINAR1(M,A) model
is more similar to the parameter α from the other three models. Bearing in mind the form
of the one-step ahead conditional expectation given with (3.3), it can be concluded that all
proposed models are suppose to give relatively similar approximations of data points from the
first cluster. However, in the second cluster, the approximations should differ dramatically,
which would explain the difference in RMSE, MAE and MdAE values.

In Figure 3, the realization of the theft difference process, as well as the predicted values
of R2DLINAR1(M,A) and STINAR(1) models, are shown. The TINAR(1) and DLINAR(1)
model predictions are omitted here due to their similarity to STINAR(1) predictions.
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Table 4: YW parameter estimates and goodness-of-fit statistics RMSE,
MAE and MdAE for INAR(1) modeling of the theft difference.

Model YW RMSE MAE MdAE

TINAR(1) bα = 0.334 2.691 2.139 2.010bλ = 1.818

DLINAR(1) bα = 0.332 2.690 2.135 2.001bµ = 1.882

STINAR(1) bα = 0.338 2.681 2.131 1.993bµ1 = 2.008bµ2 = 1.992

R2DLINAR1(M,A) bα1 = 0.190 2.188 1.665 1.001bα2 = 0.809bµ1 = 0.816bµ2 = 3.649

As expected, both models (R2DLINAR1(M,A) and STINAR(1)) approximate well the values
which are not that far from zero. A large difference in quality fitting is noticeable in realiza-
tions that correspond to another state, i.e., that deviate significantly from zero. In this case,
the newly defined R2DLINAR1(M,A) model shows much better ability to adjust to the real-
life realizations, which leads to better fitting. For high deviations, the difference between the
predicted values of the R2DLINAR1(M,A) and STINAR(1) models is larger. This adapt-
ability is certainly a consequence of the non-stationary nature of the RrDLINAR1(M,A).
It is important to add that the trajectory of the R2DLINAR1(M,A) model generally follows
the trajectory of the realized process.

Figure 3: Black line – realization of the theft difference process;
red line – R2DLINAR1(M,A) predicted values;
blue line – STINAR(1) predicted values.
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Finally, we focus our attention on forecasting. To neutralize the impact of random-
ness on forecasting procedure, 10000 different sequences of size 24 are generated for each
model, whereby corresponding model parameters are based on the training set. We com-
pare these generated sequences of predictions with the prediction set and calculate FLSC.
Table 5 shows results of the FLSC for all considered models. According to this table, the
R2DLINAR1(M,A) model has the largest FLSC among all considered models and thus, it
provides the most accurate forecasting.

Table 5: FLSC for the prediction set of the theft difference.

TINAR(1) DLINAR(1) STINAR(1) R2DLINAR1(M,A)

FLSC −65.712 −63.982 −64.151 −63.136

8. CONCLUSION

In this paper, we introduced a random environment integer-valued autoregressive pro-
cess with discrete Laplace marginal distributions, RrDLINAR1(M,A). Since the construction
of this process was inspired by the work of [17], some of its features have been obtained in a
similar way. Besides the definition of the RrDLINAR1(M,A) process, we presented the full
characterization of the process including its k-step ahead conditional expectation, correlation
properties and the innovation process distribution. Parameter estimation was carried out
using the method of moments and the strong consistency was proven. The YW estimates
quality has been verified using subsamples of different sizes of 100 simulated data series, each
of length 10000. At the very end, an application of the introduced model on real-life data
series has been presented.

Further research might be performed in two directions. First of all, the model itself
can be generalized to an order higher than 1, following the technique used in [11]. As for the
second direction, an idea presented in this paper might be applied to the INAR process with
asymmetric discrete Laplace marginal distribution, introduced by [7].
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[18] Nastić, A.S.; Laketa, P.N. and Ristić, M.M. (2016). Random environment integer-valued
autoregressive process, Journal of Time Series Analysis, 37, 267–287.

[19] Nastić, A.S.; Laketa, P.N. and Ristić, M.M. (2019). Random environment INAR models
of higher order, RevStat – Statistical Journal, 17(1), 35–65.

[20] Qi, X.; Li, Q. and Zhu, F. (2019). Modeling time series of count with excess zeros and
ones based on INAR(1) model with zero-and-one inflated Poisson innovations, Journal of
Computational and Applied Mathematics, 346, 572–590.

[21] Qian, L.; Li, Q. and Zhu, F. (2020). Modelling heavy-tailedness in count time series, Applied
Mathematical Modelling, 82, 766–784.

[22] Zheng, H.; Basawa, I.V. and Datta, S. (2006). Inference for pth-order random coefficient
integer-valued autoregressive processes, Journal of Time Series Analysis, 27, 411–440.

[23] Zheng, H.; Basawa, I.V. and Datta, S. (2007). First-order random coefficient integer-
valued autoregressive processes, Journal of Statistical Planning and Inference, 137, 212–229.


	"Random Environment Integer-Valued Autoregressive Process with Discrete Laplace Marginal Distributions"
	1 INTRODUCTION
	2 CONSTRUCTION OF THE PROCESS
	3 PROPERTIES OF THE PROCESS
	3.1 The k-step ahead conditional expectation
	3.2 Correlation structure

	4 YULE-WALKER ESTIMATION
	5 MODEL SIMULATIONS
	5.1 The case of two states
	5.2 The case of three states
	5.3 Estimation results

	6 FORECASTING
	7 APPLICATION
	8 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

